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Automatic Segmentation of Gross
Tumor Volume (GTV) and Organs
at Risk (OARs) in Adaptive
Radiotherapy of Cervical Cancer
Adrian L. Breto‡, Benjamin Spieler‡, Olmo Zavala-Romero†, Mohammad Alhusseini ,
Nirav V. Patel , David A. Asher , Isaac R. Xu, Jacqueline B. Baikovitz , Eric A. Mellon,
John C. Ford, Radka Stoyanova* and Lorraine Portelance

Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami,
Miami, FL, United States

Background/Hypothesis: MRI-guided online adaptive radiotherapy (MRI-g-OART)
improves target coverage and organs-at-risk (OARs) sparing in radiation therapy (RT).
For patients with locally advanced cervical cancer (LACC) undergoing RT, changes in
bladder and rectal filling contribute to large inter-fraction target volume motion. We
hypothesized that deep learning (DL) convolutional neural networks (CNN) can be
trained to accurately segment gross tumor volume (GTV) and OARs both in planning
and daily fractions’ MRI scans.

Materials/Methods:We utilized planning and daily treatment fraction setup (RT-Fr) MRIs
from LACC patients, treated with stereotactic body RT to a dose of 45-54 Gy in 25
fractions. Nine structures were manually contoured. MASK R-CNN network was trained
and tested under three scenarios: (i) Leave-one-out (LOO), using the planning images of
N - 1 patients for training; (ii) the same network, tested on the RT-Fr MRIs of the “left-out”
patient, (iii) including the planning MRI of the “left-out” patient as an additional training
sample, and tested on RT-Fr MRIs. The network performance was evaluated using the
Dice Similarity Coefficient (DSC) and Hausdorff distances. The association between the
structures’ volume and corresponding DSCs was investigated using Pearson’s
Correlation Coefficient, r.

Results:MRIs from fifteen LACC patients were analyzed. In the LOO scenario the DSC for
Rectum, Femur, and Bladder was >0.8, followed by the GTV, Uterus, Mesorectum and
Parametrium (0.6-0.7). The results for Vagina and Sigmoid were suboptimal. The
performance of the network was similar for most organs when tested on RT-Fr MRI.
Including the planning MRI in the training did not improve the segmentation of the RT-Fr
MRI. There was a significant correlation between the average organ volume and the
corresponding DSC (r = 0.759, p = 0.018).
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Conclusion: We have established a robust workflow for training MASK R-CNN to
automatically segment GTV and OARs in MRI-g-OART of LACC. Albeit the small number
of patients in this pilot project, the network was trained to successfully identify several
structures while challenges remain, especially in relatively small organs. With the
increase of the LACC cases, the performance of the network will improve. A robust
auto-contouring tool would improve workflow efficiency and patient tolerance of the
OART process.
Keywords: MRI-guided radiotherapy, cervical cancer, radiotherapy, adaptive radiotherapy, deep learning,
convolutional neural networks
INTRODUCTION

Radiotherapy (RT) targets can be mobile, deformable structures
(1). In non-adaptive RT, the target for fractionated treatment is
defined based on a single pretreatment CT or MRI planning scan
with a security margin added to account for anatomic variability
(2, 3). The security margin must be large enough to prevent a
geographic miss, which often translates into the inclusion of
adjacent normal tissue that is vulnerable to radiation-related
toxicity in the treated volume (4). An attractive alternative is
Magnetic Resonance Image-guided online adaptive RT (MRI-g-
OART). When an MRI-g-OART approach is used, daily MR
setup scans provide accurate soft-tissue visualization of the target
and organs-at-risk (OARs), allowing physicians to modify the
original treatment plan based on the anatomy of the day. This
approach has been shown to improve target coverage and OARs
sparing compared to non-adaptive techniques, improving the
therapeutic index of RT for various malignancies (5–10).

For patients with locally advanced cervical cancer (LACC)
undergoing external beam radiotherapy (EBRT), changes in
bladder and rectal filling contribute to large inter-fraction target
volume motion (11). Conventional strategies to address this
include expanding the planning target volume (PTV) by up to
2 cm, potentially exposing the bladder, rectum and bowel to
elevated doses (12). Definitive RT for LACC using CT-based
non-adaptive techniques has been associated with high
incidences of early (27%) and late (10%) toxicity (13). In the
acute setting, up to 25% of patients experience at least grade 3
gastrointestinal (GI) toxicity and 10% at least grade 3
genitourinary (GU) toxicity. Eighteen percent of patients require
treatment interruptions of more than seven days due to the
severity of acute symptoms (13). MRI-g-OART promises more
conformal dose delivery than the expanded PTV approach, with
the potential to improve clinical outcomes by limiting treatment
interruptions associated with radiation-related toxicity (14–16).

Technical challenges to OART are not negligible. MRI-g-
OART is time-intensive, requiring delineation of OARs near the
target volume by the supervising radiation oncologist or a
dedicated trained technologist while the patient remains
immobile on the treatment table (17). Delays in the adaptive
process can challenge patients’ tolerance of OART and increase
the likelihood of anatomic changes during the interval between
image acquisition and completion of radiation delivery (17).
2

Various strategies are under investigation to improve workflow
efficiency, including the use of artificial intelligence (AI) deep
learning (DL) techniques such as convolutional neural networks
(CNN), already applied successfully in diagnostic imaging
classification (18, 19).

In this study, we propose using the MASK R-CNN
architecture for segmenting the GTV and OARs in a LACC
MRI-g-OART treatment scenario. Generally, CNNs are used in
image classification systems, where the system is trained on a
collection of images and their labels, and then used to classify
unseen images into their corresponding categories. The MASK
R-CNN extends this into instance segmentation – where the
network detects individual objects in the image, generates a mask
to segment the object from the rest of the image, and assigns a
class to the segmented object (20).

In the case of MRI data, the MASK R-CNN is used to segment
and classify the GTV and OARs within the images. The MASK R-
CNN architecture includes multiple sub-CNNs. First, the image is
fed into a CNN backbone which generates feature maps. These
feature maps are then provided to a region proposal network
(RPN) which proposes regions that may contain objects of interest.
At the second stage, theMASK R-CNN network predicts classes for
each region of interest and a refined object mask. The MASK R-
CNN outputs the refined masks of the classified objects, working as
an automatic segmentation and classification algorithm.

We hypothesized that (i) MASK R-CNN can quickly and
accurately segment GTVs and OARs in MRI-g-OART of LACC;
(ii) MASK R-CNN, trained on the initial planning MRIs can
segment images of OART fractions of an “unseen” patient, i.e.
one whose initial RT planning MRI were not used to train the
system; and (iii) augmentation of trained MASK R-CNN with
the unseen patient’s initial planning MRI (“transfer learning”)
can improve the segmentation of subsequent OART fractions.
MATERIALS AND METHODS

Study Cohort, MRI Acquisition
and Contouring
MRI studies were selected from patients treated for LACC on the
MRIdian® system (ViewRay, Inc., Mountain View, CA) and enrolled
in our Institutional Review Board (IRB) approved registry.
May 2022 | Volume 12 | Article 854349
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Patients were treated using stereotactic body radiation therapy
(SBRT) to a dose of 45-54 Gy in 25 fractions.

All MRIs were acquired on a 0.35T MRIdian combination
MRI-g RT system. The MRI sequence used was a balanced
steady-state free precession technique (True FISP), providing
T2/T1-weighted contrast. Studies from the planning MR and
daily MR image guidance acquired before every fraction were
used. The planning MRIs were acquired with voxel dimensions
of 1.5 × 1.5 × 1.5 mm3, and the following pulse sequence
acquisition parameters: TR/TE = 3/1.27ms, flip angle = 60,
bandwidth = 604 Hz/pixel, FOV = 501 × 300 × 360 mm (in
left-right, anterior-posterior, and head-foot directions), and
matrix size 334 × 200 × 240. The MRI of the treatment
fractions were acquired with voxel dimensions of 1.5 × 1.5 × 3.0
mm3 and matrix size 360 × 310 × 144.

Across all patients, nine structures (GTV + cervix, uterus,
parametrium, sigmoid, bladder, vagina, femur, rectum and
mesorectum) were contoured for each patient in MIM. The
volumes were delineated within a ROI from the top of the first
sacral vertebra (S1) to the bottom of the lesser femoral trochanters.
The contours from the treatment plan were used as a basis of the
organ segmentation. The contours were checked and refined by
radiation oncologists specialized in the treatment of gynecological
cancers. Examples of these contours are shown in Figure 1.

Preprocessing of Images and Contours
A preprocessing pipeline, implemented in Python, has been
developed to prepare the raw MR images and contours as
inputs for the network. The image intensities were normalized
to the interval of [0,1] by scaling the 1st and 99th percentiles of the
original image intensities. From the whole MRI volume of data,
Frontiers in Oncology | www.frontiersin.org 3
only slides with at least one manual contour were used for
network training. The dataset was augmented by flipping the
images on the sagittal axis in order to increase the number of
training examples. These images were saved into the PNG format
at the original 2D resolution of the source MR.

MASK R-CNN: Training, Validating
and Testing
The MASK R-CNN architecture (20) implemented in
Tensorflow (21) was used for automated image segmentation
and classification. Input images were resized from their native
resolutions to an overall size of 512 × 512 pixels per slice. In
addition to our data augmentation process, MASK R-CNN
implements a layer of data augmentation. By random selection,
some of the images were altered with up to two different data
augmentation techniques selected from vertical flips, horizontal
flips, rotations, multiplication, or Gaussian blur. The images
were then fed into the network for training.

Initially, the network weights were loaded from a trained
ImageNet model (22). Our network’s training parameters were
configured as described by Johnson (23).

The network is optimized through stochastic gradient descent
(SGD) with the following hyperparameters: learning rate a =
0.001, momentum of 0.9 and decay of 10-6. The training was
performed using a batch size of 16 images. MASK R-CNN uses
several different loss functions to evaluate and compute weights
for the overall network: The RPN and the classifier head use
cross-entropy loss and SoftMax loss, respectively, with smoothed
L1 loss to refine their anchors and bounding boxes. The mask
generator uses binary cross-entropy loss to refine its mask
outputs. The individual loss functions are computed as:
FIGURE 1 | An example of a cervix case provided to the neural network for training. The individual volumes are depicted in different colors.
May 2022 | Volume 12 | Article 854349
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Cross‐entropy loss:  −o
M

c=1
yo,cln po,  c

� �
where M is the number of classes, yo,c is a binary (1 or 0)
indication if class label c is the correct classification for
observation o, and p is the probability observation o is in class c.

Soft max cross‐entropy loss :−o
n

i=1
o
M

c=1
yio,c Inðpio,cÞ

where n is the batch size, M is the number of classes, yio,c is a
binary (1 or 0) indication if class label c is the correct
classification for observation o, and p is the probability
observation o is in class c.

Binary cross−entropy :− yo,c ln po,c
� �

+ 1 − yo,c
� �

ln 1 − po,c
� �� �

where yo,c is a binary (1 or 0) indication if class label c is the
correct classification for observation o, and p is the probability
observation o is in class c. This is equivalent to the cross-entropy
loss formula above in the instance where M = 2.

Smooth L1 loss :
ŷ − yj j, if ŷ − yj j > a ;

1
a (ŷ − y)2, if ŷ − yj j ≤ a

(

where a is 1, y is the predicted output, and ŷ is the target output.
The training was run on a flexible number of epochs, with the

stopping criteria defined as three epochs without an
improvement in the combined average value of the loss
functions in the validation set (10% of the training dataset).

The training was performed on a multi-GPU cluster
computer (3 x NVIDIA Quadro RTX 8000, 48 GB memory
each). Each model training took approximately 3.5 hours and the
automatic segmentation process (inference) takes less than 50s.
The system was implemented using Keras (24) and TensorFlow
(21) Python libraries.

Mask R-CNN Output
Classification inMaskR-CNNwas carried out via parallel prediction
of contour masks and class labels, using the ResNet backbone
network to determine the most appropriate object class, and then
applying the masking branch for that class (20). The output was a
binary mask representing an instance segmentation of the detected
class. Separately, the network also produced a confidence parameter
(between0and1) for the class nominatedby theRPN.The imageand
the accompanying mask were generated at the original resolution of
the input, single axial images as described above. To recover the
original RT-DICOM structure, we developed custom code to re-
assemble the2Dmasks into3Dcontourvolumes, integratedaspartof
the overall workflow. These RT-DICOMs are platform-agnostic and
can be viewed in any RT treatment planning system. The output
images may be viewed with any conventional image viewer.

Experimental Design and
Statistical Analysis
The network’s purpose is to generate automatic segmentation of
OARs and GTVs for initial RT planning of a new patient and for
Frontiers in Oncology | www.frontiersin.org 4
daily re-contouring at the treatment images for patients receiving
OART. Three different scenarios were considered:

i. Leave-one-out (LOO) - Training was conducted in LOO
schema, whereby the planning images of N - 1 patients were
used as training data for the network, and the excluded
patient’s planning image was used for testing. In the end, a
total of N training sequences were performed, with each
patient serving as a training example N - 1 times, and as a test
example once.

ii. RT Fraction (RT-Fr) - We evaluated the network’s
effectiveness in contouring images from the treatment
fractions of the unseen patient. The network trained in
scenario (i) is tested on images from the treatment
fractions of the excluded patient.

iii. Transfer learning - We investigated whether including the
planning MRI of the unseen patient as an additional training
sample to the trained network would allow the network to perform
better on the treatment fraction MRIs for the same patient.

A schematic representation of the three scenarios can be
found in Figure 2. For all scenarios detailed above, the overall
network performance was assessed via summary statistics of the
Dice Similarity Coefficient (DSCs) and 95% Hausdorff distances
between manual and network-generated contours. We also
investigated how the network performance is affected by the
volume of the contoured structure by correlating the average
volume of the manually contoured organ and the corresponding
DSC between manual and network-generated contours using
Pearson’s Correlation Coefficient, r.
RESULTS

The MRIs of fifteen patients (median age 56, range 32 - 71) who
received RT for LACC between 2017 through 2018 were analyzed.
On average, 83 axial slices per patient were analyzed. Table 1 shows
the obtained DSCs and Hausdorff distances for the segmentation of
the GTV and OARs in the three scenarios (Figure 2). In the first
scenario, fifteen networks were trained from scratch using the MRIs
from 14 patients and tested on the “left-out” patient. In this case, the
best performance was achieved for Rectum, Femur, and Bladder
(DSC > 0.8). The performance was moderate for the Mesorectum,
Uterus, Parametrium, and GTV (DSC > 0.6). The results for the
Vagina and Sigmoid were suboptimal (DSC ~ 0.4 - 0.5). The
performance of the trained network on the left-out patient’s
treatment fraction (scenario ii) MRIs markedly improved for the
Sigmoid and worsened for the Vagina. The performance of the
network on the patient’s treatment fraction after training on their
planning MRI improves for the Uterus but deteriorates for the
Femur and Vagina. In Figure 3, the manual and MASK R-CNN
contours on the original MRI image from a patient with LACC
are shown.

Figure 4 shows a plot of the average structure volume and the
corresponding average DSC of the trained network. As can be
seen in the figure, there was a significant association between the
May 2022 | Volume 12 | Article 854349
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average structure’s volume and the corresponding DSC (r =
0.759, p=0.018).

For scenario iii: Transfer Learning, we experimented with the
number of epochs to train the network on the unseen patient’s
planning MRI. We tested a varying number of epochs (20, 40, 80,
100, 200) of transfer learning and evaluated the change in
performance on both the unseen and original training datasets.
After these trials, we achieved the best overall performance using
20 epochs of transfer learning. In summary, the network’s
performance across the original training and validation exams
was consistent with the results in Table 1.
DISCUSSION

This study evaluated the performance of the MASK R-CNN
network for segmenting the OARs and GTVs in pelvic radiation
for LACC. The imaging studies used included MR simulation
scans performed in the initial planning phase and daily MR setup
scans performed prior to each fraction in MRI-g-OART. Several
developments were carried out related to the project: (i) the
contours of the OARs and GTVs were converted from RT-
Frontiers in Oncology | www.frontiersin.org 5
DICOM to labeled segmentations, (ii) DSC and Hausdorff units
were implemented to evaluate its performance, and (iii) the
contours generated from the network were converted into RT-
DICOM for transferring to the radiation treatment planning
system. The network is universal and accepts images of any
dimensions; there is no need for the extended processing often
required in other DL approaches.

The network provided segmentations with variable accuracy for
the individual organs. Visceral OARS are deformable and mobile,
with volumes changing day-to-day based on factors such as
stomach contents and stool passing through the intestinal tract.
Mobile organs with low-contrast borders such as the Sigmoid
presented a serious challenge. On the other hand, the higher
contrast of the volume boundaries in organs like the Rectum and
Bladder contributed to better segmentation. In these cases, for
example, the boundaries are defined by a significant difference in
the image intensity relative to the surrounding tissues and the DL
contours appear to be smoother and more conformal than manual
contours (Figure 3). On average, the DSC for the GTV was 0.64,
requiring further improvement to be clinically applicable. It should
be noted that in current MRI-g-OART workflow, the GTV is
prioritized and highly scrutinized by the treating radiation
FIGURE 2 | Schematic representation of the experimental design. In each panel the columns represent the MRIs (planning and fraction 1 to M) for a given patient.
The entire dataset contain total of N×(M+1) MRIs. i. Leave-one-out (LOO): A deep learning (DL) network, marked as N - 1 was trained on the planning MRIs (red)
from N - 1 patients and tested on the planning MRI of the left-out patient (green). ii. RT-Fr: The N - 1 network was tested on an MRI from an online adaptable
radiotherapy fraction of the "left-out" patient (green). Note that the planning MRI from this patient was not used in the training. iii. Transfer learning: The planning MRI
for patient N (yellow) is added to the N - 1 network, resulting in N - 1+p network, which is then tested on an MRI from RT-Fr of the "left-out" patient (green).
TABLE 1 | Dice Similarity Coefficients (DSC) and Hausdorff distances (HD) (mean ± SD) between the manual and network contours for each of the investigated scenarios.

Scenario

LOO RT-Fr Transfer Learning

DSC HD (mm) DSC HD (mm) DSC HD (mm)

Mesorectum 0.62 ± 0.11 2.65 ± 0.89 0.69 ± 0.12 3.13 ± 0.76 0.63 ± 0.11 3.84 ± 1.35
Rectum 0.85 ± 0.09 1.18 ± 0.49 0.88 ± 0.07 1.77 ± 0.55 0.85 ± 0.05 1.94 ± 0.76
Uterus 0.70 ± 0.23 3.54 ± 3.28 0.69 ± 0.36 3.29 ± 1.44 0.83 ± 0.08 3.50 ± 1.99
Vagina 0.41 ± 0.33 2.51 ± 2.00 0.18 ± 0.36 2.14 ± 0.10 0.04 ± 0.07 6.5 ± 0.10
Parametrium 0.62 ± 0.09 4.31 ± 2.34 0.58 ± 0.11 4.94 ± 1.02 0.59 ± 0.07 4.72 ± 1.63
Sigmoid 0.46 ± 0.26 7.41 ± 5.76 0.69 ± 0.22 8.26 ± 0.98 0.61 ± 0.03 8.26 ± 0.99
Femur 0.88 ± 0.06 2.97 ± 1.82 0.76 ± 0.12 1.68 ± 0.25 0.45 ± 0.37 1.68 ± 0.25
Bladder 0.81 ± 0.15 3.10 ± 3.57 0.75 ± 0.12 3.01 ± 1.32 0.82 ± 0.09 3.02 ± 1.32
GTV 0.67 ± 0.30 2.77 ± 1.73 0.61 ± 0.32 4.34 ± 2.83 0.60 ± 0.32 4.34 ± 2.83
Ma
y 2022 | Volume 12 | Ar
LOO, leave-one-out; RT-Fr, Online Adaptive Radiotherapy Fraction; DSC, Dice Similarity Coefficient; GTV, Gross Tumor Volume; HD, Hausdorff distance.
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oncologist, a scenario likely to continue regardless of network
developments. The association of the poor network performance
with the smaller size of an organ (Figure 4) explains in part the
results related to the Vagina. A difference in only a few pixels
between the manual and network contours may have a large impact
on the DCS (25). Conversely, the relatively large size may also be a
contributing factor for the good performance for Rectum
and Bladder.

To the best of our knowledge there are no published reports on
segmentation of LACC OARs and GTVs on MRI. Chen et al (26)
compared nine methods for segmenting cervical tumors (GTV) on
3D (18)FDG PET images from 50 patients; the highest DSC was
0.84 ± 0.007. The best results achieved by our networks for GTV
were comparable DSC = 0.75 ± 0.01. The smaller sample size of the
current study and the relatively lower signal-to-noise of MRI
compared to PET should be noted. In Fu et al. (18), a CNN
network was used to segment OARs: liver, kidney, stomach, bowel
and duodenum in the treatment of pancreas, liver, stomach, adrenal
gland, and prostate. Despite the significantly larger dataset of MRIs
from 120 patients, the DSCs for these five structures were not
markedly better. The duodenum was the most challenging structure
in their study with DSC of ~0.60. The relatively robust performance
of our networks despite training with small datasets is due in part of
utilizing MASK R-CNN. Its backbone, the ResNet50 network, is
pre-trained with images from the ImageNet database, containing
over 14 million images. Instead of starting the training from scratch,
the trained “weights” of ImageNet are used by default. This allows
the network to be trained satisfactorily on new datasets with
few examples.

The network trained for scenario i: LOO on patients’
planning MRIs can be used for the automatic segmentation of
OARs and GTVs on an MRI scan in initial RT planning of a new
patient. To incorporate these developments into the clinical
workflow, the quality of the generated contours must be
deemed sufficient by radiation oncologists. While for some
organs the results are suboptimal, a process has been created
Frontiers in Oncology | www.frontiersin.org 6
to incorporate the network into our workflow, and to continue its
optimization as new datasets become available.

The performance of the network in segmenting the planning
MRI (scenario i: LOO) and the daily treatment fraction MRI
(scenario ii: RT-Fr) was not markedly different. This second
scenario is relevant to offline adaptive planning to account for
changes in the tumor size or shape, and especially to online adaptive
planning basedon the anatomyof the day. In the latter case, fast and
robust automated segmentationwhile the patient is on the table has
the potential to decrease treatment time, improving patients’
tolerance of OART and limiting anatomic changes in the interval
between image acquisition and radiation delivery. Note that the
treatment fraction MRIs were acquired with different sequence
parameters. As shown by others (27) and in our work (28, 29), the
variability in the data acquisition contribute to the generalization of
the network. The fact that the network performance in scenario ii
did not deteriorate indicates the generalizability of the approach.

We also investigated whether adding the simulationMRI to the
training of the network (scenario iii: Transfer learning) improves
the segmentation performance on subsequent fractions. The
rationale was to learn the general anatomy of a patient, and then
transfer this knowledge for the segmentation of planning fractions’
MRIs. Overall, there was no clear improvement over scenario ii;
segmentation performance improved for some structures and
degraded for others.

Contouring multiple OARs is time-consuming and somewhat
subjective. The process requires going back and forth between slices
multiple times to determine the shape of the organ. On average,
based on our and others experience (18), it takes close to two hours
to manually contour the organs for the treatment plan. Our
proposed automatic segmentation takes <3.5 min for a dataset. As
discussed above, we assume that the automatic contours in some
cases will need expert refinement. Based on preliminary data, the
time to adjust the network generated contours in MIM is about
30min,making the procedure substantially shorter than twohours.

The study has several limitations. The small number of
subjects limits the network’s performance. In fact, using the
FIGURE 3 | Manual (left) and automatic (right) contours on the original MRI
image from a patient with cervical cancer. The contours generated by MASK
R-CNN contain a confidence estimate, a number between 0 and 1, with 0
representing mimmum and 1 maximum confidence that the class, assigned
to the segmented volume is accurate. Please refer to Figure 1 legend for
color scheme.
FIGURE 4 | Association between averages of manual stmctures' volumes
and corresponding DCS (Pearson Coefficient = 0.759, p = 0.018).
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LOO approach, fourteen patients were used in the training of the
fifteen networks in scenario i. In the future, a larger set of
patients’ MRIs will be contoured to build the knowledge bank
for the DL software.

In conclusion, our results demonstrate the promise of DL in
volume segmentation of LACC. These developments provide a
solid basis for the development of a robust auto-contouring tool
to improve workflow efficiency and patient tolerance of the MRI-
g-OART process.
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