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Abstract

Staphylococcus aureus is a gram-positive cocci and an important human commensal bacteria and pathogen. S.
aureus infections are increasingly difficult to treat because of the emergence of highly resistant MRSA (methicillin-
resistant S. aureus) strains. Here we present a method to study differential gene expression in S. aureus using high-
throughput RNA-sequencing (RNA-seq). We used RNA-seq to examine gene expression in S. aureus RN4220 cells
containing an exogenously expressed transcription factor and between two S. aureus strains (RN4220 and
NCTC8325-4). We investigated the sequence and gene expression differences between RN4220 and NCTC8325-4
and used the RNA-seq data to identify S. aureus promoters suitable for in vitro analysis. We used RNA-seq to
describe, on a genome wide scale, genes positively and negatively regulated by the phage encoded transcription
factor gp67. RNA-seq offers the ability to study differential gene expression with single-nucleotide resolution, and is a
considerable improvement over the predominant genome-wide transcriptome technologies used in S. aureus.
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Introduction

Staphylococcus aureus (S. aureus) is a pathogenic
bacterium that can cause a variety of infections, most notably
of the skin [1]. S. aureus infections can be difficult and costly to
treat due to antibiotic resistance, especially in the Methicillin-
Resistant Staphylococcus aureus (MRSA) strains [2-4].

High-throughput studies have been particularly useful to
examine global gene expression in S. aureus [5-7]. The ability
to examine the effects of transcriptional modulators on all
genes and at multiple time points provides rich data that can be
critical in evaluating regulatory networks [7-11]. RNA-seq has
become standardized for eukaryotic samples [12,13], but only a
relatively small number of prokaryotic species have been
examined by this technique. In S. aureus, RNA-seq was
recently used to identify small non-coding RNAs [14] and to
study the role of anti-sense transcription [15], but transcriptome
studies in S. aureus have largely used microarray techniques
to examine global gene expression changes [16,17]. It has
been demonstrated in eukaryotic samples that RNA-seq
provides data that better matches qPCR [12,13].
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S. aureus colonizes the nasal cavity of 30% of the human
population, but under certain circumstances can invade tissues
and cause disease [1]. Given the ability of S. aureus to act as
both a commensal bacterial and a pathogen, studies have
attempted to identify the key pathways regulating pathogenicity
in this organism. A regulatory RNA, termed RNAIII, is thought
to be the main effector of the switch to pathogenic growth as it
controls the expression of secreted toxins. Levels of RNAIIl are
regulated by the Agr proteins [18,19].

Due to the lack of traditional therapies to treat highly
resistant S. aureus strains, lytic bacteriophages have been
suggested as potential therapeutic agents [20,21] or as the
source of novel antibiotic proteins or peptides. Recent work
sequenced S. aureus phages and identified proteins with
antimicrobial activity [22-24]. One such protein, phage G1
gp67, was originally identified as a global RNA polymerase
(RNAP) inhibitor [24-26]. Subsequent work showed that this
protein (1) binds to S. aureus RNAP, but not E. coli RNAP,
through an interaction with the global housekeeping
transcription factor o%; (2) does not block the functions of o*,
including DNA recognition and core RNAP binding; but (3)
interferes with the interaction between the core RNAP a
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subunit C-terminal domain (a-CTD) and UP-element
sequences that are only required for transcription at a small
subset of promoters [27]. Therefore, gp67 specifically inhibits
transcription from promoters that require a strong a-CTD/UP-
element interaction, including the rRNA promoters. Because
robust rRNA transcription is required for logarithmic growth in
prokaryotic cells, gp67 blocks normal cell growth, explaining its
antimicrobial effect [27].

In this work, we establish an RNA-seq approach to study
differential gene expression in S. aureus in the competent lab
strain RN4220, and between S. aureus strains. To identify S.
aureus genes repressed by gp67, we expressed gp67 in S.
aureus cells. In addition to the relative gene expression data
that would be provided by microarray, we used the RNA-seq
data to identify Single Nucleotide Polymorphisms (SNPs) and
to quantitatively evaluate the relative levels of gene expression
between loci within the same sample. We examined the
differences in the transcriptome of S. aureus strains
NCTC8325-4 and RN4220 and used the RNA-seq data to
identify a putative orphan CRISPR element in these strains.

Materials and Methods

Strains and plasmids

RN4220 was obtained from Peter Moyle in Tom Muir’s lab at
The Rockefeller University. pPRMC2 and NCTC8325-4 were a
generous gift from Sivaramesh Wigneshweraraj at Imperial
College, London.

gp67 expression in RN4220

Gp67 was cloned into the S. aureus expression vector
pRMC2 [28] using primers containing a consensus Shine-
Dalgarno sequence and Bglll restriction site upstream of the
start codon, and a stop codon and EcoRI site downstream.
pRMC2-gp67 and empty pPRMC2 were then transformed into S.
aureus strain RN4220 by standard electroporation [29] and
transformants were selected on trypticase soy (TS) plates
containing chloramphenicol (10ug/ml). RN4220 containing
empty pRMC2 and pRMC2-gp67 were grown in TS broth
containing chloramphenicol and transgene expression was
induced with 100ng/ml anhydrotetracycline, which was the
minimum required concentration for maximal cell growth
inhibition by gp67.

RNA purification

RNA was purified from cells at mid-log phase growth (O.D.g,
= 0.4) using the RNeasy kit from Qiagen. Briefly, 2x108 cells
were removed from growing cultures, immediately added to 2
volumes of BioStabilize solution (Qiagen) and incubated for 5
minutes at room temperature. Cells were then collected by
centrifugation, resuspended in TE buffer containing 1mg/ml
lysostaphin and 200ug proteinase K and incubated for 15
minutes at room temperature. 100yl zirconia beads (0.1mm)
were added to lyse the cells in a bead beater at top speed for 3
X 2minutes, with a 1-minute rest on ice. The lysate was
centrifuged briefly to remove the beads and the remaining
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procedure was carried out to the manufacturer’s specifications.
Purified RNA was quantified using a spectrometer (NanoDrop).

RNA-seq: Sample preparation and sequencing

RNA was processed as described in Figure 1. Briefly, RNA
quality was assessed by visualization on an agarose gel.
RiboZero rRNA removal kit for gram-positive organisms
(Epicenter) was used to eliminate the 16s and 23s rRNAs prior
to sequencing analysis. RNA quality was then evaluated on a
BioAnalyzer (Agilent) chip prior to cDNA library synthesis.
cDNA libraries were prepared by standard techniques for
subsequent lllumina sequencing using the mRNA-seq Sample
Prep kit (Illumina) eliminating the step for mRNA ampilification.
After the rRNA reduction, RNA was fragmented and used as a
template for a randomly primed PCR. After the amplification,
ends were repaired and ligated to lllumina adapters. The cDNA
library was then verified for appropriate fragment size
(200-300bp) on a BioAnalyzer chip.

Samples were amplified onto flowcells using an lllumina cBot
and sequenced on an lllumina HiSeq2000 for 51 cycles per
manufacturer protocols. Raw sequencing data was processed
using the onboard SCS/RTA software, yielding 51bp reads.

RNA-seq: Data analysis

Sequencing reads were processed using TopHat [30], an
alignment package designed to align sequencing reads derived
from transcribed RNA. The program aligns reads to a reference
genome, identifying regions of coverage that correspond to
transcribed RNA. These regions are joined and queried for
potential junctions by attempting alignment of reads that did not
initially align. Reads aligning to multiple locations are kept (to a
maximum of 20 potential positions) to assist constructing gene
models for genes with repetitive or low complexity features.
When aligning reads, 2 mismatches to the reference (Ensembl
S_aureus_nctc_8325.EB1.fa) were allowed.

Alignments reported from TopHat were processed by the
Cufflinks software package [31] to determine differential
expression of genes and transcripts between conditions.

Alignments were quantitated against the Ensembl
annotation:
(S_aureus_nctc_8325.EB1_s_aureus_nctc_8325.gtf).

Expression values are reported as fragments-per-kilobase-
of-gene-per-million-mapped reads (FPKM). Data were
visualized using the Integrated Genomics Viewer [32].

Transcripts were quantified by assessing the total number of
reads for the entire transcript using the program cuffdiff, part of
the Cufflinks suite of tools for sequencing-based transcript
assembly and quantification. Briefly, reads were assigned to
transcripts as described above and the samples to be
compared were evaluated for variance and tested for
differential expression. P-values (Tables S1-S6) were
determined, and significance was assessed by conducting
Benjamini-Hochberg correction for multiple testing [31].

RNA-seq data have been submitted to GEO (accession
number GSE48896).
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Figure 1. Schematic of RNA-seq in S. aureus. a) Total RNA is purified from cells and verified for integrity on a 1% agarose gel.
b) rRNA reduction is used to remove the large (16s and 23s) rRNA species from the sample. RNA was assessed by running the
samples on a BioAnalyzer. c) After rRNA reduction, the standard lllumina random-prime technique was used to prepare a cDNA
library for sequencing. DNA was assessed by running the samples on a BioAnalyzer. d) To verify the representation of mMRNA in the
cDNA library, and that the prepared samples differed predictably, we performed a PCR for cDNA corresponding to gp67. A band
corresponding to gp67 cDNA is only present in cells containing pPRMC2-gp67 (lane 4) and not control cells containing pPRMC2 alone
(lane 3). e) RNA-seq reads mapping to the gene for gp67. RNA-seq reads mapping to gp67 are only present in the RNA-seq data
from cells containing pPRMC2-gp67 and not control cells containing pPRMC2 alone.

doi: 10.1371/journal.pone.0076572.g001
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In vitro transcription assays

In vitro transcription assays were performed as described
[25].

Results

Development of RNA-seq for gene expression studies
in S. aureus

To determine the effects of the G1 phage-encoded
transcription factor gp67 on all S. aureus promoters in vivo, we
used RNA-seq to examine differential gene expression in S.
aureus. We cloned gp67 into an inducible expression cassette
(PRMC2) [28] and transformed pRMC2 and pRMC2-gp67 into
electrocompetent S. aureus RN4220 cells to create RN4220-
pRMC2 and RN4220-pRMC2-gp67. Addition of inducer to
media inhibited growth of cells containing pRMC2-gp67, as
previously described, but had no effect on cells containing only
empty vector [24,27]. RNA was purified from RN4220-pRMC2
and RN4220-pRMC2-gp67 cells as described in the Materials
and Methods.

RNA-seq techniques are standardized in eukaryotic samples
[31]. Because the majority of RNAs purified from cells are
large, structured ribosomal RNAs (rRNA) (Figure 1a), the
mRNA signal must be enriched. In eukaryotic samples, polyA
tailed mRNAs are amplified using a polyT oligo [33], but this
approach is not applicable to prokaryotic samples. We used a
kit developed for the removal of the large bacterial rRNAs (16s
and 23s rRNAs) from gram-positive organisms. After rRNA
reduction we visualized our samples on a BioAnalyzer (Figure
1b). The small structured RNAs (5s rRNA and tRNAs) remain
after the rRNA reduction and comprise the prominent band in
the RNA profile (Figure 1b). To prepare a cDNA library for
sequencing, we used the standard Illlumina random-prime PCR
technique (Figure 1c) typically used for mRNA enriched
eukaryotic samples.

To ensure that our cDNA library contained mRNA in addition
to the small structured RNAs that remained after rRNA
reduction, we tested for the presence of gp67 specific mMRNA
from cells containing pRMC2-gp67 and cells containing empty
vector (Figure 1d). Only cells expressing gp67 should contain
cDNA specific to its this gene. Performing PCR from the cDNA
library showed gp67 mRNA in cells containing pRMC2-gp67
(Figure 1d, compare lane 3 and lane 4), arguing that our cDNA
library represents mRNA purified from S. aureus cells and that
our two samples differ predictably.

The cDNA library was then sequenced using lllumina
technology. Before analyzing the data, we searched for RNA
reads that mapped to the gene for gp67. We only identified
RNA reads mapping to gp67 from the sample containing
pRMC2-gp67 (Figure 1e). We then mapped all RNA reads to
the S. aureus NCTC8325 annotated genome sequence. While
the sequence for RN4220 is available, it differs from
NCTC8325 only by 121 SNPs and several indels that cluster
around phage insertion sites. The NCTC8325 genome is more
fully annotated and more amenable to use by the software
required to map RNA reads and compare expression levels.
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RNA-seq reveals differential gene expression due to a
phage transcription factor

To understand the effects of gp67 on global transcription
levels, we searched for genes that were differentially
expressed in pRMC2-gp67 cells. gp67 is known to bind to S.
aureus RNAP and inhibit cell growth [22,24,27]. Fewer than 4%
of all transcripts were significantly repressed (p<0.05) by gp67
expression, while another 5% were significantly stimulated
(p<0.05). Overall, the vast majority (91%) of transcripts were
unchanged (p>0.05) in cells expressing gp67 compared with
control cells containing only empty vector. This targeted effect
of gp67 is in agreement with structural and biochemical data
[27]. The full list of genes found to be significantly repressed or
stimulated upon gp67 induction are listed in Tables S1 and S2
respectively.

Identification of S. aureus promoters using RNA-seq
data

RNA-seq analysis, like microarrays, reports only the steady
state level of RNA in cells. Additional sample preparation is
required to identify primary transcripts [34] or to map RNAP
location in the genome under different conditions [35]. Our
analysis cannot differentiate between transcripts directly
affected by gp67 through its interaction with S. aureus RNAP
and those indirectly affected by disruption of other regulatory
factors or alterations in mRNA stability and degradation. We
therefore sought to directly test gp67 at S. aureus promoters
shown to be susceptible to inhibition in vivo. However, very few
S. aureus promoters have been examined in vitro [18,19,36]
and the promoters previously examined in vitro were not
modulated by gp67 expression in vivo [27]. Identifying promoter
sequences in a genome can be a challenging computational
problem. We therefore searched for promoters using the
additional information provided by the RNA-seq analysis.

mRNA processing enzymes can remove 5 and 3’ UTRs from
mRNAs in cells. Mapping promoter start sites requires
enriching for primary transcripts that have not undergone
processing in vivo [34]. For our analysis, we sequenced
mRNAs from cells without subsequent enrichment for primary
transcripts. Much of our RNA-seq data shows evidence of
processing, with RNA-seq reads mapping to just upstream of
the start codon for a predicted gene (Figure 2a). Generally,
there is no obvious putative promoter element immediately
upstream of these transcripts, suggesting that the transcription
start site is further upstream and the mRNA has been
processed in vivo. However, some mRNAs in our data show
clear evidence for a long 5 UTR (Figure 2b). Moreover, many
of these transcripts have strong putative promoters (-35
consensus: TTGACA; -10 consensus: TATAAT; ideal spacing:
17bp) just upstream of the mapped 5’ end of the mRNA. This
information is not provided by standard microarray analysis that
reports only on RNA expression within the coding region.

Promoters identified through the RNA-seq analysis, as
described above, were tested for transcription activity using a
S. aureus in vitro transcription system [27]. These promoters
showed robust activity in vitro and gave RNA products of the
expected size on a urea-PAGE gel (Figure 2c; lower panel).
We used this method to identify likely promoter sequences
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Figure 2. RNA-seq data used to identify promoter sequences in S. aureus. a) The NCTC8325 gene S. aureus0675 shows
RNA-seq reads mapping to just upstream of the ATG start codon, but contains promoter-like sequence in this region. Data is
represented as reads over 25bp per million total reads and the x-axis shows the position along the S. aureus 8325 genome. The
black bar represents the coding sequence of the S. aureus0675. b) The cold shock protein gene (csp1) shows clear evidence for
RNA-seq reads upstream of its start codon. Data is represented as in a, with the black bar representing the csp1 coding sequence.
c) S. aureus promoters identified with the aid of RNA-seq data. Upper panel: Sequence of the promoter elements. -35- and -10-
elements are highlighted in red. Lower panel: in vitro transcription assays show RNA polymerase activity at promoters identified
using RNA-seq data.

doi: 10.1371/journal.pone.0076572.g002

upstream of genes repressed by gp67 expression in vivo for which allowed us to map putative S. aureus promoters likely to
subsequent in vitro analysis. We showed that gp67 directly be directly inhibited by gp67, was critical to our subsequent
inhibited RNAP activity at promoters upstream of genes analysis of the mechanism of RNAP inhibition by this phage
repressed by gp67 expression in vivo [27]. The RNA-seq data, encoded transcription factor [27].
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Comparison of relative gene expression between genes

Because RNA-seq gives a direct measurement of numbers
of RNA reads per base per million total reads, without relying
on hybridization to oligonucleotides, it is more straight forward
to quantitatively compare gene expression levels between
different loci in the genome. We used RNA-seq data covering
the S. aureus genome to evaluate which genes are most highly
expressed in log-growing cells. Recent work has examined the
genomic differences between the commonly used,
electroporatable S. aureus strain RN4220 [37] and its parent
strain NCTC8325-4 [38]. NCTC8325-4 differs from the fully
sequenced NCTC8325 by the curing of 3 phage infections [38].
To evaluate the transcriptional differences between
NCTC8325-4 and RN4220, and to ensure that RN4220
carrying an empty expression vector was not misrepresentative
of baseline transcription in NCTC8325-4, we sequenced RNA
purified from NCT8325-4 cells containing no expression vector.

We evaluated the levels of the gene expression in
NCTC8325-4 and RN4220. Among the 100 most highly
expressed genes, none differed significantly in expression
levels between these two strains (Table S3). Similarly, the
genes with no evidence for RNA-seq reads were the same
between the two strains.

Among the 100 most highly expressed mRNAs in RN4220
and NCTC8325-4, the majority (62) were ribosomal proteins or
proteins otherwise involved in translation (the 30 most
abundant mRNAs in RN4220 and NCTC8325-4 are shown in
Table S3). This is in good agreement with the observation that
log-growing  prokaryotic cells expend most of their
transcriptional resources on supporting translation. Other highly
expressed mRNAs corresponded to genes for gylcolysis and
sugar metabolism (12), fatty acid biosynthesis (6), chaperones
(3), transcription/transcription regulation (3), and redox
regulation (3). Nine of the 100 most abundant mRNAs were for
conserved proteins of unknown function. The remaining 2
genes were a GTPase required for cell division and a protein
translocase.

An additional 212 genes, mostly of unknown function, had no
evidence for RNA-seq reads in either NCTC8325-4 or RN4220.
Whether any of these genes are upregulated as cells enter
stationary phase, or respond to other signals, is unknown but
could be evaluated by sequencing RNA from cells grown under
various conditions.

Analysis of Single Nucleotide Polymorphisms between
RN4220 and NCTC8325-4

The genome of RN4220 was recently sequenced [37]. In the
genome sequence of RN4220, single nucleotide
polymorphisms (SNPs) were identified that differ from
NCTC8325 and NCTC8325-4. The authors suggested that
RN4220 may be deficient in factors required for normal cellular
responses to stress and virulence regulation [37]. Additional
work characterized SNPs in NCTC8325-4 relative to
NCTC8325 [16]. Through our RNA-seq analysis, we can
identify SNPs in both the NCTC8325-4 and RN4220
transcriptome, and map these SNPs to the NCTC8325
genome.
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NTCT8325-4, as analysed by O’Neill (2009), was found to
differ from the NCTC8325 genome at 12 locations, and
RN4220 had 121 SNPs, including those previously identified in
NTCT8325-4. Importantly, our RNA-seq analysis validates
several SNPs known to cause functional differences between
these two strains as unique to RN4220, such as the frame shift
in the virulence transcriptional regulator AgrA (Figure 3a) and
the DNA repair factor UvrC (Figure 3b). We also see clear
evidence for the G-to-A mutation that causes an early stop
codon in hsdR, a restriction endonuclease (Table S4). This
mutation has been shown to be responsible for the ability of
RN4220, and not NCTC8325-4, to accept foreign DNA [39,40].
We do, however, see clear evidence for SNPs previously
identified as unique to RN4220 in NCTC8325-4 (Figure 3 c-e).
The SNPs in GroEL (Figure 3c), RimM (Figure 3d), and EzrA
(Figure 3e), which the authors of the genome sequence of
RN4220 argued may effect the fitness of this strain [37], were
found in the ancestral NCTC8325-4 genome as well as in
RN4220. Roughly half of the additional SNPs identified as
unique to RN4220 were similarly found in NCTC8325-4 in our
analysis, but not in the analysis done by O’Neill (Table S4).
These results were confirmed by resequencing the NCTC8325
genome [41]. These mutations (RimM, EzrA, MurA, and
GroEL) are therefore present in the parental strain NCTC8325
and are not unique to either NCTC8325-4 or RN4220.

RNA-seq reveals differential gene expression between
two S. aureus strains

The authors of the RN4220 genome sequence argue that the
SNPs that differ between the strains may cause functional
differences in cellular responses to stress and to the switch to
virulent growth [37]. Subsequent work showed that the RN4220
and the parental strain NCTC8325 have similar fithess levels in
laboratory  conditions [41]. Because RN4220 is
electrocompetent and capable of being transformed by
expression plasmids, it is well suited to genetic analysis and
laboratory studies [29]. We compared gene expression
between NCTC8325-4 and RN4220 cells containing pRMC2.
While the genomes of all these strains have been sequenced
and examined for genomic variations [37,38,41-43], to our
knowledge global transcriptional differences have not been
examined.

RN4220 has a mutation in the AgrA gene that causes a
frame shift near the C-terminus of the protein (Figure 3a). This
mutation is known to cause a delayed upregulation of RNAIII,
which is a key molecule in the switch to virulent growth [44].
Only four genes are significantly downregulated in RN4220
compared to NCTC8325-4 cells (Table S5a). RNAIll is one of
these genes (Figure 4), in agreement with the previous data on
the mutation in AgrA [44].

These data show the power of RNA-seq compared to other
methods for transcriptome analysis: in one set of data we can
identify both the SNP in AgrA that alters its function and the
downregulation of RNAIII that is a direct result of this mutation.
RNAIII is the most highly repressed gene in RN4220 compared
to NCTC8325-4, reinforcing the importance of the mutation in
AgrA for regulation at this locus.
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Figure 3. Single nucleotide polymorphisms (SNPs) between RN4220 and NCTC8325-4. a) A previously identified single
nucleotide insertion at the C-terminus of the AgrA gene causes a frame shift mutation. The blue bars indicate the single nucleotide
insertion, which is present only in RN4220 cells. RNA-seq data was visualized by the Integrated Genomics Viewer (IGV). b) The
previously identified non-synonmyous SNP in the UvrC gene is found only in RN4220 cells and not NCTC8325-4 cells. ¢c) A SNP in
the GroEL gene that was previously identified in RN4220, but not NCTC8325-4, is identified in both strains. d) Two SNPs previously
shown in RN4220 (RimM) are also present in NCTC8325-4. e) A SNP in the EzrA gene that was previously identified in RN4220,

but not NCTC8325-4, is identified in both strains.
doi: 10.1371/journal.pone.0076572.g003

The three other downregulated genes in RN4220 (Table
Sb5a) are an acetoactate synthase, which catalyses the
formation of 2-acetolactate from pyruvate during stationary
phase and an alpha-acetolactate decarboxylase from the same
operon. The final downregulated gene encodes a protein of
unknown function. Interestingly, four SNPs identified in the
RN4220 genome (A-2244467-G, G-2244495-A, and deletions
of C-2244932 and T-2244933) all cluster around this gene
(2244539-2244724). While these mutations were identified in
the RN4220 genome sequence, we see clear evidence for their
presence in NCTC8325-4 genome (Table S6). The function of
this gene and of these mutations are all unknown.

PLOS ONE | www.plosone.org

Thirty-one genes are upregulated in RN4220 carrying an
expression cassette and under antibiotic selection compared to
NCTC8325-4 cells (Table S5b). Among these upregulated
mRNAs, nine encode putative or confirmed ABC transporters.
This may be due to the addition of chloramphenicol to the
growth media to select for RN4220 cells containing pRMC2;
sequencing of RNA from RN4220 cells not containing a
plasmid would clarify if this difference is inherent to the strains
or rather is a response to the addition of antibiotic to the growth
media. CIfB, a clumping factor, is also upregulated in RN4220.
This could potentially compensate for the CIfA mutation
previously identified in RN4220.
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Figure 4. RNAIIl is downregulated in RN4220 compared to NCTC8325-4. RNA-seq reads mapping to the gene for RNAIIl from
NCTC8325-4 (red line), RN4220-pRMC2 cells (black line) and RN4220 cells expressing gp67 (blue line). Data is represented as
reads per 25bp per million total reads and the x-axis shows the position in the S. aureus 8325 genome. The previously described
frameshift mutation in AgrA (see Figure 3a) has been shown to delay the expression of RNAIIl in RN4220 cells.

doi: 10.1371/journal.pone.0076572.g004

Identification of a putative orphan CRISPR element in
S. aureus

Clustered regularly interspaced short palindromic repeats
(CRISPRs) are bacterial RNA elements that allow to an
adaptive response to phage infection [45]. CRISPRs contain
many interspaced repeats that encode a long RNA followed by
the Cas genes, which encode the protein machinery required to
process the RNA into functional units. After processing,
CRISPR RNAs can interact specifically with phage or invasive
DNA and induce cleavage [45].

S. aureus is not thought to have a functional CRISPR
system. No genes in the S. aureus genome have any
homology to previously identified Cas proteins. Genomic
searches for putative CRISPR elements in the S. aureus
NCTC8325 genome reveal only five weak hits [46].

We used our RNA-seq data to determine whether RNA was
expressed at any of the putative CRISPR loci. While four of the
five putative CRISPR elements were located in annotated
ORFs, and contained no signal for an RNA element in our
RNA-seq data, one putative CRISPR was located in an
intergenic region and showed clear evidence for RNA-seq
reads (Figure 5). The putative CRISPR had only one repeated
unit and had no downstream Cas genes that would be required
for active crRNA function [45]. BLAST searches for the
CRISPR element revealed that the spacers map to several
locations in the S. aureus genome including both coding and
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non-coding regions. This element may be an orphan CRISPR,
and reintroduction of Cas genes into S. aureus may activate
this putative RNA element.

Discussion

Gene expression and regulation in S. aureus is of extensive
interest due to the pathogenic importance of this organism
[8-11]. A better understanding of the mechanisms through
which S. aureus switches to its pathogenic transcriptional
profile may provide novel targets for drug therapy. Studies in S.
aureus have used microarray analyses to study differential
gene expression in response to exogenously expressed
proteins or drugs [7,11,16,17,47]. Here we describe an RNA-
seq based approach to study differential gene expression in S.
aureus both between cells expressing and lacking an
exogenously expressed protein and between closely related S.
aureus strains.

Like microarray analysis, RNA-seq provides relative gene
expression levels. We examined the genes downregulated by
the expression of a S. aureus phage transcription factor, gp67
[24,27]. However, RNA-seq provides additional information on
the levels of expression of all transcripts throughout the
genome and the sequence differences at single nucleotide
resolution. We used the RNA-seq data to evaluate which
mRNAs in the S. aureus genome are most highly expressed in
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Figure 5.

Identification of a putative CRISPR element in S. aureus.

a) RNA-seq reads mapping to an intergenic region

containing a putative CRISPR element. Data is represented as reads per 25bp per million total reads and the x-axis shows the
position along the S. aureus 8325 genome. NCTC8325-4 (red line), RN4220-pRMC2 (black line) and RN4220-pRMC2-gp67 (blue
line) show evidence for RNA-seq reads mapping to the putative CRISPR (red box). ORFs are shows as black box b) Zoomed view
of the putative CRISPR element shown as in part a. ¢c) Sequence of the putative CRISPR element with the direct repeats coloured
red. The position in the NCTC8325 genome is given before and after the sequence.

doi: 10.1371/journal.pone.0076572.g005

log-growing cells and to identify novel S. aureus promoters for
analysis by in vitro transcription.

Many studies in S. aureus have used the genechip
technologies described by Dunman et al. [7]. Dunman et al.
used various S. aureus strains to validate their genome-wide
transcription quantification method. Their work focused in part
on the role of ArgA as a transcriptional modulator by using an
ArgA knock out strain. RN4220, examined here, contains a
mutation in AgrA known to modulate its activity. Like Dunman
et al., we show a significant decrease in RNAIIl due to ArgA
dysfunction. We also find that protein A (spa) is upregulated in
RN4220, in agreement with microarray analysis of an AgrA
knock out strain. However, the transcriptional differences
between NCTC8325-4 and RN4220 at mid-log growth appear
to be more limited than the differences between wild type RN27
and cells containing an AgrA mutation. We also used RNA-seq
data from RN4220 carrying an expression plasmid and
NCTC8325-4 to compare gene expression and SNPs between
the two strains. Recent work has highlighted potential
functional differences between these strains [37,38,41]. Gene
expression differences between the two strains were limited,
arguing that, during logarithmic cell growth, the two strains are
functionally similar [41].

The  development of microarray technology in
Staphylococcus aureus, and the ability to perform genome-
wide analysis of transcription under various conditions,
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increased our understanding of transcriptional networks in this
organism. While microarrays are more cost-effective than high-
throughput sequencing, the cost of routine RNA-seq
experiments have dropped precipitously in recent years, and
are likely to continue to drop [48]. RNA-seq provides a more
direct output (direct sequencing of RNA molecules) than
hybrid-based gene-chip techniques, has been shown to better
match gPCR data in eukaryotic samples [12], and allows for a
larger dynamic range [48]. Additionally, RNA-seq provides
sequence information that is obviously lacking in microarray
data, allowing for the identification of SNPs in cells growing
under different conditions [33] or in various bacterial strains, as
described here. As the costs for high-throughput sequencing
continue to drop, RNA-seq may provide unique benefits for
transcriptome analyses in various prokaryotic organisms,
particularly where gene chips are not available.

The technology presented here could be easily adapted to
mechanistic study of transcription in prokaryotes, as has been
done in eukaryotic samples [35]. While high-throughput
sequencing has been used to map promoter elements in E. coli
[49], this analysis has not been performed in other organisms
to understand the differences between promoter specificity in
bacteria [25]. Mapping of 5 ends and examination of global
transcription levels, with single nucleotide precision, under
different transcriptional conditions (stationary phase, with
expression of various transcription factors or small molecule
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effectors), which has been recently described in E. coli [50],
should be expanded to other prokaryotic organisms and growth
profiles.

This study shows that RNA-seq is a valuable tool to examine
gene expression in S. aureus. RNA-seq provides data that was
previously only accessible through multiple, complimentary
techniques. Because prokaryotic genomes are generally small,
and contain relatively short intergenic distances with limited
non-coding regions, we sequenced the majority of the S.
aureus genome through RNA-seq analysis of the transcriptome
and were able to identify many SNPs, including in non-coding
regions. RNA-seq has become increasingly cost effective and
we have developed a protocol for sample preparation in
Staphylococcus aureus cells. We believe standardization of
RNA-seq for prokaryotic samples, and routine transcriptome
analysis using high-throughput sequencing, would provide a
significant advantage over the current microarray based
techniques.

Supporting Information

Table S1. Genes significantly downregulated by gp67
expression. RNA-seq was used to quantify gene expression in
the presence and absence of gp67 as described in the
Materials and Methods. Cuffdiff was used to quantify gene
expression at each loci in the NCTC8325 genome and
significance was determined by conducting a Benjamini-
Hochberg correction for multiple testing. Only genes at which
p<0.05 are listed.

(PDF)

Table S2. Genes significantly upregulated by gp67
expression. RNA-seq was used to quantify gene expression in
the presence and absence of gp67 as described in the
Materials and Methods. Cuffdiff was used to quantify gene
expression at each loci in the NCTC8325 genome and
significance was determined by conducting a Benjamini-
Hochberg correction for multiple testing. Only genes at which
p<0.05 are listed.

(PDF)

Table S3. Most highly expressed genes in NCTC8325-4
and RN4220. RNA-seq was used to quantify gene expression
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