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Abstract. Glucocorticoids induce the remodeling of 
the actin cytoskeleton and the formation of numerous 
stress fibers in a protein synthesis-dependent fashion in 
a variety of cell types (Castellino, F., J. Heuser,  S. Mar- 
chetti, B. Bruno, and A. Luini. 1992. Proc. Natl. Acad. 
Sci. USA. 89:3775-3779). These cells can thus be used 
as models to investigate the mechanisms controlling the 
organization of actin filaments. Caldesmon is an almost 
ubiquitous actin- and calmodulin-binding protein that 
synergizes with tropomyosin to stabilize microfilaments 
in vitro (Matsumura, F., and Yamashiro, S. 1993. Cur- 
rent Opin. Cell Biol. 5:70-76). We now report  that glu- 
cocorticoids (hut not other  steroids) enhanced the lev- 

els of caldesmon (both protein and mRNA)  and 
induced the reorganization of microfilaments with simi- 
lar time courses and potencies in A549 cells. A caldes- 
mon antisense oligodeoxynucleotide targeted to the 
most abundant caldesmon isoform in A549 cells dra- 
matically inhibited glucocorticoid-induced caldesmon 
synthesis and actin reorganization with similar poten- 
cies. Several control oligonucleotides were inactive. 
These results demonstrate that caldesmon has a crucial 
role in vivo in the organization of the actin cytoskeleton 
and suggest that hormone-induced changes in caldes- 
mon levels mediate microfilament remodeling. 

C 
ALDESMON is an almost ubiquitous intracellular 

protein that binds actin filaments in a calcium- and 
calmodulin-regulated fashion. Two main types of 

caldesmon isoforms have been discerned based on their 
mobility in SDS-PAGE: a high molecular mass form esti- 
mated at 130-150 kD (h-caldesmon), found in smooth mus- 
cle, and a lower molecular mass form of 70-80 kD (1-cal- 
desmon), in nonmuscle cells. Based on examination of the 
primary structure and on the properties of the purified 
protein, caldesmon has been proposed to possess binding 
domains for actin, myosin, calmodulin and tropomyosin as 
well as several phosphorylation sites. A wealth of data 
(mostly in vitro) implicates caldesmon in diverse cellular 
functions, including the regulation of smooth muscle and 
nonmuscle contraction, secretion, and, more recently, the 
dynamics of the actin cytoskeleton (see Sobue and Sellers, 
1991 and Matsumura and Yamashiro, 1993 for reviews). 

Several lines of evidence suggest a role of 1-caldesmon 
(hereafter referred to as caldesmon for simplicity) in the 
organization of actin filaments. Immunohistochemical stud- 
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ies have shown that caldesmon colocalizes with actin fila- 
ments with a distribution coincident with that of tropomy- 
osin (see Sobue and Sellers, 1991 and references therein), 
and that microinjected caldesmon is quickly incorporated 
into microfilaments in fibroblasts (Yamakita et al., 1990). 
In vitro work has shown that caldesmon potentiates the 
ability of tropomyosin to inhibit the severing action of 
gelsolin (Ishikawa et al., 1989a) and enhances the rean- 
nealing effect of tropomyosin on actin filaments after sev- 
ering by gelsolin (Ishikawa et al., 1989b). Caldesmon also 
regulates the interaction in vitro between actin filaments 
and the actin cross-linking protein filamin (see Sobue et 
al., 1988 and references therein). 

While these in vitro data point to a "stabilizing" role of 
caldesmon on actin filaments, the complementary results 
in live cells are much less direct and abundant. A piece of 
correlative evidence in favor of caldesmon's stabilizing role 
is that actin filaments become disorganized during mitosis 
in parallel with the dissociation of caldesmon from them, 
probably as a consequence of phosphorylation of caldes- 
mon by the cdc2 kinase (Yamashiro et al., 1990, 1991). An- 
other evidence is that caldesmon levels are decreased in 
transformed cells, where stress fibers are scarce or par- 
tially replaced with a diffuse meshwork of short microfila- 
merits (Novy et al., 1991); however, the concentrations of 
several actin-binding proteins also change upon trans- 
formation (see Novy et al., 1991 and references therein), 
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making it difficult to discern the role of caldesmon from 
that of other cytoskeletal components. 

In the course of our studies on the role of the actin cy- 
toskeleton in the glucocorticoid (GC)-induced inhibition 
of ACTH release from pituitary cells we found that GCs 
induce the reorganization and stabilization of the actin cy- 
toskeleton in pituitary cells as well as in other cell types 
(Castellino et al., 1992), and that this effect contributes 
to the GC suppression of ACTH release. A particularly 
marked effect of GCs was observed in the human lung ad- 
enocarcinoma cell line A549. Interestingly, caldesmon lev- 
els were increased in GC-treated cells. Here we report that 
the striking actin-reorganizing effect of GCs in A549 cells 
correlates both in time and degree with a large increase in 
the cellular levels of caldesmon (both at the protein and 
mRNA level); and, more important, that the selective inhi- 
bition of caldesmon expression by a caldesmon antisense 
oligonucleotide (AO) inhibits the reorganization of the ac- 
tin cytoskeleton induced by GCs. These results demon- 
strate the essential in vivo role of caldesmon in the actin cy- 
toskeleton organization and suggests that hormone-induced 
changes in caldesmon levels can mediate microfilament re- 
modeling. 

Materials and Methods 

Cell Culture 
A549 cells were cultured in Minimum Essential Medium Eagle's Modified 
with 10% fetal calf serum, in a humidified atmosphere with 5% CO2. Cells 
were always used at 50-70% confluence. 

Antibodies, Oligonucleotides and Other Reagents 
Polyclonal and monoclonal antibodies against nonmuscle caldesmon and 
tropomyosin were as described by Yamashiro-Matsumura and Mat- 
sumura (1988), Lin et al. (1984), and Matsumura et al. (1983a,b). Purified 
caldesmon from bovine liver was prepared as described by Yamakita et al. 
(1990). Anti-cytokeratin antibodies were a gift of Dr. L. Masuelli (Univer- 
sity of Chieti). Anti-actin, anti-gelsolin, and anti-tubulin antibodies were 
purchased from Amersham Corp. (Arlington Heights, IL). Oligodeoxynu- 
cleotides were synthesized using a Beckman System 200A DNA synthe- 
sizer and purified by methanol precipitation. HPLC-purified oligodeoxy- 
nucleotides were purchased from Duotech (Milan). 

Gel Electrophoresis and Immunoblotting Analysis 
For two-dimensional electrophoresis cells were sonicated in a PBS buffer 
containing 0.05% Triton X-100 and a cocktail of protease inhibitors. Pro- 
teins were then separated by IEF-SDS/PAGE performed according to the 
Bravo's procedure (Bravo, 1984). The pH gradient in the first dimension 
ranged from 4.5 to 7 after electrophoresis. The majority of cellular and cy- 
toskeletal proteins falls within this range. The second dimension was run 
on 10% SDS-PAGE. 

For immunoblotting experiments, after cell disruption by sonication, 
proteins were separated by 10% SDS-PAGE, electrophoretically trans- 
ferred to nitrocellulose membrane, and then probed with antibodies to 
gelsolin, tropomyosin, actin, tubulin, and cytokeratin. For the semiquanti- 
tative assay of caldesmon, sonicated cells were heated for 10 min at 100°C, 
cooled on ice for 30 min and centrifuged. The supernatants were analyzed 
by urea/SDS-PAGE, using 8% polyacrylamide gels containing 4 M urea, 
then transferred to nitrocellulose and stained with the monoclonal anti- 
body SM12 (Yamashiro-Matsumura and Matsumura, 1988) to caldesmon. 
This antibody reacts with the NH2 terminus of a variety of muscle and 
nonmuscle caldesmons from Xenopus to human. Judging from the conser- 
vation of the amino acid sequence in this region of caldesmon from sev- 
eral species, the antibody is most likely to react equally with bovine and 
human caldesmons (Yamashiro-Matsumura and Matsumura, 1988). The 
samples, prepared as described above, were processed in parallel with 
known amounts of purified bovine liver caldesmon (see Yamakita et al., 

1992), used to construct a calibration curve. Electrotransfer onto nitrocel- 
lulose was nearly complete for both purified caldesmon and caldesmon 
from cell extracts. Immunostained bands were then analyzed by densitom- 
etry with LKB Ultroscan XL. The amount of caldesmon in cells was calcu- 
lated by interpolation in the calibration curve. 

Northern Blotting 
Total cell RNA was isolated by the guanidine isothiocyanate method 
(Chomczynski and Sacchi, 1987). Northern blotting was performed as de- 
scribed by Sambrook et al. (1987). Equal amounts of total cell RNA was 
loaded on a 1% formaldehyde/agarose gel. After electrophoresis the 
RNA was transferred to a nitrocellulose membrane (Millipore) by the 
capillary method. DNA probes of rat nonmuscle caldesmon (clone D3; 
see Yamashiro et al., 1995) were labeled according to a random prime la- 
beling protocol (Feinberg and Vogelstein, 1983). Hybridization was per- 
formed in 50% formamide 5 x SSC, 5x Denhardt's solution at 37°C. The 
membrane was washed in 0.1 X SSC, 0.5% SDS at 37°C. 

Reverse Transcription-PCR 
There are two types of isoforms of human nonmuscle caldesmon, one 
cloned from HeLa cells and the other from WI-38 cells; they differ by the 
first 24 amino-terminal residues, while the rest of the sequences is identi- 
cal. Of each isoform there are two subtypes (I and II), differing only by 
the insertion of a stretch of 26 amino acids in type I (positions 202-227 of 
the HeLa type I isoform). To reveal these isoforms reverse transcription- 
PCR (RT-PCR) experiments were performed. RT-PCR of WI-38 iso- 
forms was carried out as follows: the first strand cDNA was synthesized 
from total RNA of A549 cells using oligo (dT)12-18 as a primer. The 
cDNA of WI-38 isoforms was then amplified with the same sense and an- 
tisense oligonucleotides as those used by Hayashi et al. (1992). Briefly, the 
primers used were: Pm, antisense primer complementary to the common 
sequence in all caldesmon isoforms, nucleotide positions 832459 in WI-38 
caldesmon type II; Pn2, sense primer specific to the short amino-terminal 
sequence of the WI-38 caldesmon type I and type II isoforms; Pi, antisense 
primer complementary to the insertion sequence present in all type I 
caldesmon. The following pairs of primers were used; Pn2-Pm, to amplify 
both the WI-38 isoforms type I and II; Pn2-Pi, to amplify the WI-38 iso- 
form type I. For the HeLa isoforms, because they are very minor in A549 
cells, RT-PCR was modified as follows: The first strand cDNA was syn- 
thesized using the antisense primer (Pm) common to all the caldesmon 
isoforms instead of oligo (dT)12-18, and the cDNAs for HeLa isoforms 
were amplified by two rounds of PCR. In the first round, the cDNA was 
amplified with the sense primer Pn (specific for the short amino-terminal 
sequence of the HeLa caldesmon type I and II isoforms) and the antisense 
primers Pi or Pm. The products were used as templates for a second round 
of PCR primed with a sense primer (Pnn, 5'-ATCCGGATCGCATG- 
GAAGACGCAG) nested to Pn, and the same antisense primers as in the 
first round. Thus, Pnn-Pi will amplify the HeLa isoform type I and Pnn- 
Pm will amplify both the HeLa isoforms types I and II. The PCR products 
were separated by electrophoresis in 1.5% agarose gel. 

Fluorescence Microscopy 
Cells were plated in 24 well Falcon dishes at a density of 1 x 104 cells/dish 
on coverslips coated with gelatin or poly-o-lysine (0.1 mg/ml) for 1 h. Mi- 
crofilaments were labeled by fixing the cells for 15 min in 2% paraformal- 
dehyde, permeabilizing with Triton 0.02% in phosphate-buffered saline 
and incubating for 30 min in rhodamine-phalloidine (33 ng/ml in phosphate- 
buffered saline). Intermediate filaments were labeled with anti-cytokera- 
tin antibodies by fixation in 4% paraformaldehyde, permeabilization with 
0.05 % saponin, then incubation with the primary antibody followed by the 
FITC-conjugated secondary antibody. Caldesmon was immunostained as 
described by Hosoya et al. (1993). Microtubules were labeled with anti- 
tubulin antibodies following exposure to methanol at -20°C for 5 min. 

Results 

Characterization of the Glucocorticoid-induced 
Reorganization of the Actin Cytoskeleton 

A549 cells cultured in the presence of dexamethasone for 
24 h became more polygonal, flattened and extended in 
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size. Staining of actin filaments with rhodamine-phalloi- 
dine (Cooper, 1987), revealed marked differences in actin 
organization between control and dexamethasone-treated 
cells. Control cells stained diffusely, with scarce and disor- 
ganized microfilaments, rare stress fibers and frequent ruf- 
fle-like protuberances ("flowers") previously shown to 
contain actin in a short filamentous form just beneath the 
plasma membrane (Boschek et al., 1981). Dexamethasone 
induced the appearance of well developed stress fibers and 
the disappearance of flowers (Fig. 1). No significant alter- 
ation in the organization of microtubules and intermediate 
filaments (stained with anti-tubulin and anti-cytokeratin 
antibodies, respectively, not shown) was observed in ste- 
roid-treated cells. 

The effects of dexamethasone were maximal or near- 
maximal at 10 -7 M and just detectable at 10 -9 M (ECs0: 
"-~5 X 10 -9 M). Other GCs such as betamethasone and hy- 
drocortisone were active but less potent, with ECs0s of 
~10 -8 and "~10 -7 M,  respectively, while non-GC steroids 
(estradiol, progesterone, and testosterone) were inactive 
at concentrations up to 10 -6 M. The effects of dexametha- 
sone on actin filaments became detectable within 12 h of 
treatment (Fig. 1) and were near-maximal after 24 h, then 
remained stable for up to three days. Although 10 -7 M 
dexamethasone had near-maximal effects, a concentration 
of 10 6 M was used in this and many other experiments to 
abolish the variability sometimes noticed between differ- 
ent dexamethasone batches. To obtain a semiquantitative 
estimation of the effects of GCs (and of agents interfering 
with their action, see below) on microfilaments we set up 
two simple criteria: (a) the disappearance of flowers and 
(2) the increase in number, apparent thickness and parallel 
orientation of stress fibers (see Table I for details). 

Based on these parameters, the GC effects were largely 
prevented by the protein synthesis inhibitors actinomycin 
D (at 0.2 txg/ml) (not shown) and cycloheximide (Fig. 1 D 
and Table I). Cycloheximide alone did not seem to detect- 
ably modify the actin cytoskeleton in control cultures and 

its only visible effect was a slight rounding of the cells (not 
shown). The inhibitory effect of cycloheximide is consis- 
tent with the well known mechanism of GC action via in- 
tracellular receptors controlling the synthesis of specific 
proteins (Ringold, 1985). 

The Glucocorticoid-induced Reorganization o f  Act in  
Filaments Is Associated with an Increase in the Cellular 
Levels o f  Caldesmon 

Changes in the actin cytoskeleton might be due to altered 
cellular levels of proteins involved in microfilament stabil- 
ity such as caldesmon or tropomyosin (Matsumura and 
Yamashiro, 1993). Under conditions that maximized the 
GC effects (10 -6 M dexamethasone for 24 h), the cellular 
concentrations of caldesmon were markedly increased 
over control levels (Fig. 2 B). In well-resolved urea gels 
two closely adjacent caldesmon bands were visible, possi- 
bly reflecting mitotic (cdc2 kinase-phosphorylated) and 
nonphosphorylated protein (Yamashiro et al., 1991). The 
relative intensity of the two bands did not seem to be af- 
fected by dexamethasone, suggesting that this steroid does 
not alter the phosphorylative regulation of caldesmon. 
The levels of a few other actin-binding proteins such as the 
four tropomyosin isoforms shown in Fig. 2 C and gelsolin 
(Fig. 2 A) as well as the levels of actin itself (Fig. 2 D) were 
not significantly altered by dexamethasone. The seeming 
discrepancy between the lack of GC effect on gelsolin and 
the marked increase in the levels of this protein by dexa- 
methasone observed in L929 cells by Lanks and Kasam- 
balides (1983) is likely to be due to the well known cell 
type specificity of the GC actions (Ringold, 1985). The 
general cell protein pattern of metabolically labeled cells 
was examined in two-dimensional gels. Dexamethasone 
detectably increased 6 spots and decreased one, confirm- 
ing the relative specificity of the steroid's action (Fig. 2, F 
and G). The increase in caldesmon, like the GC-induced 
microfilament remodeling, was time-dependent, was in- 

Figure 1. Reorganization of 
the actin cytoskeleton by dexa- 
methasone. A549 cells were 
plated and grown for 3 d to 
~60% confluency. Dexa- 
methasone (10 -6 M) and/or cy- 
cloheximide (0.1 ixg/ml) were 
applied for the times specified 
below via addition in 10 Ixl of 
vehicle to the medium during 
the last period of growth. A, 
control cells; B, dexamethasone 
for 12 h; C, dexamethasone for 
24 h; D, dexamethasone and 
cycloheximide for 24 h. Cyclo- 
heximide alone had no appar- 
ent effect on actin filaments 
in control cells. Arrowhead, 
flower; see text for details. 
This experiment was repeated 
at least five times with similar 
results. Bar, 5 Ixm. 
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Table I. Effects of Dexamethasone, Oligonucleotides, and Cycloheximide on Actin Filament Organization in A549 Cells 

AO SO CAO 

/.un 

Treatment 30 100 30 100 30 100 Cyclo 

0.8 ± 0.1 1.2 ± 0.1 1.3 ± 0.2 1.3 -+ 0.1 1.1 ± 0.2 1.1 ± 0.1 1.3 + 0.2 0.9 ± 0.1 

DEX (12 h) 2.2 ± 0.1 ND ND ND ND 

DEX (24 h) 3.5 ± 0.2 1.6 ± 0.2* 1.5 --+ 0.1" 3.6 ± 0.3 3.4 ± 0.1 3.5 ± 0.2 3.4 -+ 0.3 1.2 ± 0.2 

10 -6 M Dexamethasone (DEX) and 0.1 mg/ml cycloheximide (CYCLO) were used as described in the legend to Fig. 1, antisense oligonucleotide (AO), sense oligonucleotide ISO), 
and chicken antisense oligonucleotide (CAO) as described in the legend to Fig. 5. The effects of the treatments were quantified by a trained technician in a blind fashion according 
to the following procedure: 30 randomly chosen cells from each treatment (15 cells from each duplicate) were examined at a magnification of 400x under a fluorescence micro- 
scope and given individual scores from 0 to 4, using the criteria defined in the text. For instance, a cell with a flower and very scarce and thin stress fibers received a score of 0; a 
cell without flowers and scarce fibers a score of 1; a cell without flowers and abundant, parallel, and bright stress fibers a score of 4. Flowers were absent in cells with developed 
fibers. Values represent means - SE of 30 individual scores. 
*Different from controls ( DEX for 24 h) by the Duncan's test (p < 0.01). Similar results were obtained in two experiments performed on different days. 

hibited by cycloheximide (0.1 I~g/ml), and could be elicited 
by betamethasone and hydrocortisone (ECs0s: dexametha- 
sone, ~ 3  x 1 0  - 9  M ;  betamethasone,  ~10  -8 M; hydrocorti- 
sone, ~ 7  x 10 -8 M), but not by estradiol, progesterone 
and testosterone. Mfreover ,  the time course (Fig. 2 E) of 
the caldesmon increase and that of microfilament reorga- 
nization were roughly parallel, suggesting a causal link be- 

Figure 2. Selective effects of dexamethasone on the cellular lev- 
els of caldesmon. Cells were treated with dexamethasone (10 -6 M 
for 24 h) (DEX) as described in the legend to Fig. 1, then soni- 
cated and used for immunoblotting analysis with antibodies di- 
rected against gelsolin (A), caldesmon (B), tropomyosin (C), ac- 
tin (D). The anti-tropomyosin antibody reveals both low and high 
MW isoforms of the protein. Human tropomyosin is expressed as 
a family of isoforms (Lin et al., 1984). Although we haven't inves- 
tigated which isoforms are present in A549 cells, we can state, 
based on the extensive characterization of the antibody used (see 
Methods) that the four bands in C are indeed tropomyosin iso- 
forms. (E) Caldesmon levels as a function of time of exposure to 
dexamethasone; (F and G) Total protein pattern in two-dimen- 
sional gels of control A549 cells and of cells treated with dexa- 
methasone, respectively. Arrows indicate spots detectably modi- 
fied by the steroid. Caldesmon focuses between pH 7 and 8 and is 
not seen in these gels. The experiment was repeated on three dif- 
ferent occasions with similar results. 

tween the two phenomena.  GC did not seem to change on 
the cellular distribution of caldesmon in that the protein 
was found associated with microfilaments (see Yamakita 
et al., 1990) both in control and dexamethasone-treated 
cells, although the scarcity and disorganization of  actin fil- 
aments in the former often made such association difficult 
to demonstrate (Fig. 3). 

The Caldesmon Increase Is Accompanied by a Similar 
Increase in Caldesmon mRNA Levels 

To investigate the mechanism of caldesmon induction by 
GC, we sought to determine whether the protein increase 
was associated with a corresponding elevation of caldes- 
mon mRNA.  Northern blot analysis was performed on to- 
tal R N A  isolated from A549 cells. Fig. 4 A shows that the 
levels of caldesmon m R N A  prepared from cells that had 
been treated with 10 -6 M dexamethasone for different pe- 
riods of time were markedly elevated and that the increase 
was similar in extent to that of the caldesmon protein. The 
increase in caldesmon m R N A  peaked at or before the 7th 
hour of dexamethasone treatment, a few hours before the 
peak of the caldesmon protein (compare Figs. 4 A with 2). 
This lag might be due to the slow turnover of the protein 
(caldesmon, when microinjected, is stably incorporated in 
stress fibers for over three days; see Yamakita  et al., 1990). 

Caldesmon Isoforms in A549 Cells 

The rat caldesmon c D N A  probe is likely to reveal all non- 
muscle caldesmon isoforms, of which there are four known 
types (HeLa I and II, and WI-38 I and II; see Materials 
and Methods). To determine which of  them are present in 
A549 cells, we performed RT-PCR experiments. The re- 
suits in Fig. 4 suggest that all the isoforms are present and 
that the WI-38 isoforms are by far the more abundant, as 
might be expected given the similar tissue derivation (hu- 
man lung alveoli) of WI-38 and A549 cells. Indeed, two 
rounds of PCR were needed to detect clearly the HeLa  
isoforms (Fig. 4 B, lanes a and b). It should also be noted 
that type I isoforms are less abundant than isoforms type 
II, as shown by the observation that although the primer 
pairs Pn2-Pm or Pnn-Pm should amplify both types I and 
II (Fig. 4 B, lanes a and c; see Materials and Methods), 
only type II isoforms were visible, and only after amplifi- 
cation by a second round of PCR with the primer pair Pn2- 
Pm did a faint band with a slower mobility corresponding 
to the WI-38 type I isoform become detectable (Fig. 4 C). 
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Figure 3. Caldesmon and actin filament localization in dexamethasone-treated cells. Cells were treated with dexamethasone (10 -6 M for 
24 h) as described in the legend to Fig. 1, then fixed and double stained for actin filaments (A and B) and caldesmon (C and D). Bar, 4 ~m. 

A t rea tment  with G C  resul ted in a s t imulatory  t rend of all 
ca ldesmon isoforms; thus, al though R T - P C R  is not  quanti-  
tative, these results appear  to agree with the Nor thern  
blot t ing experiments .  

Figure 4. Effects of dexamethasone on caldesmon mRNA and 
characterization of the caldesmon isoforms in A549. Cells were 
treated with 10 -6 M dexamethasone for the specified times as de- 
scribed in the legend to Fig. 1. (A) Northern blot analysis. Rat 
caldesmon cDNA was used to probe total RNA samples isolated 
from A549 cells. 10 txg of total RNA were loaded into each lane. 
Band radioactivity was quantified by a PhosphorImager (Molecu- 
lar Dynamics). (B) RT-PCR analysis. RT-PCR was performed 
using first strand cDNA from control A549 cells or from cells 
treated with 10 -6 M dexamethasone for 7 h (the time of peak 
caldesmon mRNA expression). The following pairs of primers 
were used: Pnn-Pm (HeLa isoforms types I and II) (a); Pnn-Pi 
(HeLa isoform type I) (b); Pn2-Pm (WI-38 isoforms types I and 
II (c); Pn2-Pi (WI-38 isoform type I) (d). The expected sizes were 
0.8 kb for Pnn-Pm and Pn2-Pm and 0.7 kb for Pnn-Pi and Pn2-Pi. 
(C) amplification of the PCR products obtained with the primer 

A Caldesmon Ant isense Oligonucleotide Inhibits the 
Ef fect  o f  Dexamethasone on Both Caldesmon Cellular 
Levels and Microfi lament Reorganization 

To examine whether  a causal link might exist be tween 
ca ldesmon expression and cytoskeletal  reorganizat ion we 
sought to selectively inhibit  the GC- induced  increase in 
caldesmon and then de te rmine  whether  the steroids could 
still cause microf i lament  reorganizat ion.  To this end, we 
constructed an ol igodeoxynucleot ide  complementa ry  to 
the first 18 nucleot ides of the abundant  WI-38 isoforms 
(Novy et al., 1991; Hayashi  et al., 1992) beginning from the 
A U G  translat ion init iat ion codon. The first 18 t ransla ted 
nucleot ides are a commonly  used and often effective tar- 
get site of antisense ol igonucleot ides  (Chiang et al., 1991). 
Indeed,  the A O  inhibi ted the caldesmon increase induced 
by dexamethasone  (Fig. 5) in a dose-dependen t  fashion, 
with a marked  effect at 30 IxM. These  concentrat ions  are 
similar to those found effective in o ther  antisense studies 
a imed at blocking prote in  expression,  al though it should 
be noted  that  such concentrat ions  may vary widely de- 
pending on exper imenta l  condit ions (Jaskulsky et al., 
1988; Chiang et al., 1991; Kirsch et al., 1993). The A O  had 
only a slight effect on caldesmon levels in control  cells (see 
Discussion) and did not  appear  to be toxic, as judged by  its 

pair Pn2-Pm by a second round of PCR with the same primer pair 
in order to show the presence of the expected doublet corre- 
sponding to the two WI-38 isoforms: the minor upper band in 
lane (+) corresponds to the less abundant type I isoform. The ex- 
periments were repeated twice with similar results. 
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Figure 5. Effect of the anti- 
sense oligonucleotide on the 
cellular levels of caldesmon. 
Cells were grown in 2% se- 
rum (pretreated by heating 
at 56°C for 1 h to minimize 
serum nuclease activity). 
This did not affect cell mor- 
phology and moderately re- 
duced cell growth. The treat- 
ment with dexamethasone 
(10 -6 M for 24 h) was as de- 
scribed in the legend to Fig. 
1. Oligonucleotides were ap- 
plied in 20 p~l of saline to 2 ml 
of growth medium for the 24 h 

preceding, as well as during, the dexamethasone treatment. The 
addition was repeated every 12 h (namely, 24 and 12 h before, si- 
multaneously with, and 12 h after, the application of dexametha- 
sone) to compensate for oligonucleotide degradation and uptake 
into cells, for a total of four additions. The real oligonucleotide 
concentrations throughout the treatment are therefore un- 
known. We assume that oligonucleotides are gradually degraded 
and/or taken up during the 12 h following each addition. The 
concentrations specified in the figure are those produced by the 
first addition. Cells were then sonicated and the caldesmon con- 
tent assayed by quantitative immunoblotting. (Empty bars) Con- 
trois; (gray bars) dexamethasone; AO, antisense oligonucleotide; 
SO, sense oligonucleotide; CAO, chicken antisense oligonucle- 
otide; CSO, chicken sense oligonucleotide. Values are means _+ 
SD of three different experiments. * Different from controls 
(10 -6 M dexamethasone) by the Duncan's test atp < 0.05; ** at 
p < 0.01. Oligonucleotides were prepared as described in Mate- 
rials and Methods; commercial HPLC-purified oligonucleotides 
yielded the same effects. 

lack of effect on cell growth rate, general cell protein pat- 
tern, levels of other cytoskeletal proteins and Trypan Blue 
tests (not shown). Three other oligodeoxynucleotides, 
namely, the human sense oligonucleotide and two other 
oligonucleotides complementary to the first 18 bases 
(starting from the translation initiation site) of the sense 
and antisense strand of chicken smooth muscle caldesmon 
m R N A  (Bryan et al., 1989) were used as controls. In the 
chicken m R N A  three out of the first 18 bases are different 
from those found in caldesmon WI-38 mRNA.  Since three 
mismatches are usually sufficient to abolish A O  activity 
(Wahlestedt, 1994), the chicken A O  provides a sensitive 
control of the specificity of the effect of the human WI-38 
A O  designed to inhibit caldesmon expression in A549 
cells. All control oligonucleotides, including chicken A O  
(at 30 mM), had no effects on GC-induced caldesmon ex- 
pression. The slight effect of 100 mM of the chicken A O  
(Fig. 5) is statistically non significant. Thus, only the hu- 
man A O  inhibited GC-induced caldesmon expression. 

The effects of the A O  on GC-dependent  actin remodel- 
ing were then examined. Strikingly, the A O  at 30 mM 
largely prevented the cytoskeleletal changes induced by 
dexamethasone (Fig. 6 and Table I). By contrast, the GC- 
induced actin reorganization was not affected by control 
oligonucleotides, including chicken AO,  at concentrations 
up to 100 mM. To better examine the relationship between 
GC-dependent  caldesmon expression and degree of mi- 
cro filament organization, the effects of GC and oligonu- 

cleotides on the actin cytoskeleton were quantified and 
summarized in Table I. Indeed, a good agreement seems 
to exist between the effects of oligonucleotides on caldes- 
mon levels and those on the actin cytoskeleton, indicating 
the presence of a causal link between these two cellular ac- 
tions of t.he GCs (compare Table I and Fig. 6 with Figs. 2 
and 5). Unexpectedly, both the antisense and sense oligo- 
nucleotides slightly modified (in the absence of GCs) the 
actin organization in control cells with a similar potency 
(Fig. 6 and Table I), in that they all induced a more polyg- 
onal cell shape and a modest  apparent enhancement in mi- 
crofilament organization. The nature of such effects is un- 
clear but it is nonspecific insofar as it is unrelated to the 
oligonucleotide sequence. The only oligonucleotide able 
to inhibit the cytoskeletal effects of GC was the human 
AO,  further confirming the specificity of its action. 

Discuss ion  

The finding here reported that caldesmon plays an essen- 
tial role in the rearrangement of filamentous actin induced 
by GCs in A549 cells is based on two lines of evidence. 
One is the correlation between GC-induced microfilament 
reorganization and caldesmon increase with respect to the 
time course of the two effects, the inducing potency of var- 
ious steroids, and the suppressing effect of inhibitors of  
proteins synthesis. The second and more decisive proof  is 
that both GC-dependent  caldesmon increase and actin fil- 
ament reorganization are dramatically and specifically in- 
hibited by an A O  targeted to the most abundant caldes- 
mon isoform in A549 cells (see below). 

The potent  induction of caldesmon by GCs is likely to 
be due to an accelerated rate of the protein's synthesis, as 
indicated by the large elevation in caldesmon m R N A  
caused by the steroids. Together  with the sensitivity of the 
caldesmon increase to protein synthesis inhibitors, this ev- 
idence is consistent with the accepted model of GC action 
by which these hormones act by binding to the GC- 
responsive elements in the promoters of a specific set of 
genes in target cells, thereby inducing the synthesis of the 
corresponding proteins (Ringold, 1985). Canonical GC- 
responsive elements, however, are absent in the promoter  
regions of caldesmon in chicken genes (Yano et al., 1994). 
It is possible that the human caldesmon promoter  might 
differ from its chicken counterpart  (and contain GC- 
responsive elements); another possibility is that GCs may 
act indirectly, by inducing the expression of proteins that, 
in turn, promote  caldesmon synthesis. Several examples of 
this second mechanism of action of GCs are known (Rin- 
gold, 1985). 

The human AO,  in contrast with its high efficacy in in- 
hibiting the GC-dependent  caldesmon increase, failed to 
alter control caldesmon levels. This discrepancy might be 
in part explained by the existence in A549 cells of both of 
the known types of human caldesmon isoforms (cloned 
from HeLa  and WI-38 cells; see Hayashi et al., 1992 and 
Fig. 4) one of which (the HeLa  type), is insensitive to the 
AO.  However,  since the HeLa  form is quantitatively mi- 
nor, at least at the m R N A  level, a more likely explanation 
may be based on the fact that caldesmon is a long-lived 
protein (when microinjected, it is stably incorporated in 
microfilaments for over three days, see Yamakita et al., 
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1990). Thus, caldesmon would not be appreciably de- 
graded during the treatment with AO (two days), whereas 
new synthesis of the protein (activated by GCs) would be 
efficiently prevented. 

GCs are known to modify the expression of several pro- 
teins in target cells (Ringold, 1985); indeed, at least 6 pro- 
teins were increased and one decreased by dexamethasone 
in A549 cells (see Fig. 2, F and G). It is therefore interest- 
ing to ask whether caldesmon functions alone or in syn- 
ergy with other GC-induced proteins to produce the ob- 
served cytoskeletal rearrangements. The transition from 
the background meshwork of scarce microfilaments in 
control cells to the numerous typical stress fibers in GC- 
treated cells is likely to require the annealing of preexist- 
ing short filaments into longer units and the bundling of 
these structures into stress fibers. Indeed, the in vitro 
properties of caldesmon to enhance the ability of tro- 
pomyosins to inhibit microfilament severing by gelsolin, to 
stimulate filament reannealing and lengthening (Ishikawa 
et al., 1989a,b), and, possibly, to induce cross-linking of ac- 
tin filament (Sobue et al., 1985, 1988; Cross et al., 1987), 
appear to be well suited to account for the observed reor- 
ganization of the actin cytoskeleton. For this to occur in 
vivo, the intracellular concentrations of this protein must 
fall in the appropriate range. The in vitro effects of caldes- 
mon are maximal at a caldesmon to actin ratio of ,--q:18 
(Ishikawa et al., 1989b). This ratio in live untreated A549 

Figure 6. Effects of oligonucle- 
otides on the glucocorticoid- 
induced reorganization of the 
actin cytoskeleton. Cells were 
grown and treated with dexa- 
methasone (10 -6 M for 24 h) 
and oligonucleotides exactly as 
described in the legend to Fig. 
5. (A) control cells; (B) dexa- 
methasone; (C) 30 mM AO; 
(D) dexamethasone and 30 
mM AO; (E) 100 mM sense 
oligonucleotide; (F) dexa- 
methasone and 100 mM sense 
oligonucleotide. Both sense 
and antisense chicken caldes- 
mon oligonucleotides at 30 
mM were without effect. The 
experiment was repeated four 
times with similar results. Bar, 
5 Ixm. 

cells appears to be ,'~1:100, since caldesmon accounts for 
~0.05% of total cellular proteins (see Fig. 2, in good 
agreement with Yamakita et al., 1990), and actin for ~5% 
(a value commonly presumed correct for most cultured 
cells). As the five- to sevenfold stimulation by GC would 
change this ratio to ~1:15-20 (within the range of optimal 
caldesmon activity), our data appear to be in line with the 
idea that an increase in caldesmon levels alone may be suf- 
ficient to reorganize the actin cytoskeleton. Support for 
this hypothesis comes from recent results demonstrating 
that overexpression of caldesmon through cDNA transfec- 
tion techniques enhances the stability and the degree of 
organization of microfilaments into stress fibers (our un- 
published results; Sugurcheva and Bryan, 1995). Warren et 
al. (1994) have reported that the overexpression of a large 
COOH-terminal fragment of caldesmon in CHO cells re- 
suited in enhanced resistance to cytochalasin B of actin fil- 
aments (similar to our previous results, see Castellino et 
al., 1992), but not in the reorganization of the actin cyto- 
skeleton of the type described in this paper. This difference 
might be due either to the fact that the whole caldesmon 
molecule has different properties than its COOH-terminal 
fragment used by Warren et al. (1994) or to the fact that 
different cellular backgrounds have been used in the two 
studies. The CHO cells used by these authors exhibit a 
well organized actin cytoskeleton even before overexpres- 
sion of the caldesmon COOH-terminal domain whereas 
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A549 cells, where actin fibers are scarce, provide a suitable 
background to study microfilament remodeling. 

Altogether, the above results and considerations dem- 
onstrate that a marked increase in caldesmon is absolutely 
required for reorganization of the actin cytoskeleton in- 
duced by GC. They also strongly suggest that such in- 
crease might be sufficient alone to support these eytoskel- 
etal changes, but do not formally exclude the possibility 
that other proteins might play a role in the GC effects. A 
physiologically important corollary of these results is that 
variations in the cellular levels of caldesmon induced by 
hormonal stimuli may play a crucial role in the adaptive 
changes of the actin-based cytoskeleton that are known to 
accompany, and in part determine, a number of variations 
in the functional state of the cell. For example, the inhibi- 
tion of ACTH secretion from pituitary cells (Castellino et 
al., 1992), the GC induction of a more differentiated phe- 
notype in certain transformed cells (Furcht et al., 1978; 
Matin et al., 1990), the growth arresting effect of GCs ob- 
served in several cell lines (Jones et al., 1978), the inhibi- 
tion of macrophage and fibroblast motility by GCs (Man- 
tovani, 1985) might be in part due to caldesmon-mediated 
stabilization and organization of actin filaments. 
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