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Abstract: Antibiotics played an important role in controlling the development of enteric infection.
However, the emergence of antibiotic resistance and gut dysbiosis led to a growing interest in
the use of natural antimicrobial agents as alternatives for therapy and disinfection. Chitosan is a
nontoxic natural antimicrobial polymer and is approved by GRAS (Generally Recognized as Safe
by the United States Food and Drug Administration). Chitosan and chitosan derivatives can kill
microbes by neutralizing negative charges on the microbial surface. Besides, chemical modifications
give chitosan derivatives better water solubility and antimicrobial property. This review gives an
overview of the preparation of chitosan, its derivatives, and the conjugates with other polymers
and nanoparticles with better antimicrobial properties, explains the direct and indirect mechanisms
of action of chitosan, and summarizes current treatment for enteric infections as well as the role
of chitosan and chitosan derivatives in the antimicrobial agents in enteric infections. Finally, we
suggested future directions for further research to improve the treatment of enteric infections and to
develop more useful chitosan derivatives and conjugates.

Keywords: chitosan; antimicrobial; antibacterial; antifungal; enteric infection; antimicrobial mecha-
nisms of chitosan; gut microbiota; colonization resistance; drug delivery

1. Introduction

Ingestion of pathogens and disruption of normal microbiota cause enteric infections [1,2].
Enteric infections mainly manifest as fairly distinct clinical syndromes, including acute
vomiting, acute watery diarrhea, profuse watery diarrhea, invasive or bloody diarrhea
(dysentery), persistent diarrhea, and enteric fever [3]. Enteric infections are induced by
viruses, bacteria, protozoa, or parasites, e.g., norovirus, Shigella spp., Vibrio cholerae, Listeria,
Shiga toxin-producing Escherichia coli (STEC), Clostridium difficile, Salmonella typhimurium,
and Giardia lamblia [4,5]. Pathogens contain virulence factors such as enterotoxins and
flagella, which increase intestinal intracellular cyclic nucleotides and activate Cl− channels
in the apical membrane of enterocytes, resulting in increased fluid secretion and decreased
fluid absorption [6]. Such a mechanism explains the cause of microbial diarrhea.

Rehydration is the backbone of the treatment of enteric infections. Numerous cases
show that oral rehydration salts (ORS) can effectively rehydrate patients [7]. Severe
sufferers require intravenous fluids and antimicrobial therapy [7]. Antibiotics demonstrated
benefits in randomized controlled trials (RCT) in the treatment of infection with Shigella [8],
Vibrio cholerae [9], and Enterotoxigenic E. coli (ETEC) [10], especially in moderate or severe
cases. Recently, there is a consensus that antibiotics overuse contributed to increased drug
resistance and the resulting dysbiosis [2]. Novel antibiotics are massively produced, but
the continuous fear of the resulting antibiotic resistance and dysbiosis elicited researchers
to concentrate on the application of nonantibiotic compounds as antimicrobial agents [1].

Chitin is a biocompatible and biodegradable polysaccharide extracted from crus-
taceans, fungi, and insects [11]. Chitin can be converted into its deacetylated derivative,
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chitosan [1]. Conversion process includes enzymatic and chemical conversions; however,
lower cost of chemical conversion contributes to its dominance in mass production in
chitosan extraction [12]. In the chemical deacetylation, high NaOH concentrations (50–60%)
are used at above 80 ◦C in the treatment of chitin. Under the most drastic conditions,
high NaOH concentrations (50–60%) and high temperatures (130–150 ◦C) shorten the
deacetylation time to less than 2 h [13]. Chitosan, a promising natural polymer possessing
antimicrobial properties, shows bactericidal activity. Furthermore, antimicrobial prop-
erties, biocompatibility, and nontoxicity made chitosan an ideal compound in medical
science [1,14]. The United States Food and Drug Administration (FDA) approved that
chitosan is GRAS (Generally Recognized as Safe by FDA) [15,16]. Also, a variety of antimi-
crobial dressings and drug vehicles using chitosan were approved by the FDA [17].

Positive charges from amino groups of chitosan interact electrostatically with nega-
tively charged components on the microbial membrane, creating antimicrobial properties.
The antimicrobial properties are primarily confined to a pH below 6 [18]. This behavior
can limit applications and investigations under neutral and alkaline conditions; chemical
modification of functional groups can give chitosan derivatives enhanced bioactivity and
improved aqueous solubility, which maintains the inherent properties of chitosan as well
as magnifies the scope of application [18]. Furthermore, chitosan’s mucoadhesive prop-
erties and a capacity to promptly open epithelial tight junctions were exploited in drug
delivery across various epithelia [19–24]. Apart from the above features, biodegradability
and biocompatibility add to chitosan usage as an antimicrobial agent and drug delivery
vehicle. Recently, chitosan derivatives were prepared as novel materials to expand the
scope of application and drug absorption rates, e.g., nanoparticles, microspheres, and
polyelectrolyte complexes [25]. Those materials can be utilized in intestine-targeted drug
delivery by protecting drugs from being absorbed and degraded in the upper gastroin-
testinal tract [26]. As chitosan derivatives can transiently open epithelial tight junctions to
facilitate the transmembrane transport of drugs, chitosan derivatives can serve as adjuvants
or delivery vehicles for mucosal vaccines [27].

Chitosan can serve as prebiotics to increase the colonic mucosal populations of benefi-
cial bacteria and decrease proinflammatory bacteria, improving imbalanced gut microbiota
and mucosal inflammation [28]. Also, it gained widespread popularity as a dietary supple-
ment due to the lipid-lowering effects and anti-diabetic properties in the absence of adverse
reactions [11]. Besides, healthy gut microbiota can occupy binding sites in the mucus layer
covering enterocytes and prevent pathogens from colonizing the human intestine [29]. In-
fection with conditional pathogens can occur in dysregulated gut microbiota [2]. Therefore,
chitosan can be considered a potential and promising prebiotic to improve gut microbiota
against colonization of pathogens.

Although there is an increasing interest in the antimicrobial properties of chitosan
and chitosan derivatives were reported [30–32], there was no agreement on the role of
chitosan in antimicrobial agents or therapy in the treatment of enteric infections. There are
limited reviews to summarize and analyze mechanisms directly or indirectly related to
antimicrobial properties against enteric pathogens.

This review focuses on the preparation of chitosan derivatives with better antimicro-
bial properties; additionally, this review illustrates the common mechanism of chitosan
with antimicrobial properties in four aspects: positively charged chitosan can disrupt the
cell membrane or cell wall; chitosan can form a film on the porins of the cell surface to
block the exchange of nutrients, leading to microbial cell death; chitosan can penetrate
the cell wall to affect DNA/RNA and protein synthesis; unprotonated amino groups of
chitosan can chelate metal ions on the cell surface to disrupt cell walls or membranes.
However, some mechanisms are contrasted by some investigations, which indicates that
more investigations are required to find out the action mode of antimicrobial activity of
chitosan and its derivatives. Furthermore, this review elucidates indirect mechanisms of
chitosan, namely, affecting biofilm and improving gut microbiota to enhance colonization
resistance against pathogens, and it summarizes the current treatment for enteric infections
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and the role of chitosan derivatives in the antimicrobial agents in enteric infections. We
hope that this review can provide helpful suggestions for the clinical treatment of enteric
infections and expand the potential application of chitosan and chitosan derivatives.

2. General Properties of Chitosan

Chitosan is a random copolymer (Figure 1), composed of D-glucosamine (the deacety-
lated ones) and N-acetyl-D-glucosamine units linked through β-(1−4) glycosidic link-
ages [18]. Chitosan can be obtained through partial deacetylation of chitin, which is the
primary commercial source of chitosan [33]. Chitin is the second most abundant natural
polysaccharide following cellulose [18]. The proportion of the deacetylated glucosamine
units defines the deacetylation degree (DD). A DD value from 50 to 100% illustrates that the
polymer consists of more D-glucosamine units, implying the generation of chitosan. A DD
value from 0 to 50% indicates that the polymer comprises more N-acetyl-D-glucosamine
units, which indicates the copolymer is still chitin [33]. Functional groups on the chitosan
molecules consist of three nucleophilic functional groups (C3–OH, C6–OH, and C2–NH2),
acetyl amino, and glycoside bonds (Figure 1). Among them, the stable acetyl amino bond
and the glycosidic bond are not easy to modify; the enlarged steric hindrance of C3–OH
decreases chemical reactivity significantly [18]. Thus, C6–OH and C2–NH2 groups are
more likely to introduce other groups to chitosan derivatives to improve the physical
and chemical properties [34]. The antimicrobial effect of chitosan and chitosan deriva-
tives was observed in a multitude of research [35–37]. When chitosan is dissolved, the
amino groups (–NH2) of glucosamine units are protonated to –NH3

+. The polycationic
charge of chitosan is generally thought to be the most significant factor bringing about
antimicrobial effects due to electrostatic interaction between the polycationic chitosan
and microbial cell surface [38]. Chitosan is only active in the acidic medium; however, it
was reported that the limited activity above pH 6 may originate from the poor solubility
above pH 6. Chitosan was observed to be equally active against S. aureus at pH 5.5 and
7.2 (MIC = 256 µg/mL) [39]. Further investigations are required to fully understand the
importance of the polycationic charge of chitosan.
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Figure 1. Structure of chitosan.

Therefore, chemical modification of chitosan can increase the solubility of chitosan in
water medium and enhance chitosan’s antimicrobial properties.

3. Chemical Modification of Chitosan

Modification methods primarily consist of N-substitution in C2–NH2, O-substitution
in C6–OH, and free radical graft copolymerization [34]. Amino groups demonstrate higher
reactivity than hydroxyl groups. Hence, O-substitution requires the protection of primary
amino groups before modification [40]. There are other chemical modification methods of
chitosan. For instance, K. Zhang has utilized “click chemistry” and single-electron-transfer
nitroxide-radical-coupling (SET-NRC) reaction to synthesize chitosan-g-(PEO-PLLA-PEO)
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polymer [41]. Different methods of chemical modification define different properties.
Amino groups or hydroxyl groups require protecting functional groups introduced in
chitosan. The widely used protecting groups for amino groups are phthaloyl [42] and
acetyl [18], while triphenylmethyl [43], trimethylsilyl [44], tertiarybutyldimethylsilyl [45],
and acetyl [18]. The positive charge from the NH3

+ group of the glucosamine units in
chitosan and chitosan derivatives generates antimicrobial effects and reacts electrostatically
with negatively charged microbial cell membranes and biofilms components [46,47]. For
alleviating limitations that antimicrobial properties exist in acidic medium (pH below 6),
trimethyl, 2-hydroxy-3-trimethylammoniumyl, guanidinyl, trimethyl ammmoniumyl, pyri-
diniumyl, and quaternary alkyl groups are introduced in chitosan to obtain a permanent
positive charge, which enables chitosan to gain antimicrobial properties in the neutral and
basic medium [18]. An overview of types of chemical modification is shown in Figure 2. The
preparation and biological activities of chitosan and chitosan derivatives with antimicrobial
properties are shown in Table 1.
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Table 1. Table showing preparation methods and biological activities of chitosan and its derivatives.

Polymer Preparation Biological Activities Citation

Hydroxypropyl chitosan Reacting with propylene epoxide under
alkaline medium (NaOH)

Water solubility, film-forming property,
antibacterial property [39,48]

Thioglycolic Chitosan
Reacting with 1-ethyl-3-(3-dimethyl

aminopropyl) carbodiimide and thioglycolic
acid

High antimicrobial property and good
mucoadhesive property [49,50]

N-(2-(N,N,N-
trimethylammoniumyl)acetyl)-

chitin

A combination of Boc and
tert-butyldimethylsilyl (TBDMS) protection

strategies

Antimicrobial property and enhancing
permeation [51,52]

Carboxymethyl chitosan Reacting with 2-chloroacetic acid with
NaOH

Enhanced antimicrobial property and water
solubility [39]

N,N,N-trimethyl chitosan Reacting with methylation reagents Antimicrobial property and enhanced
solubility in alkaline medium [53,54]

N-(2-Hydroxyl) Propyl-3-
Trimethyl Ammonium

Chitosan

Reacting with glycidyl trimethyl ammonium
chloride

Antimicrobial property and good aqueous
solubility in acidic, neutral, and alkaline

medium
[39,55]

Chitosan- polyethylene
glycol-peptide (PEG)-peptide

conjugate

The chitosan was PEGylated by a carboxyl
and azideterminated polyethylene glycol;

peptide was
conjugated onto chitosan-PEG through a

click reaction

Antimicrobial property and antibiofilm
activity against Pseudomonas aeruginosa [56]

Thiosemicarbazone
O-Carboxymethyl-chitosan

(TCNCMCs) derivatives

Preparation of O-Carboxymethyl chitosan
(CMCs): alkalized chitosan reacting with

monochloroacetic, acetic acid, and methanol;
TCNCMCs preparation: CMC reacting with
ammonium hydroxide and carbon disulfide,

followed by adding sodium chloroacetate
and hydrazine hydrate

High antimicrobial and antifungal
properties [57]
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3.1. Carboxylic Acid Chitosan Derivatives

The quaternization of chitosan is known as a method to increase solubility and posi-
tive charge [58]. The trimethylation of chitosan amino groups is a simple quaternization
method [59]. Moreover, trimethyl carboxymethyl chitosan derivatives possess enhanced
antimicrobial properties [60]. Carboxymethyl chitosan is a water-soluble, amphoteric
chitosan derivative with nontoxicity, biocompatibility, and biodegradability, implying its
great potential in medical applications [61–63]. Such properties are brought about by the
increased surface positive charge [58]. A quaternized carboxymethyl chitosan is prepared
by introducing the N-quaternary ammonium group via the reaction of carboxymethyl
chitosan with 2,3-epoxypropyl trimethylammonium. A water-soluble chitosan methacry-
late can be prepared by using K+(CH3)3CO− dissolved in acetonitrile and methacryloyl
chloride. The graft copolymer using chitosan methacrylate and different monomers (e.g.,
1-vinylimidazole, methacrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid)
exhibits higher antibacterial effects than the chitosan methacrylate [64].

3.2. N,N,N-Trimethyl Chitosan (TMC)

N,N,N-trimethyl chitosan is a quaternized derivative of chitosan. Chitosan can react
with methylation reagents, mostly N-methyl pyrrolidone (NMP), to form TMC. Physio-
chemically, TMC is soluble in neutral or alkaline media [53], and its hydrophilic (N-(CH3)3)
and the hydrophobic groups (N-(CH3)2) makes TMC amphiphilic in nature, which is suit-
able for nanoparticle processing [65]. TMC can serve as an absorption enhancer affecting
tight junctions [66], which facilitates the use in the drug delivery on the intestinal [67],
nasal [53], and pulmonary [68]. TMC contains a permanent positive charge and good
water solubility independent of pH values. The antimicrobial property of TMC against
Gram-positive and Gram-negative bacteria outweighs that of chitosan, especially in alka-
line medium [54]. Researchers found that TMC fibers have better absorption capacity and
antibacterial properties compared with that of chitosan fibers, show nontoxicity to mouse
embryo fibroblasts (MEFs) in vitro, and demonstrate potential wound healing activity
in vivo [69]. TMC and heparin, an antiadhesive polymer, were deposited on modified
polystyrene films to build antiadhesive and antibacterial multilayer films. The results show
their antibacterial properties and antiadhesive nature to E. coli [70]. Vancomycin-loaded
TMC nanoparticles were reported excellent antibacterial activity against S. aureus and were
effective intracellular drug carriers due to their positive charge, suitable size distribution,
sustained drug release, and substantial cell uptake [71].

3.3. N-(2-Hydroxyl) Propyl-3-Trimethyl Ammonium Chitosan (HTC)

HTC or HTC chloride (HTCC) is another common quaternized derivative of chitosan
which also contains good aqueous solubility in acidic, neutral, and alkaline medium [55].
It is synthesized by the reaction between chitosan and glycidyl trimethyl ammonium
chloride [55]. HTCC exhibits good antibacterial properties, mucoadhesive activity, and
permeability enhancing activity [72]. The antibacterial activity of the polyacrylonitrile
(PAN) fiber can be achieved by addition of only 1% HTCC [73]. HTCC polymers were
reported to possess antibacterial activity against various drug-sensitive and drug-resistant
bacteria, even the clinically isolated multidrug-resistant bacteria and pathogenic fungi. In
addition, the polymers were found to kill pathogens by disrupting microbial membrane
integrity. Low cytotoxic behavior against human erythrocytes and mammalian cells also
exhibits their in-vitro non-toxic activity [74]. In the study on the relationship between the
degree of substitution (DS) and antibacterial activity, Professor Másson and his coworkers
have reported that HTC was more active than chitosan against S. aureus, but this activity is
independent of DS, whereas the antibacterial activity of HTC decreases with an increase in
DS in other cases. Additionally, a surprising result shows that only the lowest DS structure
possessed more antibacterial activity than chitosan [39]. HTCC was also reported to block
subsequent interaction between the S protein of coronavirus and the cellular receptor [75].
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3.4. Hydroxypropyl Chitosan (HPC)

HPC is a water-soluble derivative of chitosan with film-forming property [48]. It is
synthesized by reacting propylene epoxide with chitosan under alkaline medium [76].
HPC exhibits no inhibitory effect on E. coli or S. aureus, whereas it shows inhibitory
effectiveness against the four fruit pathogenic fungi (A. mali, C. diplodiella, F. oxysporum,
and P. piricola) [77]. In the study on the relationship between the degree of substitution (DS)
and antibacterial activity, the antibacterial activity of HPC decreases with DS [39]. HPC
was used to formulate nail lacquers containing antifungal agents such as ciclopirox for
onychomycosis, a fungal infection of the nails [78]. HPC grafted to the antimicrobial peptide
nisin using microbial transglutaminase (MTGase) as biocatalyst was also reported [79].

3.5. Thioglycolic Chitosan (TGC)

Thioglycolic chitosan is a thiolated chitosan derivative with antimicrobial properties.
It is synthesized by the reacting chitosan, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide
and thioglycolic acid [39]. Recently, low molecular weight TGC has displayed excellent
antimicrobial activity over the other derivatives (CMC and TMC): a 30 min treatment killed
100% Streptococcus sobrinus (Gram-positive bacteria) and reduced bacteria by 99.99% in
Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi) [49]. Good
mucoadhesive properties of TGC can serve as a promising tool for the mucoadhesive drug
delivery systems [50]. In the study on the relationship between the degree of substitution
(DS) and antibacterial activity, the degree of substitution for the TGC is very low and the
antibacterial activity is similar to unmodified chitosan [39].

3.6. N-(2-(N,N,N-trimethylammoniumyl)acetyl)-chitin (TACin)

TACin is also a quaternized derivative of chitosan, containing quaternary N,N,N-
trimethylammonium groups. TACin is synthesized using a combination of Boc and tert-
butyldimethylsilyl (TBDMS) protection strategies [80]. This derivative was shown to have
good antimicrobial activity [51] and serve as a promising permeation enhancer [52]. In
the study on the relationship between the degree of substitution (DS) and antibacterial
activity, the antibacterial activity of TACin increases with DS from 0.07 to 0.88. The TACin
derivative with the highest DS is more active (MIC = 256 µg/mL) than TMC against P.
aeruginosa [80].

3.7. Chitosan Conjugates

Some bioactive components can also be covalently linked to chitosan polymer to
form antimicrobial conjugates. It was reported that an antimicrobial peptide chitosan
conjugate was synthesized by the grafting of an antimicrobial peptide, anoplin, to chitosan
polymers. The antimicrobial activity of the conjugate is better than anoplin [81]. Chitosan-
polyethylene glycol-peptide (PEG)-peptide conjugate was reported to self-assemble into
a neutral nanosphere structure, penetrating the biofilm and membrane of bacteria. Fur-
thermore, chitosan-PEG-peptide conjugate destroys P. aeruginosa in a planktonic form and
in a biofilm form. The results indicated that chitosan-PEG-peptide conjugate can serve as
antibacterial agents against pathogens combating the P. aeruginosa biofilm infection, which
is an issue in hospitals [56].

4. Action Modes of Chitosan against Pathogen Microorganisms

Chitosan and chitosan derivatives exhibit different action modes towards the Gram-
positive and Gram-negative bacteria. This difference in mechanisms can be attributed to
the difference in the component of the cell wall. As shown in Figure 3, the cell wall of Gram-
positive bacteria is composed of peptidoglycan, wall teichoic acids (WTAs) covalently
linked to peptidoglycan, and lipoteichoic acids (LTAs) tied to the microorganism cell
membrane [82]. WTAs and LTAs contain a negatively charged anionic backbone [82,83].
The teichoic acids can provide arranged uniform high-density negative charges in the cell
wall, thereby inhibiting the passage of ions across the membrane [82].
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In the case of Gram-negative bacteria, the cell envelope consists of two membranes
divided by a periplasmic space comprising a thin peptidoglycan layer [84]. As shown in
Figure 4, the lipid composition of the outer membrane (OM) of Gram-negative bacteria is
asymmetric: the outer leaflet contains lipopolysaccharide (LPS), whereas the inner leaflet
comprises a variety of phospholipids.
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The surface of Gram-negative bacteria comprises negative charges from the phosphate
and pyrophosphate groups of LPS in the outer layer of the OM [85]. The widely accepted
mechanisms of antimicrobial effects of chitosan can be explained in four models.

4.1. Disrupting the Cell Membrane/Cell Wall

The first and most widely accepted model involves the electrostatic interactions be-
tween chitosan and anionic surface of Gram-positive and Gram-negative bacteria, resulting
in disruption of the cell membrane [14].

In Gram-positive bacteria, positively charged chitosan can interact electrostatically
with the negative charged teichoic acid in peptidoglycans, leading to destruction on the
cell membrane, leakage of intracellular components, and the entrance of chitosan into
the microbial cells [14,18]. A previous study confirmed the leakage of proteins and other
intracellular constituents caused by chitosan [86]. Further studies showed that the hy-
drolysis of peptidoglycans can bring about an enhanced electrostatic interaction, which
is confirmed via the assessment of electric conductivity of the bacteria mixture [87] and
release of cytoplasmic β-galactosidase activity [85] from E. coli into the culture medium.
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In Gram-negative bacteria, high negative charges given by LPS can be neutralized
by positive charges from chitosan, resulting in disruption of the OM, enabling chitosan to
penetrate the cell membrane, and thus lead to bacterial cell death [85].

Recently, the studies on the effect of chitosan on E. coli not only indicate the obser-
vation that the permeability of the OM is increased but also shows that the inner cell
membrane is also damaged, resulting in leakage of the cytosolic content and microbial cell
death [88,89]. Similar results are observed for the mechanism of action for antimicrobial
dimethylaminoethyl-chitosan against E. coli and S. aureus [87]. Chitosan and chitosan
derivative microspheres were reported to disrupt the bacterial cell membrane [86].

4.2. Formation of a Dense Polymer Film on the Cell Surface

High molecular weight (High-MW) chitosan can form a dense polymer film on the
surface of the cell, blocking the exchange of nutrients by covering porins on the OM of
Gram-negative bacteria, leading to microbial cell death [84,85]. Such profile was detected
via the thicker appearance of the cell walls, implying chitosan deposition on the cell
surface [85]. The flocculation effect can be detected by using a scanning electron microscope
(SEM), which shows vesicle-like structures on the OM of chitosan-treated E. coli and
Salmonella typhimurium [90]. However, the image showing chitosan aggregates on the
OM cannot support the hypothesis. More investigations are required to evaluate the
assumption.

4.3. Interaction with Microbial DNA

Low molecular weight (Low-MW) chitosan and chitosan hydrolysis products can
penetrate the cell wall to affect DNA/RNA and protein synthesis [91]. Xing and coworkers
observed the binding of oleoyl-chitosan nanoparticles (OCNPs) to DNA/RNA in the
assessment of the influence of OCNPs on the electrophoretic mobility of nucleic acids [92].
The results demonstrate that the concentration of OCNPs might be positively correlated
to the interactions among bacterial genomes. Moreover, the concentration of OCNPs
reaching 1000 mg/L inhibits the migration of E. coli DNA and RNA completely. Negatively
charged phosphate groups in DNA/RNA react with positively charged amino groups in
OCNPs, thus inhibiting pathogens [92]. Galván Márquez and coworkers observed the
inhibition of protein biosynthesis by chitosan in a test of β-galactosidase expression [93].
The antibacterial effect of chitosan oligomers on E. coli cells is caused by the prevention
of DNA transcription caused by chitosan oligomers, which is confirmed by the detection
of chitosan oligomers inside the cell using a confocal laser scanning microscope [94].
Furthermore, chitosan can inhibit mitochondrial biogenesis of Candida albicans, indicating
that the antifungal activity of chitosan is mediated by the repression of mitochondrial
function and the following ATP production inhibition [95].

4.4. Chelation of Nutrients by Chitosan

Metal ions (e.g., Ni2+, Zn2+, Co2+, Fe2+, and Cu2+) present in the bacterial surface
can be chelated by amino groups of chitosan when the chelation effect overweighs the
electrostatic force, namely the higher pH of the mixture than the pKa of chitosan [96–101].
Divalent cations can stabilize the cell membrane of bacteria [102]. In Gram-positive bacteria,
the divalent metal ions binding to wall teichoic acids (WTAs) can minimize repulsion
among adjacent phosphate groups, leading to better stabilization polymer structure and
the integrity of the cell wall [103,104]. Divalent cations binding to WTAs can help inhibit
fluctuations in osmotic pressure between both sides of the microbial cell [105–107]. In the
case of Gram-negative bacteria, LPS in the outer leaflet of the OM is polyanionic molecules
comprising various negative charged phosphate groups [102]. The divalent metal cations
can minimize the repulsive forces among aggregated negatively charged phosphate groups,
maintaining the stability of the bacterial OM [102].

Chitosan contains chelating properties [108]. When the pH value of the medium is
higher than the pKa value of chitosan or chitosan derivatives [100], unprotonated amino
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groups of chitosan can donate their lone pair of electrons to the metal ions of phosphate
groups in the LPS or WTAs on the cell membrane surface to form a metal complex. Posi-
tively charged amino groups of chitosan can compete with divalent cations for phosphate
groups in the LPS or WTAs on the cell membrane surface [108,109]. Therefore, such a
chelation reaction can lead to instability of cell surface potential and a mutual repulsion
among negatively charged phosphate groups, and thus result in rupture of the microbial
cell membrane [85].

In addition, it was reported that bivalent cations inhibited the activity of chitosan in
the order Ba2+ > Ca2+ > Sr2+ > Mg2+. The results demonstrate that chitosan leads to the
formation of “pores” in the cell membrane, and Ca2+ bound to the cell surface is released
before the chitosan-induced leakage of the cytosolic content [110].

However, intracellular effect on DNA and RNA function or chelation of nutrients are
speculative by some published work.

4.5. Mechanism of Antifungal Activity of Chitosan

Fungi includes the yeasts, rusts, smuts, mildews, molds, and mushrooms. Fungi, one
of the most widely distributed organisms on Earth, are found in soil, water, plants and
animals [111]. Many fungi were detected in the healthy human gut, mostly Candida yeasts.
Sometimes environmental sources (e.g., molds) are likely to affect gut ecology [112].

The fungal cell wall (Figure 5) is primarily composed of chitin adjacent to the cell
membrane, β-D-glucans outside the chitin fibers, and mannoproteins or mannan as the
outer layer of the cell wall [113]. Chitosan contains antifungal properties on various fungal
pathogens in plants and humans [114–117]. A variety of studies have clearly indicated that
chitosan can bind to the phosphorylated mannosyl side in fungi, leading to disruption of the
plasma membrane and leakage of intracellular materials [118–120]. Recently, researchers
found that chitosan can also affect DNA/RNA expression and protein biosynthesis in
fungi [93,121]. Xu and coworkers [122] found that fluorescently labeled oligo-chitosan
localizes primarily in the cytoplasm of P. capsici and shows no binding to the cell wall or
membrane. It is also reported that the oligo-chitosan can affect the electrophoretic mobility
of the DNA and RNA, which mostly suggests that small antifungal oligo-chitosan can cross
the fungal cell wall and cell membrane and bind to intracellular DNA or RNA. However,
these results were contrasted by Park et al. [123], who demonstrated that oligo-chitosan
(1 kD) was less effective against nine fungal strains than chitosan with higher molecular
weight (3, 5, and 10 kD). Furthermore, low molecular weight chitosan and oligo-chitosan
can pass through fungal cell walls to affect mitochondrial function [124].
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The minimum lethal concentrations (MLCs) of chitosan against fungi are highly
correlated to the molecular weight and degree of acetylation of chitosan, pH value, and the
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targeted fungi [117,125–127]. Fungicidal activity is positively associated with the degree
of acetylation and negatively related to molar weight [126]. It is observed that the plasma
membrane forms a barrier against chitosan in chitosan-resistant but not chitosan-sensitive
fungi [128]. Chitosan-sensitive fungi have more polyunsaturated fatty acids in the cell
membrane than chitosan-resistant fungi, therefore comprising more membrane fluidity
and the increased negative charges as well as permeabilization [128]. Apart from the
destruction of the cell wall, disruption of the cell membrane, and inhibited ribosome
biogenesis, inhibiting the spore germination and mycelium growth of fungi adds to the
usage of chitosan as an antifungal agent [129].

Given the negative charge of WTAs in Gram-positive bacteria, LPS in Gram-negative
bacteria, and the phosphorylated mannosyl side in fungi, electrostatic reactions occur
between the positively charged amino groups of chitosan and the cell surface of the
pathogen microorganism. Furthermore, chitosan chelates the metal cat-ions on the surface
of the bacterial membrane. High molecular weight chitosan can obstruct the exchange
of nutrients on the Gram-negative bacteria. Low-molecular-weight chitosan and oligo-
chitosan can inhibit DNA/RNA or protein synthesis by passing through the cell wall
and cell membrane into the cytoplasm. Additionally, low-molecular-weight chitosan and
oligo-chitosan result in mitochondrial dysfunction in fungi. Figure 6 exhibits the proposed
modes of action of chitosan on Gram-positive, Gram-negative bacteria and fungi.
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components and induce leakage of intracellular components. Moreover, chitosan chelates metal cations on surface of
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weight (MW) chitosan can inhibit DNA/RNA or protein biosynthesis after penetrating into cytoplasm. Additionally,
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5. Current Treatment of the Enteric Infections

Rehydration is the primary treatment of enteric infections. Most cases can be efficiently
treated with oral rehydration salts (ORS) [7]. WHO and the United Nations Children’s
Fund have recommended a reduced osmolarity ORS solution (245 mOsm/L), containing
75 mmol/L of sodium, 10 mmol/L citrates, 20 mmol/L potassium, and 75 mmol/L of
glucose, for reducing stool output and the incidence of vomiting [130]. Digestible food is
usually recommended for patients with diarrhea [131]. Severe suffers require intravenous
fluids. Apart from normal saline infusion, lactated Ringer solution is also needed [132].
Considering serum electrolyte level and urinary excretion, a potassium supplement can
correct electrolyte disorders [130].

Antibiotics demonstrated benefits, including the reduction of the duration of the
condition as well as the alleviation of symptoms and complications, in randomized, con-
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trolled trials (RCT) in the treatment of enteric infections [3]. In terms of Shigella spp.,
enteroinvasive Escherichia coli, enterotoxigenic E. coli, Vibrio cholerae, Aeromonas, and Ple-
siomonas, antibiotics have exhibited benefits for patients with moderate-to-severe disease
in RCTs [3]. For other pathogens (e.g., Campylobacter), antibiotics make a modest reduction
in the duration of symptoms [133]. Antibiotics are recommended for patients with the
severe conditions or risk factors for severe illness, such as the elderly, pregnancies, and
the immunocompromised [133]. Nevertheless, for patients with nontyphoidal Salmonella
infection, antibiotics should not be given except in particularly severe cases, namely, in pa-
tients older than 50 years (who are at risk for a mycotic aneurysm), in infants younger than
12 months (who are at risk for Salmonella meningitis), in individuals with cardiac or joint
prostheses, and the immunocompromised [134]. Furthermore, RCTs showed a prolonged
load of the microorganisms in the stool [134]. Antibiotics for Shiga toxin-producing E. coli
(STEC) infection can increase the risk for hemolytic-uremic syndrome (HUS), particularly
in children younger than 10 years [135].

Moreover, antimotility agents may exacerbate the condition without effective antibi-
otics, resulting in absorption of enterotoxin and subsequently increased risks for HUS [3].
Considering the progressively common antimicrobial resistance against enteric infection,
researchers have focused applying nonantibiotic compounds as antimicrobial agents [1].
Chitosan and chitosan derivatives showed antimicrobial activities against Gram-positive,
Gram-negative, and fungi [91]. Besides such direct bactericidal and fungicidal effects,
chitosan and chitosan derivatives have other mechanisms for treating enteric infections.

6. Antibiofilm Properties of Chitosan and Chitosan Derivatives

Biofilm is an assemblage of microbial cells imbedded in a matrix of extracellular
polymeric substances (EPS) produced by microbial cells [136]. Biofilm contains extracel-
lular polysaccharides, extracellular DNA (e-DNA), and proteins in the matrix [137–139].
Biofilm can serve as a defense mechanism against antibiotics and microbicides [140]. The
polymeric matrix present in the biofilm impedes the access of antimicrobial compounds to
the surface of bacterial cells [47]. At present, researchers concentrated on combating the
pathogenesis by inhibiting biofilm formation and uprooting mature biofilm by several reac-
tive agents [141–148]. However, several current antibiofilm agents comprise cytotoxicity
properties [149–152]. Therefore, a biocompatible, biodegradable, innocuous, nonallergenic,
cost-effective, and environmentally-friendly antibiofilm compound from natural origin,
chitosan can be a potential antimicrobial and antibiofilm agent [153–155].

Antibiofilm property of chitosan is primarily attributed to the polycationic nature
donated by amino groups of N-acetylglucosamine monomers [156–158]. Positive charges
of chitosan can interact electrostatically with negatively charged biofilm compositions
such as EPS, extracellular proteins, and e-DNA, inducing an inhibitory effect on microbial
biofilm [159,160]. Thenceforth, chitosan has access to the passage through the biofilm,
killing microorganisms subsequently via the above-mentioned action modes. Moreover,
the conjugation of chitosan with antimicrobial peptides (AMPs) can create cationic peptide-
polysaccharide to enhance electrostatic interactions between the copolymer and microbial
cell membrane components as well as inhibit the growth of Gram-positive and Gram-
negative bacteria [161,162]. Chitosan and chitosan derivatives in different structural forms
(e.g., chemical modified ones, nanoparticles, conjugation with other polymers, conjugation
with antibiofilm nanoparticles, and vehicles for drugs) exhibit antibiofilm effects against
microbial biofilm [47]. Such materials in food industry or for personal use can prevent
the intake of pathogens which is responsible for enteric infections, especially methicillin-
resistant Staphylococcus aureus [163], vancomycin-resistant Staphylococcus aureus [164], and
Listeria [165,166].

7. Gut Microbiota and Colonization Resistance against Enteric Infections

A variety of microorganisms colonize the human gastrointestinal (GI) tract, collec-
tively termed gut microbiota, including bacteria, viruses, fungi, archaebacteria, and pro-
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tozoa [167]. The majority of bacteria colonize the colon (about 1014) [168], which is much
larger than the concentration of microbes in the stomach and the upper part of the intestine
owing to the acidic gastric ambient and the rapid passage of the food through the upper GI
tract [167].

Discoveries of the Human Microbiome Project (HMP) boosted the understanding of
the host-microbe interactions in the intestine [169,170]. The microbiome contains 3.3 million
nonredundant microbial genes, which is 150-times larger than the human genome [169].
Healthy gut microbiota is dominated by Bacteroidetes and Firmicutes [171], followed by
Actinobacteria, Proteobacteria, and Verrucomicrobia [172], as well as methanogenic archaea
(e.g., Methanobrevibacter smithii), eukaryote (e.g., yeasts), and various phages [173]. Envi-
ronmental factors interact with endogenous factors to form individuals’ unique microbial
phenotypes [174]. The gut microbiota in early life is shaped by types of delivery for
pregnancy [175], host immune system [176], maternal microbiome [177], environmental
microbes [178,179], as well as the solid food after birth [180]. Multiple host-endogenous
and host-exogenous factors shape the gut microbiota to form a resilient and balanced
gut microbiota [181]. However, once there are changes in those influencing factors, the
dysbiosis can induce gut barrier dysfunction, invasion of pro-inflammatory contents (e.g.,
LPS), and low-grade chronic inflammation [182]. Various studies showed the association
between dysbacteriosis and obesity [183], type 2 diabetes [184], and inflammatory bowel
disease [185].

Healthy gut microbiota can prevent enteric infections via a variety of mechanisms,
including the production of antimicrobial agents, nutrient competition, aid to intestinal
mucosal barrier integrity, and immune response activation [186]. These mechanisms
collectively contribute to colonization resistance (CR) against pathogens. The metabolites
of the gut microbiota contain antibacterial properties, including short-chain fatty acids
(SCFAs), secondary bile acids (BAs), and bacteriocins [187]. Their general modes of action
are explained below.

7.1. Short-Chain Fatty Acids

SCFAs are metabolites from bacteria via the fermentation of nondigestible carbohy-
drates [188]. The SCFAs primarily include acetate, propionate, and butyrate, constituting
over 90% of the total metabolites [189]. Under normal conditions, butyrate can supply
energy to enterocytes and form an anaerobic milieu in the gut via β-oxidation and citric
acid cycle metabolism [190]. The anaerobic environment improves the growth of obligate
anaerobic bacteria (e.g., Lactobacillus) [187] and limits the expansion of facultative anaer-
obic pathogens (e.g., Proteobacteria) [191]. SCFAs can regulate the composition of the gut
microbiota by affecting pH value and metabolic function. The concentration of SCFAs is
inversely associated with pH value throughout different zones of the GI tract [192]. Bu-
tyrate contributes to the colonic mucosa’s physical and functional integrity by upregulating
the expression of mucins from goblet cells in the colon [193]. Mucin, a type of mucus
protein, is a major structural and functional constitute of the intestinal mucus layer [194],
and the mucus generates a coating that covers the intestinal cells to protect them from
exogenous and noxious substances such as pathogens and digestive enzymes [195]. Acetate
can impair the metabolism of Escherichia coli by inhibiting the methionine biosynthesis and
accumulating toxic metabolites (viz. homocysteine), reducing the growth of E coli. (phylum
Proteobacteria), a marker of gut dysbiosis [191,196].

7.2. Bile Acids

Secondary bile acids (e.g., deoxycholic acids) possess bactericidal properties against
multiple pathogens, including Staphylococcus aureus and Clostridioides difficile, disrupting cell
membrane [197–199]. Primary bile acids (BAs) are generated in the liver and excreted in the
intestinal tract to support the digestion of exogenous lipids. Afterwards, primary BAs are
conjugated with glycine or taurine in the liver to increase solubility [200]. Most conjugated
primary bile acids are reabsorbed in the distal ileum, while the remains are metabolized
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by the microbes in the colon [187]. Conjugated bile acids can be deconjugated by bile salt
hydrolase (BSH) in the colon, which is profusely expressed in the gut microbiome [201,202].
The deconjugation creates two main secondary bile acids, deoxycholic acid, and lithocholic
acid, via several bacteria (e.g., Clostridium specie) [203].

7.3. Bacteriocins

Bacteriocins, bactericidal peptides generated by specific bacteria, can inhibit the
occupation and growth of other bacterial species [204]. The action modes include disturbing
RNA and DNA function as well as disrupting the cell membrane [205]. The bacteriocins
from Gram-positive bacteria are primarily produced by Lactococcus and Lactobacillus [206].
Bacteriocins from Gram-negative bacteria are usually generated by Enterobacteriaceae [207].
The bacteriocin Abp118, produced by Lactobacillus, can protect the host from the infection
with Listeria monocytogenes [208].

7.4. Mucus Layer

The mucus layer is composed of inner and outer mucus layers. The inner mucus
layer is consistently replenished with mucins and is anchored on the goblet cells and the
intestinal epithelia [209–211]. It was observed that bacteria cannot penetrate the inner
mucus layer due to the pore sizes down to 0.5 µm [211,212]. The outer mucus layer is four
times volume of the inner mucus layer, remaining the loose netlike structure and colonized
with gut microbiota [213]. At a certain distance (50 µm in mice and 200 µm in humans)
from the intestinal epithelia, the inner mucus layer is changed into the outer mucus layer by
endogenous proteases, creating a significantly sharp border that separates the two layers
(from being attached to easily aspirated) [211,214]. The inner mucus layer can separate
the intestinal epithelia and microbes in the GI tract, preventing bacterial translocation and
subsequent systemic inflammation [215]. The upregulated mucins mediated by SCFAs
from the healthy gut microbiota can supply energy for specific beneficial mucin-degrading
bacteria (e.g., Akkermansia muciniphila), resulting in expanded microbiota outer mucus
layer [11,215]. In summary, the mucus layer serves as the first barrier of defense against
exogenous pathogens.

7.5. Immune Response

The intestinal immune system is significantly shaped by the gut microbiota. Immuno-
cytes such as neutrophils and macrophages are typically the first immune barriers against
infection [29]. Pathogen-associate molecular patterns (PAMPs) produced by pathogens
can interact with pattern recognition receptors (PRRs), such as toll-like receptors (TLRs)
and nucleotide-binding oligomerization (NOD)-like receptors (NLRs), to activate innate
immunity [216–218]. The innate immune system includes intestinal epithelial cells, myeloid
cells, innate lymphoid cells (ILCs), etc. PAMPs can stimulate TLRs and myeloid differentia-
tion factor 88 (MyD88) expressed in intestinal epithelial cells, resulting in the secretion of
IL-8 from the epithelia and the recruitment of neutrophils to the lamina propria [218,219].
In response to microbial stimuli, innate immune cells, such as dendritic cells (DC) and
macrophages, secrete IL-12 and IL-18 that stimulate ILC1 to kill intracellular pathogens, as
well as IL23 and IL1β that activate ILC3 against extracellular bacteria and fungi [220]. The
production of IFN- γ by ILC1 can facilitate macrophage to eliminate infected cells [221].
ILC3 can secret IL-17 and IL-22 to increase the secretion of antimicrobial components,
including antimicrobial peptides (AMPs) and regenerating islet-derived 3 (Reg3) family
proteins, to the mucus layer in the small intestine [222,223]. IL-22 can also induce the
expression of fucosyltransferase 2 (Fut2) to improve the glycosylation of the proteins ex-
pressed on the surface of enterocytes [224], which can facilitate to protect against infection
by intestinal pathogens (e.g., Salmonella enterica serotype typhimurium) [225]. On the other
hand, butyrate can stimulate the G-protein-coupled receptor 109A (GPR109A) on dendric
cells (DCs) or GPR43 expressed on naïve T cells to inhibit histone deacetyltransferase
(HDAC) function and subsequently upregulate the expression of forkhead box P3 (FOXP3),
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resulting in increased regulatory T cells (Treg) pool and activity [226]. The mechanism can
avoid abnormal inflammation.

Immunoglobulin-A (IgA) plays an indispensable role in the mucosal defense against
pathogens [227,228]. In humans and mice, over 80% of plasma cells produce IgA in mucosa-
associated lymphoid tissues (MALT), whereas other IgA-producing plasma cells exist in
peripheral lymphoid tissues [229]. Gut microbiota can utilize IgA for colonization resistance
against exogenous pathogens and commensal-bacteria translocation [230,231]. SCFAs can
promote retinoic acid production from DCs, which in turn promotes differentiation of IgA-
producing plasma cells [232]. In the colonic lamina propria, IgM-expressing B cells convert
to IgA-producing B cells at this site, and the antibody product convert to IgA2 from IgA1.
Following the activation of TLRs on the intestinal epithelia, intestinal epithelial cells can
secret thymic stromal lymphopoietin (TSLP) to enhance the production of a proliferation-
inducing ligand (APRIL), B cell-activating factor (BAFF), and nitric oxide (NO) by DCs,
resulting in increased IgA-producing plasma cells as well [233]. IgA in responses to
pathogens is T-cell-dependent and is thought to induce high-affinity IgA against pathogens,
termed ‘classical’ IgA [234]. Besides, the most part of commensal bacteria is coated with
low-affinity, ‘innate’ IgA [235,236]. Classical IgA and innate IgA combine to establish the
overall IgA pool in the intestine to facilitate tolerating a complex gut microbiome and
prevent enteric infections [230,233]. As shown in Figure 7, gut microbiota plays an integral
role in resisting the colonization of intestinal pathogens.
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8. The Role of Chitosan in the Treatment of Enteric Infections

In the treatment of enteric infections, chitosan, oligo-chitosan, and their derivatives
can serve as antimicrobial drug delivery vehicles, as prebiotics to improve the coloniza-
tion resistance against enteric infections, and as antimicrobial agents independently, and
conjugate with other reactive agents to increase antimicrobial activities.

8.1. Chitosan as Drug Delivery System

Apart from the antimicrobial properties, chitosan can increase the pH sensitivity of the
drug release of antimicrobial agents, enabling intestine-targeted antimicrobial effects [237].
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Formulated chitosan-coated amphotericin-B-loaded nanostructured lipid carriers (ChiAmp
NLC) can prevent Amphotericin-B from exposure outside the intestine, decrease toxicity
to enterocytes and erythrocytes, and thus enhance the bioavailability of Amphotericin-
B [237]. Bovine serum albumin (BSA)-chitosan core (CS)-nano-delivery-systems (BSA-
CS-NDS) enables the effective delivery of carvacrol, a natural antimicrobial agent, to the
intestine for successful removal of Salmonella enterica [238]. Carla Mura and her coworkers
prepared two chitosan amide conjugates of metronidazole, metronidazole-glutaryl- and
metronidazole-succinyl-chitosan conjugates. The results have shown adequate stability
of the two conjugations in the acidic environment as well as a potential as colon-targeted
delivery systems of metronidazole [239]. Chitosan nanoparticle intracellular delivery
system of ceftriaxone sodium can reduce the count of Salmonella typhimurium in intestinal
cells and macrophages [240]. Chitosan- coated alginate microparticle system of lactoferrin,
a protein delaying Clostridioides difficile growth and inhibiting toxin production, can assist
in the stability of lactoferrin and protection from C. difficile-induced intestinal epithelial
damage [241]. Albendazole-associated chitosan nanoparticles (ABZ-CS-NPs) can improve
the stability of albendazole in acidic ambient and absorption of albendazole in the intestine,
suggesting improved effects of killing enteric parasites [242]. Chitosan nanoparticles can
serve as carriers for supernatant of mesenchymal stem cells for the treatment of multidrug-
resistant (MDR) Vibrio cholerae infections [1].

8.2. Chitosan as Antimicrobial Agents

Chitosan oligosaccharide sensitizes multidrug resistant Staphylococcus aureus to antibi-
otic formulations by electrostatically interacting with multidrug efflux pumps [243]. Chi-
tosan nanoparticles can serve as a good candidate among natural giardiacidal agents [244].
Mohamed Mammeri and his coworkers have observed the anti-cryptosporidium properties
of chitosan in vitro and in vivo [244]. Chitosan and chitosan nanoparticles were observed
to contain antimicrobial activity against gastrointestinal pathogens such as Salmonella spp.
and E. coli [245]. Chitosan nanoparticles can facilitate the inhibition of norovirus, the most
frequent cause of nonbacterial diarrhea [246]. A study investigated the potential effect of
chitosan particles to enhance the immune response against Hymenolepis nana, the most
common intestinal cestode [247]. Moreover, Aleksandra Milewska and her coworkers have
prepared a cationically modified chitosan, N-(2-hydroxypropyl)-3-trimethylammonium chi-
tosan chloride (HTCC), which can be utilized as potential inhibitors of currently circulating
highly pathogenic coronaviruses, namely severe acute respiratory syndrome coronavirus 2
[SARS-CoV-2] and Middle East respiratory syndrome coronavirus [MERS-CoV] [248].

8.3. Chitosan Conjugation with Other Polymers or Nanoparticles

As chitosan can reduce the numbers of E. coli O157:H7 in feces, remain nontoxic to
host, and possess antimicrobial properties against E. coli, antibody-conjugated chitosan
nanoparticles are utilized to selectively kill Shiga toxin-producing Escherichia coli (STEC)
without inhibiting the growth of beneficial bacteria [249]. Cranberry proanthocyanidin-
chitosan composite nanoparticles (PAC-CHT NPs), which are formulated using 10:1 to 30:1
proanthocyanidin to chitosan weight ratio, can form stable and bioactive nanoparticles for
potential applications in the treatment of pathogenic Escherichia coli infection [250]. Ziyin
Cui et al. formulated mannose-modified chitosan microspheres conjugating with mucosal
vaccines against Pseudomonas aeruginosa infection in the intestine [251]. Preparation meth-
ods and biological activities of chitosan conjugation with other polymers and nanoparticles
are shown in Table 2.
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Table 2. Table showing preparation methods and biological activities of chitosan conjugation with other polymers and nanoparticles.

Chitosan Conjugation with Other Polymers
and Nanoparticles Preparation Biological Activities Citation

Chitosan coated PLA (poly D, L-lactic acid)
nanoparticles

Coated on the surface of PLA nanoparticles which are prepared by
nanoprecipitation method

High cornea permeation and high sustained
release of 5-FU in conjunctival/corneal

squamous cell carcinoma
[252]

Antibody-conjugated chitosan nanoparticles

Preparation of chitosan nanoparticles (CNs): chitosans are dissolved in
2% acetic acid and mixed with 1% Tween 80, followed by the addition of

a 10% sodium sulfate solution and centrifugation at 8200 g;
Bioconjugation of IgY antibodies to CN: The CNs are dissolved in 0.1 M

sodium acetate buffer, followed by an addition of antibodies,
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC),

sulfo-N-hydroxysulfosuccinimide, and the centrifugation at 39,800 g

Enhanced and specific antimicrobial activities
against Shiga toxin-producing Escherichia coli

(STEC)
[249]

Chitosan-based nanocomposites
Chitosan prepared in acetic acid, silver, and copper nanoparticles are

dispersed in ethanol by sonication and precipitated in an alkaline
medium.

Increased antimicrobial properties [253]

Cranberry proanthocyanidins-chitosan
composite

nanoparticles (PAC-CHT NPs)

Chitosan (CHT) is prepared in 0.5% acetic acid, filtered and degassed,
followed by linking to cranberry proanthocyanidins (PAC) through

hydrogen bonding.

Higher bioactive than CHT and PAC alone.
Increased bioactivity of PAC-CHT NPs

against E. coli.
[250]

Antibody-loaded-mannose-modified chitosan
microspheres

Mannose-modified chitosan (MC) preparation: dissolved chitosan is
treated with mannose and sodium cyanoborohydride; chitosan

microsphere preparation: sodium tripolyphosphate (TPP) solution is
added dropwise to MCs under 15 W sonication; antibody-loaded

chitosan microsphere preparation: dispersing 5 mg of antibodies in 1.0
mL of phosphate-buffered saline (PBS) containing 30 mg of

microspheres.

Mannose-modified chitosan microspheres can
serve as a promising subunit delivery system

for vaccines against P. aeruginosa infection.
[251]

Chitosan-Caffeic Acid Conjugate
Chitosan is dissolved in 2% acetic acid and reacts with 1.0 M hydrogen
peroxide containing ascorbic acid. Caffeic acid is added to the mixture

for 24 h at room temperature.

Antibacterial activity of against acne-related
bacteria [254]
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8.4. Chitosan as Prebiotics to Improve Colonization Resistance against Enteric Pathogens

Chitosan and chitosan derivatives can be fermented by the intestinal microbiota, and
the metabolites such as short-chain fatty acids (SCFAs) are capable of increasing the growth
of probiotics [255,256] (e.g., Bifidobacterium spp. and Lactobacillus spp.) and the exclusion of
pathogens (e.g., Streptococcus mutans [257], E. coli, Shigella dysenteriae, Aeromonas hydrophila,
Salmonella typhimurium and Bacillus cereus [28]).

Furthermore, chitosan can serve as prebiotics to inhibit or prevent the growth of
harmful bacteria by producing SCFAs and other beneficial metabolites [187]. The improved
gut microbiota can prevent the infection of conditional pathogens such as Clostridium
difficile. In the treatment of Shiga-toxin-producing E. coli (STEC), acetate was more effective
in inhibition of STEC than butyrate and propionate [258], and butyrate can improve STEC
bacterial clearance [259]. One study has investigated the effects of SCFAs on Yersinia
enterocolitica at 4 ◦C. Propionic acid is similarly effective in inhibiting the growth of Yersinia
enterocolitica with anaerobic and aerobic culture methods [260]. However, V. cholerae uses a
wide variety of mechanisms to overcome colonization resistance. V. cholerae is capable of
using its acetate switch, the shifting from elimination to assimilation of acetate, to increase
its virulence [261].

9. Conclusions and Outlooks

Ingestion of pathogenic microorganisms and the disruption of gut microbiota lead
to enteric infections. In light of dehydration and inflammatory response, rehydration
and antibiotic therapy are essential to the treatment of enteric infections. Nevertheless,
antibiotic-induced drug resistance and gut dysbiosis has led to growing attention to the
use of nonantibiotic nontoxic antimicrobial agents as alternatives for treatment and dis-
infection. Chitosan, a biocompatible, nontoxic and biodegradable polysaccharide from
natural origin, is approved generally as safe by the United States FDA. Chitosan and
chitosan derivatives can kill pathogenic microorganisms by neutralizing negative charges
on the microbial surface. Besides, chemical modifications give chitosan derivatives bet-
ter water solubility and antimicrobial property. This review gives a summary of the
preparation of chitosan, its derivatives, and the conjugates with other polymers and
nanoparticles. Furthermore, we summarize chitosan derivatives with antimicrobial prop-
erties: carboxylic acid chitosan derivatives, N,N,N-trimethyl chitosan, N-(2-hydroxyl)
propyl-3-trimethyl ammonium chitosan, hydroxypropyl chitosan, thioglycolic chitosan,
N-(2-(N,N,N-trimethylammoniumyl)acetyl)-chitin. Additionally, we elucidate the direct ac-
tion modes of chitosan: positively charged amino groups from chitosan can disrupt the cell
membrane/wall by electrostatically interacting with negative charged constitutes on the
microbial cell surface; high-MW chitosan can bind to porins on the OM of Gram-negative
bacteria to block the exchange of nutrients, leading to cell death; low-HW chitosan can
pass through the cell wall to affect the biogenesis of DNA/RNA and protein; unprotonated
amino groups of chitosan can chelate divalent metal cations on the cell surface to destruct
cell walls or membranes. We illustrate indirect mechanisms of antimicrobial chitosan, viz.
inhibition of biofilm facilitating contact of chitosan with microbial cells and regulation of
gut microbiota enhancing colonization resistance against pathogens. In addition to the
summary of current treatment for enteric infections, we conclude the role of chitosan and
chitosan derivatives in the antimicrobial agents in enteric infections, viz. chitosan serving
as antimicrobial agents, drug delivery carriers for antimicrobial agents, and prebiotics to
enhance colonization resistance against pathogens. Chitosan can conjugate with other
reactive components as antimicrobial agents as well.

Currently, chitosan is approved by GRAS of FDA, and there are several antimicrobial
dressings and drug delivery vehicles using chitosan and chitosan derivatives are approved
by FDA. However, they are approved new drug application (NDA), not approved drugs.
Although substantial studies of safety and toxicological are available, research for the
mutagenicity and genotoxicity of chitosan are insufficient, which are the FDA may require
for additional approval. In addition to limited in vivo research, current chitosan-based
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antimicrobial agents undergoing clinical trials are mostly for external use, not oral pharma-
ceuticals. Therefore, antimicrobial chitosan requires in vivo research and clinical trials, and
the genotoxicity of chitosan requires further investigation. Our hope is to develop more
useful and safe chitosan derivatives and conjugates to improve the clinical treatment of
enteric infections.
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