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Three-stage processing of category 
and variation information by 
entangled interactive mechanisms 
of peri-occipital and peri-frontal 
cortices
Hamid Karimi-Rouzbahani   1,2,3

Object recognition has been a central question in human vision research. The general consensus is that 
the ventral and dorsal visual streams are the major processing pathways undertaking objects’ category 
and variation processing. This overlooks mounting evidence supporting the role of peri-frontal areas 
in category processing. Yet, many aspects of visual processing in peri-frontal areas have remained 
unattended including whether these areas play role only during active recognition and whether they 
interact with lower visual areas or process information independently. To address these questions, 
subjects were presented with a set of variation-controlled object images while their EEG were 
recorded. Considerable amounts of category and variation information were decodable from occipital, 
parietal, temporal and prefrontal electrodes. Using information-selectivity indices, phase and Granger 
causality analyses, three processing stages were identified showing distinct directions of information 
transaction between peri-frontal and peri-occipital areas suggesting their parallel yet interactive role 
in visual processing. A brain-plausible model supported the possibility of interactive mechanisms in 
peri-occipital and peri-frontal areas. These findings, while promoting the role of prefrontal areas in 
object recognition, extend their contributions from active recognition, in which peri-frontal to peri-
occipital pathways are activated by higher cognitive processes, to the general sensory-driven object and 
variation processing.

Humans can recognize the categories of objects in fractions of a second with remarkable accuracy1,2. This ability 
seems more outstanding considering that an individual object can produce almost an infinite number of distinct 
images on the retina imposed by the variations that it undergoes (e.g. size, position, pose, etc.) as well as the 
variations in the surrounding environment3 (e.g. background, lighting direction, etc.). This has motivated many 
researchers to investigate the neural underpinnings of invariant object recognition; a sensory-cognitive brain 
process which is continuously employed in everyday life.

The general consensus is that, the main processing infrastructures of the brain which underlie object cate-
gory processing are the ventral and the dorsal visual streams4–6. The ventral stream starts from V1 and ends up 
at anterior inferior temporal cortex (IT)7,8 and the dorsal stream starts from V1 and continues to parietal and 
areas in middle temporal cortices9–11. In object recognition, linearly-separable representations of objects as well 
as other accompanying aspects of information, which are processed by the layers of the two visual streams, are 
then sent to the prefrontal cortex for final classification of representations into distinct categories12 (e.g. cate-
gories of objects, movement directions, etc.). However, this view has been challenged by recent studies which 
observed category-related information in frontal brain areas, even earlier than they generally appeared in occip-
ital and temporal brain areas after stimulus presentation13–15. These latter studies were triggered by a pioneering 
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investigation which reported the encoding of categorical information in orbitofrontal cortex (OFC)16. However, 
systematic investigations are still needed to provide deeper insights into the contribution of frontal brain areas in 
the processing of object categories and variations as well as possible interactions between anterior and posterior 
brain areas.

Based on the model proposed by Bar et al.14, the orbitofrontal cortex receives low-frequency category-related 
information from early visual areas (e.g. V1 and V2) through magnocellular pathways9,17, and sends initial guesses 
about the possible category of the target object to higher visual areas in inferior temporal cortex (e.g. fusiform 
gyrus) for more rapid and accurate categorization13–15,18. In the study performed by Bar et al.14, the phase-locking 
of category-related responses was measured across occipital and orbitofrontal cortices to evaluate their functional 
connectivity. It was suggested that the flow of information was from occipital to orbitofrontal cortex in the win-
dow roughly from 80 to 180 ms post-stimulus and from orbitofrontal to IT cortex at later time windows (after 
130 ms). However, as the mentioned study considered the average responses as representatives of the amount of 
information, and did not explicitly measure the flow of category information between the mentioned areas, it has 
remained unknown whether it was actually the ‘category’ information which was transferred between those areas 
or the observed phase-locking of responses represented other aspects of the neural information.

A recent study applied multivariate pattern analysis along with Granger causality analysis on magneto enceph-
alographic (MEG) data and investigated the encoding and transfer of category information across peri-frontal and 
peri-occipital areas19. That study reappraised the model proposed by Bar et al.14, with low- and high-spatial reso-
lution image sets presented to subjects in a recognition experiment. Nonetheless, the spatiotemporal dynamics of 
category encoding was drastically different from those reported in Bar et al.14: the results showed the domination 
of feed-forward information flow from peri-occipital to peri-frontal areas in early processing time windows (from 
0 to around 500 ms post-stimulus) and the domination of feedback flows in the following time windows (from 
500 ms to 1200 ms post-stimulus). Authors explained that the observed discrepancy from previous results (Bar 
et al.14) could have been explained by long stimulus presentation time (i.e. 500 ms) in their study which caused 
the domination of feed-forward information flow in early time windows19. Therefore, new paradigms, such as 
the one employed in the current study, which provides a shorter presentation time, are needed to reappraise the 
spatiotemporal transfer of category information between peri-occipital and peri-frontal brain areas.

Importantly, when investigating the processing of category information in the brain, one needs to always 
take into account the impact of object-oriented and ambient variations (e.g. size, position, pose and lighting) on 
categorical information and possible spatiotemporal interactions between category and variation information in 
the brain. The processing of these variations can facilitate human navigation and human-object interactions by 
providing information about the location of the object in the space (i.e. position), its viewpoint (i.e. pose), dis-
tance (i.e. size), etc. Previous studies have shown that, in almost every single processing stage of the ventral and 
dorsal visual pathways, the information about categories and variations are observable concurrently20–28. More 
specifically, along the ventral visual stream, the entangled V1-level categorical information becomes untangled by 
transformations which are implemented by the neural structures from V1 to IT12. On the other hand, it has been 
recently shown that the same neural structures untangle different conditions of individual category-orthogonal 
variations (e.g. size, position, pose), hence increasing ‘variation information’ along the stream23. In addition, 
the processing of some specific variations has been suggested to be one of the main reasons for the activation 
of feedback mechanisms in the brain8,29–32. However, it has remained to be known whether the frontal brain 
areas also participate in the processing of variation information (called ‘variation processing’ here). While a few 
neuroimaging studies have addressed the processing of affine variations in the brain23,28, the role of frontal brain 
areas and their possible interaction with visual areas in variation processing have remained largely overlooked by 
neuroimaging investigations.

In summary, this study pursues two major goals: first, to evaluate the feasibility of extracting variation infor-
mation from EEG activities and to compare its temporal dynamics with that of the well-studied category-related 
information. Second, to investigate the spatial dynamics of variation/category processing on the brain with focus 
on the interaction between frontal and occipital areas in information processing.

To address these questions, I developed a whole-brain electroencephalography (EEG) recording experiment 
in which humans were presented with a set of visual objects which underwent levels of controlled variations. The 
stimuli were presented very briefly and the paradigm was designed in passive format to allow the appearance of 
feedback signals in early time windows19 and to avoid influences from higher top-down cognitive signals which 
usually appear during active recognition33–35, respectively. Using multivariate pattern analysis (MVPA), I analyzed 
the spatiotemporal dynamics of category and variation processing in the brain and found that the occipitotempo-
ral, parietal and prefrontal areas were the major areas involved in the processing of categories and variations by 
entangled mechanisms. I also implemented a recently-proposed version of Granger causality19 to investigate the 
dynamical transactions of category and variation information between the peri-occipital and peri-frontal brain 
areas. Interestingly, I found three distinct stages of information transactions between these areas which supported 
object recognition. These results provide evidence that a set of mainly sensory-driven (task-independent) parallel 
interactive mechanisms across peri-occipital and peri-frontal areas process a combination of category and varia-
tion information in distinct stages of processing.

Methods
The dataset.  The EEG dataset used here was previously utilized to investigate the role of three major sig-
nal parameters in the representation of categorical information in the brain36. Using a computational modelling 
methodology, that study showed that the average activity of EEG signals contributed most dominantly to the 
representation of object categories as compared to independent and dependent variability of the signals36. Here, I 
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analyzed the data for its main purpose: to study the spatiotemporal dynamics of category-orthogonal processing 
in the brain and the contribution of frontal brain areas in that processing.

Stimulus set.  In order to investigate the processing of object categories and variations in the brain, a 
four-category object image set was generated with levels of controlled variations. The 3D object mesh models, 
used in the generation of the image set, were freely downloaded from the internet (http://www.cadnav.com) 
and rendered using Python commands in the freely available rendering software ‘Blender’ (https://www.blender.
com). The image set consisted of four ordinary categories of objects including animals, cars, faces and planes, each 
of which underwent levels of variations in size, position, pose (in-depth rotation) and lighting (Fig. 1A). Each 
category consisted of four unique exemplars to enhance the generalizability of the image set. In order to cover 
natural variations of objects, which humans observe in everyday object recognition, I generated images in which 
objects underwent three levels of variation in size (i.e. 2.5, 4.5 and 13.5 degrees of visual angle), and positioned 
the objects on three different locations (i.e. with foveal eccentricities of about 0.8, 4.3 and 7.7 degrees of visual 
angle). I also applied three levels of in-depth orientations on the objects (i.e. 0, 135 and 270 degrees of orientation 
simultaneously around X, Y and Z Cartesian axes) and illuminated them from three different directions (i.e. top, 
bottom and front; Fig. 1B). I used a uniform lighting source for all variations except for the lighting conditions. 
The lighting conditions were selected in a way to present the objects in their most hard-to-recognize everyday 
conditions, so as to activate all primary and secondary brain mechanisms which are considered to play role in 
object processing (i.e. including mechanisms of peri-occipital as well as peri-frontal cortices). The final image set 
consisted of 192 unique images with an area of 512 by 512 pixels. In order to avoid trivial decoding results, the 
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Figure 1.  Image set and experimental paradigm. (A and B) show the object exemplars within each category 
(A) and conditions of each variation (B). The 3D models used to generate these images were available under a 
personal and commercial license (http://www.cadnav.com/help/copyright.html) and were freely downloaded 
from (http://www.cadnav.com). Images were processed (zoomed in and cropped) for better illustration. Extra 
information regarding condition are provided below it. (C) EEG recording paradigm with numbers indicating 
the presentation time of each event.
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image set was normalized for equal across-category and across-variation average luminance and contrast. Note 
that the presented images in Fig. 1 are zoomed and chosen from the frontal lighting condition (i.e. 3rd lighting 
condition) for improved visualization.

Experimental design.  I recorded the brain activities using electroencephalography as this imaging modality 
could provide the activities with high temporal and moderate spatial resolution. The former characteristic could 
pave the way for studying the highly time-dependent dynamics of object representation in the brain. I designed 
a passive recording paradigm in which subjects were not supposed to categorize the presented objects, but rather 
had to attend to the color of the category-irrelevant fixation points during the experiment (Fig. 1C). Specifically, 
at the beginning of each trial, a black fixation spot was presented on the center of the screen for 200 ms after which 
the first stimulus was presented for 50 ms. Upon the disappearance of the stimulus, an inter-stimulus interval 
was maintained for 1200 ms before the second stimulus was presented to the subject for 50 ms. The fixation spot 
remained on the center of the screen throughout the trial, but randomly switched color to either red or green 
across each stimulus presentation. A post-hoc verification step showed no relationship between the color of the 
fixation spots and the conditions used in the representational analysis. Therefore, the observed spatiotemporal 
dynamics of category and variation processing could not be attributed to the processing of colors in the brain.

Subjects’ task.  Subjects’ task was to decide whether the color of the fixation spot was the same or different 
from the first stimulus to the second (i.e. it was different in 50% of the trials), by pressing one of the two prede-
fined keys on the keyboard after the removal of the second stimulus. Response time was not limited and subjects 
had to respond to proceed to the next trial. The next trial began after either the subjects responded or after 800 ms 
post-stimulus onset whichever happened later. Subjects seated in a dimmed room 60 cm away and against an Asus 
VG24QE monitor on which the visual stimuli were presented. Matlab PsychToolbox37 was used for designing the 
task, presenting the images and recording the responses. Objects’ images covered between 2.5 to 13.5 degrees 
of visual angle depending on their size conditions. Each unique object image (i.e. 192 images in the image set) 
was presented to each subject three times in random order (adding up to 576 stimuli). Specifically, each subject 
was presented with a randomly-ordered presentation of three repetitions of the same 192 images in the dataset 
(images were presented randomly as the first or second image in each trial). The repetition of presentation was 
aimed at increasing the signal to noise ratio in the analyses. Trials were divided into three blocks with five minutes 
of resting time between the blocks. Subjects participated in a short training session before the main experiment 
on a different image set to get acquainted with the task.

Two major considerations were made when designing the paradigm to avoid interfering factors in the results: 
(a) the paradigm was designed in passive format (i.e. subjects performed an irrelevant task and did not actively 
categorize objects) to avoid the involvement of top-down cognitive processes such as attention and expectation 
(as they may modulate the dynamics of visual processing in the brain34,35,38) and allow only the sensory object 
processing mechanisms to function; (b) images were presented very shortly (i.e. for only 50 ms) to avoid the dom-
ination of feed-forward information in the recorded signals to be able to dissociate between feed-forward and 
feedback flows of information8,19,23.

Participants.  Ten human subjects (average age 22 years, three females) volunteered for this single-session 
EEG recording experiment which lasted for about 45 minutes. Subjects had normal or corrected to normal vision. 
Informed consent was obtained from every participant. All experimental protocols were approved by the ethical 
committee of Shahid Rajaee Teacher Training University. All experiments were carried out in accordance with the 
guidelines of the declaration of Helsinki and the ethical committee of Shahid Rajaee Teacher Training University.

Signal recording and preprocessing.  A 32-channel eWave32 amplifier was used for signal recording 
which followed the 10–20 convention of electrode placement on the scalp (see Supplementary Fig. S1B for elec-
trode locations). The amplifier, produced by ScienceBeam (http://www.sciencebeam.com/), provided a sampling 
rate of 1 K samples/second which allowed me to investigate the temporal dynamics of information processing 
in the brain very accurately. The recorded data was taken into Matlab (http://www.mathworks.com/) and all the 
following analyses were performed using custom codes in Matlab. I band-pass filtered the recorded signals in the 
range between 0.5 to 100 Hz to filter-out the DC component as well as the high-frequency noise. I also notch fil-
tered the signals at 50 Hz to block the line noise. In order to remove eye-blink, body and eye movement artifacts, 
Independent Component Analysis was used as implemented by the EEGLAB toolbox39. The filters were finite 
FIR filters (12 dB per octave roll-off) and the ICA artifact removal used the runica algorithm39. The ADJUST 
plugin40 was used for determining the artefactual components, which statistically evaluated ICA components and 
suggested the components which contained the mentioned artifacts for removal. An average of 3.8 components 
(min = 2 and max = 6) were removed from the analysis for each subject. A total of 154 trials (mean = 2.67%, 
sd = 1.4%) were also removed from the total set of trials from all subjects as they were diagnosed to be artefactual 
by visual inspection. Signals were then broken into epochs (i.e. analysis time windows) which were aligned to the 
stimulus-onset, in the range from 200 ms pre- to 800 ms post-stimulus onset. Signals were then smoothened using 
a 5-sample non-overlapping moving average filter to attenuate the spurious patterns in the signals. The resulted 
signals were used in the representational analyses.

Representational analysis of patterns.  For each subject, after the preprocessing steps, an ‘X’ data matrix 
was constructed which included activity values (i.e. voltage values in microvolts) obtained from electrodes. X was 
a 3-dimensional (31 × 201 × 576) matrix incorporating signals from every one of the 31 electrodes (one electrode 
was the reference electrode and was put on the right mastoid), at every 5 ms time point (obtained in the range 
from 200 ms pre- to 800 ms post-stimulus onset resulting in 201 time points) across every one of the 576 trials 
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(assuming that the subject had no removed trials). The representational analysis was performed on the signals 
obtained from both the first and second stimuli in the trials.

The representational analysis method of the current study has been previously explained in full details36,41. 
Briefly, I report a decodability index referred to as d′ (i.e. which has also been used to measure sensitivity, sep-
arability, selectivity and discriminability in previous studies42–44) to show how separable the clusters of distinct 
conditions (either category or variation conditions) positioned relative to each other in the brain space and how 
their distributions changed over time (Supplementary Fig. S1A). This decodability measure is advantageous to 
classification-based decoding methods as it is robust when data clusters include unequal samples44 (e.g. the anal-
ysis of ‘variation processing’ in the current study.

In the remaining of this section, I will explain the procedure of representational analysis using an exam-
ple for clarification. In order to calculate the decodability of conditions across car and face categories at 150 ms 
post-stimulus time point in the recorded EEG space, I used the data from all 31 rows of the 71th column of the ‘X’ 
data matrix. The data included the matrix’s trials 1 to 144 which represented the car data as well as trials 145 to 
288 which contained the face data. The mentioned car and face data formed two category clusters in the electrode 
(representational) space (Supplementary Fig. S1A). The clusters provided a pair of 31-dimensional mean vectors 
which were used for dimension reduction to simplify the reporting of clusters’ decodability in the representa-
tional (brain) space. In order to reduce the dimension of the representational space from 31 to one, the cluster 
data points were projected onto the line connecting the two clusters’ means. Accordingly, a pair of 1-dimensional 
mean and a pair of 1-dimensional variance values were obtained from the two clusters which were used to calcu-
late the decodability value (d′) using (1):

σ σ
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where μs and σs are the mean and variance values obtained from the two clusters (i.e. categories in the above 
example) and d′ represents the separability/decodability value between the face and car categories. Note that, 
according to eq. (1), the cluster with a higher mean voltage should always be considered as cluster ‘#1’ to result 
in positive d′ values, which is actually a distance value and should always be positive. The d′ value was calcu-
lated for every time point to obtain the time-resolved results depicted throughout the paper (e.g. Fig. 2). For the 
average decodability curves (Fig. 2A, left and 2B, left), the decodability indices were calculated for and averaged 
across all possible pairs of conditions (e.g. between car and animal, car and plane, etc.). The average decodability 
value (Figs 2 and 3, right) for the car category was obtained by averaging all three decodability curves in which 
the separability of the car category was measured from other categories. The baseline decodability value (i.e. 
calculated as the average decodability value within the last 200 ms pre-stimulus window) was subtracted from 
the corresponding decodability values (within all pre- and post-stimulus time points) leading to mainly positive 
decodability values across the curves. The representational analysis procedure was repeated for every subject 
to obtain individual’s decodability results, before they were averaged to provide across-subject averaged results 
(Figs 2–4, shaded error areas represent standard error across subjects). Other decoding methods (i.e. SVM and 
LDA classifiers) were also tested on the recorded data and provided similar results.

Analysis of Granger causality.  In order to investigate the transactions of category and variation infor-
mation between peri-occipital and peri-frontal areas, a recently proposed version of Granger causality analysis 
was used19. The logic behind Granger causality is that time series Y might have caused time series Z if Y contains 
information that facilitates the prediction of future values of Z compared to when considering the information 
in the past of Z alone. As an example, assume the case of category information moving from posterior to anterior 
brain areas. In this case, it can be concluded that category information has moved from peri-occipital areas and 
reached peri-frontal areas if the past representations of peri-frontal alone are not as predictive of the current cate-
gory representations on the peri-frontal areas as the past representations of peri-frontal plus past representations 
of peri-occipital are.

First, I needed to have obtained object representations to be able to follow their movement on the scalp. For 
that purpose, I used the well-known similarity matrices45, which can provide cross-correlation values between 
pairs of representations. These matrices contain similarity/dissimilarity indices (i.e. indices can be measured 
using Euclidean distance, correlation coefficient, etc.) calculated across the representations of stimulus pairs (i.e. 
stimuli can be from the same category in the case of within category analysis, or across variation conditions 
in the case of variation analysis). Here, the similarity matrices contained correlation coefficients (obtained by 
Pearson linear correlation) across pairs of 9-dimensional brain representations (as obtained from nine frontal/
occipital electrodes) of categories and variations. The dimension of representational space was determined to 
include a subset of electrodes to separate the peri-frontal from peri-occipital representations. Therefore, two 
similarity matrices were obtained at each time point; one from the peri-frontal (including F3, F4, F7, F8, FZ, 
AFZ, FP1, FP2, FPZ) and one from the peri-occipital electrodes (including P3,PF4, P7, P8, PZ, POZ, O1, O2, OZ) 
(Supplementary Fig. S1B). For example, in order to obtain the similarity matrices of categories, on a single vari-
ation condition (e.g. first size condition) at each time point, a 48 by 48 similarity matrix was constructed which 
included correlation coefficients between all possible pairs of the 16 objects (Fig. 1A, each unique image was 
presented three times during the experiment). The symmetric sides of the similarity matrices (the top right side 
which contained values similar to the symmetric bottom left cells) as well as their diagonal axes were excluded 
from Granger analysis. According to Goddard et al.19, partial correlations were used to calculate a simplified 
version of Granger causality. Equations (2) and (3) provide feed-forward as well as feedback flows of information 
on the brain at every time point:



www.nature.com/scientificreports/

6SCIENTIFIC REPOrTS |  (2018) 8:12213  | DOI:10.1038/s41598-018-30601-8

ρ= .‐ ‐FF t SM SM SM( ) (2)front t back t past front t past( , ) ( , ) ( , )

ρ= .‐ ‐FB t SM SM SM( ) (3)back t front t past back t past( , ) ( , ) ( , )

where SM(loc,t) is the similarity matrix obtained from location loc at time t post-stimulus onset, and SM(loc,t−past) 
is the similarity matrix which was obtained by averaging the similarity matrices in the window from t − 130 to 
t − 80 ms post-stimulus onset on the same location. The rationale behind choosing the mentioned time window 
was that, it was covered by the range from 72 to 141 ms which was previously shown to reflect the time span dur-
ing which occipital to prefrontal flow of information was observed46.

A

B
T

im
e 

fr
om

 s
tim

ul
us

 o
ns

et
 [m

s]

0

100

200

300 * LatencyPeakC

Anim
al

Car
Fac

e
Plan

e

Lig
ht

ing
Pos

e
Size

Pos
itio

n

*

Anim
al

Car
Fac

e
Plan

e

Lig
ht

ing
Pos

e
Size

Pos
itio

n

Figure 2.  Time-resolved decodability of categories (A) variation conditions (B) and their temporal statistics 
(C) for the pooled-condition case. Left columns in (A and B) show category- and variation-pooled results and 
right columns show the same results resolved into constituent categories (A) and variations. (B) The vertical and 
horizontal dashed lines indicate respectively the stimulus onset time and the zero decodability value. The circles 
indicate the time points at which the color-matched decodability curve was significantly above the decodability 
values averaged in the last 200 ms pre-stimulus (i.e. p < 0.05, Wilcoxon’s signed-rank test). (C) Latency (black) 
and peak (blue) time points of decoding in category and variation decoding decodability. Stars show significant 
(p < 0.05, Wilcoxon’s signed-rank test) difference between peak time bars. Shaded areas and error bars indicate 
the SEM across subjects.
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Statistical testing.  To evaluate the significance in differences between the peaks of decodability curves 
across subjects (e.g. Fig. 2C), Wilcoxon’s signed-rank test was used. In order to evaluate the significance of 
decodability and information-selectivity indices (e.g. Figs 2–4) at a post-stimulus time point, I evaluated the 
vector of post-stimulus decodability indices (including ten decodability values corresponding to ten subjects) 
against their respective values averaged in the last 200 ms pre-stimulus window prior to baseline removing, using 
Wilcoxon’s signed-rank test.

In order to evaluate the significance of the partial correlation values at each time point in the Granger causality 
analysis, a null distribution of correlation values was generated at each time point by shuffling the elements of the 
similarity matrices and then using the scrambled matrices in eqs (2 and 3). One thousand random correlation 
values were generated at each time point by repeating the shuffling procedure and calculating the random correla-
tions, against which the true correlation values were assessed for significance. A correlation value was considered 
significant if it surpassed 95% (i.e. 950) of the randomly generated correlation values.

The results of statistical tests (e.g. Wilcoxon’s signed-rank test) as well as linear/partial correlation values were 
FDR-corrected (using Matlab mafdr function) for multiple comparisons throughout the analyses wherever mul-
tiple time points were tested simultaneously. The mafdr function received n p-values obtained from n statistical 
tests (n is the number of comparisons or time points) and provided as the output, the same number of p-values 
which have been corrected for multiple comparisons. The multiple comparison correction of the electrodes on 
the topographic maps (Figs 5 and 6) were done in the same way as was done for the multiple time points with n 
representing the number of p-values obtained from individual electrodes on each of the related maps in the series 
(31 × 9). The significance threshold was 0.05 in all the analyses.
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Figure 3.  Time-resolved decodability of categories (A) variation conditions (B) and their temporal statistics 
(C) in the per-condition case. All the details are the same as in Fig. 2.
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Computational model.  In order to see if a hierarchically organized model of human object processing 
could provide an explanation for the observed representational mechanisms in the brain, the image set was also 
fed to a recently developed model of human object recognition. The model known as ‘AlexNet’ has been shown 
to closely replicate object representations obtained from higher visual areas of the human and non-human pri-
mates’ brain47–49. I used the model’s Matlab implementation50 which was freely available at (http://www.vlfeat.org/
matconvnet/). As the model has been previously explained in many studies8,47,48, extra explanations are avoided 
here. Briefly, the model is an eight-layer convolutional neural network which has been trained on a set of 1000 
object categories from the ImageNet Large Scale Visual Categorization (ILSVRC; http://www.image-net.org/)51, 
including the categories used in the current study, using gradient descent algorithm. The model utilized several 
mathematical operations such as convolution, maximization, normalization and pooling in alternating layers. 
The first five layers of the model implemented convolutional operations which were followed by three layers of 
fully-connected units. Since the last layer worked as a 1000-class classifier in previous studies50, I used layers 
one to seven in the current study. Each output unit at each layer was treated as a representational dimension (i.e. 
corresponding to EEG channels) and decodability indices were obtained from each layer’s output according to 
eq. (1).
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Figure 4.  Comparison of time-resolved decodability of categories and variations in the pooled- and per-
condition cases. (A) Left, the black decodability curve shows the results of random sub-sampling of the whole 
stimulus set. The vertical solid light and dark gray lines indicate the time points at which respectively the 
category and variation decodability curves showed significantly (p < 0.05, Wilcoxon’s signed-rank test) higher 
pooled- than per-condition values. The colored circles indicate the time points at which the corresponding 
decodability curve showed a significantly (p < 0.05, Wilcoxon’s signed-rank test) higher value compared to 
the randomly sub-sampled black curve. Shaded areas indicate the SEM across subjects. (A) Right, the Time-
resolved correlation between per-condition cases of category and variation decodability curves. (B) Sub-
sampled category decodability curves for different number of samples (left) and the correlation values between 
the 144 and 3-sample curves (right). The black circles indicate time points of significant correlations (p < 0.05, 
Pearson linear correlation, corrected for multiple comparison across time points) and the green circles indicate 
time points at which correlations were significantly different from average of correlations in the last 200 ms 
window prior to stimulus onset (p < 0.05, Wilcoxon’s signed-rank test).

http://www.vlfeat.org/matconvnet/
http://www.vlfeat.org/matconvnet/
http://www.image-net.org/
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Figure 5.  Scalp maps for category and variation decodability. These maps were generated by measuring 
the decodability indices for each electrode separately and finally using their superposition on the scalp. The 
decodability values between the electrodes were calculated by interpolation as implemented in EEGLAB. (A) 
Pooled-condition category decodability maps. (B) and (C) Per-condition category and variation decodability 
maps at specific time points. The reported decodability values are averaged in the span from −25 m to +25 ms 
relative to the indicated time points. The dots show electrodes with significantly higher decodability values 
compared to the last 200 ms prior to stimulus onset (as evaluated with Wilcoxon’s signed rank test with 
correction for multiple comparisons).
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Results
This study was designed to provide spatiotemporal insight into object category and variation processing at the 
whole-brain scale. For that purpose, ten human subjects participated in a passive EEG recording paradigm in 
which they reported if the fixation spots, which accompanied two consecutively presented objects, were the same 
color or different in each trial. Subjects performed the color-matching task with significantly above-chance accu-
racy (mean = 95.75%, std = 4.03%, p < 0.001, Wilcoxon’s signed-rank test) and in reasonable time (mean response 
time = 729 ms, std = 97 ms) meaning that they were alert and attentive to the task during the experiment.

Temporal dynamics of category and variation processing.  To investigate the temporal dynamics 
of category and variation processing in the brain, I calculated decodability indices (referred to as information 
in the text) across categories and variation conditions (Fig. 2A and B). The category information (Fig. 2A, left; 
averaged across all possible pairs of categories) showed a highly dynamical pattern; it rose to significance at 84 ms, 
showed three peaks (with the highest peak at 184 ms) and remained significant until 800 ms post-stimulus onset. 
Interestingly, the variation information rose to significance at 71 ms post stimulus, earlier than the category infor-
mation. Although indicating lower peaks compared to category information, the variation information (Fig. 2B, 
left, averaged across all four variations) revealed a similar pattern showing three peaks with the highest peak at 
214 ms post-stimulus. It remained significant until the last analysis time point at 800 ms.

In order to obtain insight into the possible differences between different categories and variations, I resolved 
the averaged results (Fig. 2A and B, left) into their constituent categories and variations (Fig. 2A and B, right). 
Although all four categories experienced the same three peaks (Fig. 2A, right), higher decodability values were 
observed for the car category during the first peak (which was at 105 ms post-stimulus) which was dominated 
by the face information during the second and third peaks (which occurred respectively at 188 ms and 271 ms 
post-stimulus). It should be noted that, the reported category information values were calculated between pairs 
of categories; therefore, a higher information value for face means, when comparing its separability from the 
other three categories, faces representations positioned more separately compared to how every other category 
representations positioned relative to the rest of categories. For detailed across-category information plots see 
Supplementary Fig. S2A. While rising to significance at an earlier time point compared to the other categories 
(at 71 ms), the face category also peaked at a significantly later time (mean = 243 ms) compared to car and plane 
categories (Fig. 2C, left, p < 0.05, Wilcoxon’s signed rank test). Decodability curves showed undistinguishable 
latencies across categories which ranged from 71 to 85 ms post-stimulus (Fig. 2C, right). Latency was defined as 
the time distance from stimulus onset to the first time point at which the decodability indices rose to significance. 
The appearance of face information in the late peaks of category information was explainable by the N170 com-
ponent of ERP signals which have often been associated with the processing of faces in the brain52. The previously 
suggested precedence of intermediate-level (e.g. face-plane and car-face) to subordinate-level (e.g. car-plane) and 
superordinate-level (e.g. animal-plane and animal-car) category information was also noticeable in the temporal 
dynamics of category information53 (Supplementary Fig. S2A).

I also evaluated the decodability of variation conditions in the signals. The first goal of this study was to 
see whether information about different variations could be extracted from human brain signals. The temporal 
dynamics of position information processing has been previously studied and showed close relationships with 
category-related information28, however, the processing of other variations have remained overlooked which is 
addressed by the following analyses.

Figure 6.  Scalp decodability maps separated for each variation. From top to bottom, decodability maps are 
provided across conditions of lighting, pose, size and position, respectively. Other details are the same as in 
Fig. 5.
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Within-variation decodability results which were averaged across all pairs of conditions showed that, while 
conditions of all variations were decodable from brain signals, the conditions of position and size were more dis-
tinguishable than the conditions of pose and lighting (Fig. 2B). It means that information about different object 
sizes and positions were easier to differentiate compared to the conditions of the other two variations from brain 
signals. This difference could not be explained by the pixel-space decodability indices calculated on the image 
set in the pixel space which showed information values (d′) of 2.95, 1.63, 1.44 and 2.2 for lighting, pose, size and 
position variations, respectively. Therefore, it seems that, not all variations were processed similarly by brain 
mechanisms. This can be explained by both the difference between the scale of cortical coverage across different 
variations’ conditions (i.e. which can enhance the multi-variate decodability of variation conditions of size and 
position which involved larger retinotopic cortical areas compared to lighting and pose) and the difference in 
the processing mechanisms of the brain in the compensation of different variations8,29,49. The latter reason can 
also be supported by the category decodability indices obtained under each of these variations (Supplementary 
Fig. S2C), with lighting and position respectively causing the lowest and highest degrees of degradation of cate-
gory decodability. Lighting rose to significance much later than the other variations, but none of the variations 
showed a significantly different peak time (Fig. 2C, left). It should be noted that the analysis of variation decoda-
bility, which unveils the dynamics of variation processing in the brain, is different from the decoding of categories 
under variations which aims at comparing the impact of variations on category-related information processing, 
also known as invariant object processing8,54.

A previous study named the non-categorical object-accompanying information (i.e. variations), the 
‘category-orthogonal properties’, implying that these information might be processed by mechanisms which are 
not necessarily involved in the processing of object categories23. Yet, in the above analyses, when calculating 
the category information, the data from all variation conditions were included in the representational analysis. 
Moreover, when calculating the across-condition information of different variations, the data from different cat-
egory exemplars were considered in the representational analysis. I thought that, this might have influenced the 
above results by allowing the interaction of category and variation information in the analyses, as it might have 
been the case in previous studies25,54. More specifically, in the case of category decodability, each of the observed 
peaks in the category decodability curves (Fig. 2A) could have been evoked by either the dynamics of category 
processing or the repositioning of data points caused by the processing of variations in the representational space, 
which could have led to the enhancement of category information. Therefore, in order to avoid the interaction 
between category and variation information in representational analysis, I calculated the category decodability 
indices on every single variation condition (to obtain category information) and calculated the variation decoda-
bility indices on every category exemplar (to obtain variation information) before finally averaging them (Fig. 3). 
I will call these new analyses as ‘per-condition’ and the former analyses as ‘pooled-condition’ in the following 
sections. Although the decodability curves lacked the large bump of information, which happened before 300 ms 
post-stimulus onset and dominated the later decodability values, compared to the pooled-condition case (com-
pare Figs 2 and 3), the results repeated many of the observations from the pooled-condition analysis. The average 
category and variation information (Fig. 3A and B, left column) rose to significance respectively at 53 and 41 ms, 
showed three bumps in the first 300 ms and remained significantly positive until 800 ms post-stimulus. The dom-
inance of face and size information could also be observed. Neither the category nor the variation information 
showed significantly different peak times across their constituent conditions (Fig. 3C, left). The ranking of pairs 
of category information remained almost intact (compare Supplementary Fig. S2A and B) and lighting still pro-
vided the least amount of influence on category information (compare Supplementary Fig. S2C and D). See also 
Supplementary Fig. S3A for the results within each variation in the per-condition case. Therefore, it seems that 
little influence was imposed by the variation information when decoding category information and vice versa. 
This is investigated more thoroughly in the following sections.

Temporal relationship between category and variation processing.  As many previous studies have 
investigated the decodability of category information from brain activities28,54,55, two goals were pursued in this 
study: to investigate the spatiotemporal dynamics of variation processing, and to assess the spatiotemporal inter-
action between variation and category processing in the brain.

In order to address these questions, I had to first choose either the per- or pooled-condition decodability results 
for the following analyses. Qualitative comparison between per- and pooled-condition results (Figs 2 and 3),  
done in the previous section, supported that their main differences were observed in the early time windows. In 
order to provide a more accurate insight into the temporal pattern of category and variation processing in per- 
and pooled-condition cases, I provided a summary of the above-mentioned results on a single plot (Fig. 4A, left). 
As obvious from the curves, the three bumps of information occurred at around the same time in the per- and 
pooled-condition cases of category processing. This proposes that, as the per-condition decodability curve was 
obtained on single variation conditions (therefore not influenced by other variation conditions) and showed the 
same three bumps, the information on the pooled-condition category curves were majorly driven by category 
information rather than by variation-related processing. After investigating the per- and pooled-condition curves 
of variation decodability, the same conclusion could be made about the variation information, supporting minor 
influence of category information on variation processing. In order to highlight the main time spans during 
which the per- and pooled-condition cases differed, I indicated the time points at which the information values 
were significantly higher in the pooled- compared to the per-condition deocodability curves using light and 
dark gray vertical lines respectively for the category and variation information. Accordingly, the first and the last 
time points at which the category (and variation) information were significantly higher in the pooled- compared 
to per-condition were respectively 92 ms (and 112 ms) and 438 ms (and 294 ms). These results are on par with 
the reported window of sensory visual processing in the human brain55,56 suggesting that the higher number of 
samples in the pooled compared to the per-condition case in decoding, affected the window of sensory visual 
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processing rather than the later windows of processing which are generally associated with higher order cognitive 
processes. Despite their similarities, I used the per-condition case of decoding to obtain the results provided in 
the following sections (all results after Fig. 5A) of the paper to avoid unnoticed interactions between category and 
variation processing.

Before using the per-condition decodability curves in the following analyses, I had to determine if the cal-
culated decodability indices were significantly above chance decodability values which could be obtained from 
a randomly labeled dataset. This could determine the level of baseline category-unrelated information in the 
dataset which could have contributed to the reported decodability curves. Therefore, I assessed the four men-
tioned decodability curves against a decodability curve obtained from 144-sample randomly chosen stimulus sets 
(Fig. 4A, left, the black decodability curve). It can be observed that the four curves (even the per-condition curves 
of categories and variations which consisted of much fewer stimuli) showed significantly above-chance decoda-
bility values (as indicated by color circles). The level of significance was very hard to achieve for the per-condition 
variation decodability curve as it included only three data points within each data cluster in the representational 
analysis compared to the random sub-sample which consisted of 144 data points within each cluster. In order to 
generate the mentioned random decodability curve, I randomly selected a subset of 144 stimuli from the whole 
set of 576 stimuli of each subject (ignoring the category and variation labels of the chosen stimuli) and repeated 
the random representational analysis 1000 times before averaging them on each subject. Together, these results 
support that the decodability curves, even in the case of per-condition analysis, contained category information 
which significantly surpassed the information in any randomly chosen subsample of the data which could have 
provided information contributing to the reported category and variation information.

After ensuring that the brain signals contained significant amounts of category and variation information, I 
approached the first question of the study by comparing the temporal dynamics of category and variation infor-
mation. Examining the temporal dynamics of category and variation processing curves (in Fig. 4A, left) sug-
gested that these curves did not follow the same temporal pattern (e.g. compare their peaks and valleys at around 
200 ms post-stimulus). In order to provide a quantitative comparison, I evaluated the time-resolved correlation 
between category and variation information curves in their per-condition cases (i.e. no noticeable difference was 
observed when I analyzed pooled-condition cases). Specifically, I calculated the correlation coefficient (Pearson 
linear correlation) between the category and variation decodability time series within the same 50 ms sliding time 
windows across time (Fig. 4A, right). Correlations were considered significant if their p-value was smaller than 
0.05 (after multiple comparison correction) and therefore the corresponding significant time point were indicated 
on the time axis by black circles. Interestingly, while showing a rising correlation trend from the stimulus-onset 
to around 150 ms, and a falling trend after around 580 ms, the correlation coefficient curve experienced several 
systematically negative windows in the span from 173 to 464 ms post-stimulus. Significantly negative correlations 
were observed during the 192 to 212 ms post-stimulus window. These results suggested that, after the stimulus 
onset, three stages of visual processing in the temporal pattern of category/variation processing could be observed 
in the brain: a first stage which started after the stimulus onset time and ended at around 170 ms in which infor-
mation about category and variation was processed in in-phase patterns; a second stage which started at around 
173 ms and ended at around 450 ms in which categories and variations underwent several anti-phase processing 
time spans and a third stage which started at around 470 ms and was observed until the end of visual processing 
with in-phase processing of categories and variations. This suggestion will be supported by further analyses in 
the following sections.

It was suspicious that the observed difference between the phases of category and variation processing might 
have been caused by the difference in the number of samples (i.e. number of representational points obtained 
by stimulus presentations) considered when comparing category with variation processing. The number of rep-
resentational points were 144 (and 48) in the pooled and 12 (and 3) in the per-condition cases of category (and 
variation) conditions in the decodability analysis. To check if this was the case, I down-sampled the stimulus set 
used in the representational analysis of category data clusters from 144 to 100, 48, 12 and 3 (Fig. 4B, left) and 
re-calculated the correlations between all possible pairs of subsets, but no negative correlation was observed at 
any time point (i.e. the sampling procedure was repeated 100 times and the results were averaged before being 
compared to the true 144-sample decodability curve). In other words, I used a subset of stimuli in this representa-
tional analysis. Results of correlations between the 144- and 3-sample subsets, as the most distant cases, are shown 
in Fig. 4B, right. Therefore, the time-dependent phasic dynamics between category and variation processing 
seems to be inherent in the brain, and not an effect of the number of samples used in the analyses.

Spatial dynamics of category and variation processing.  In order to compare the contribution of dif-
ferent brain regions to the processing of categories and variations, I calculated the decodability indices on the scalp 
using a univariate methodology (Fig. 5). For that purpose, as opposed to the above results which were obtained 
from all the 31 scalp electrodes, here I report single-channel decodability indices on time-specific scalp maps55. In 
other words, instead of in 31-dimensional space, the representations were evaluated in a one-dimensional space. 
Please note that the decodability indices were interpolated to find decodability values in areas between electrodes 
using EEGLAB. Figure 5A shows the pooled-condition category decodability results on the scalp, which has been 
the most common type of category information reported previously, which includes both category and varia-
tions55. The amplitudes of decodability indices are lower here compared to those reported in the 31-dimensional 
space (Figs 2–4), as a result of dimension reduction in the representational space from 31 to one. The reported 
decodability values are the average of the decodability indices obtained in the time-window from 25 ms before 
to 25 ms after the indicated time instances. Above-baseline category information was observed in the 50 ms as 
well as 100 ms windows at the AFZ and FZ electrodes with significantly (p < 0.05, Wilcoxon’s signed-rank test) 
above-baseline information at 100 ms in the posterior brain (POZ, O1, O2 and OZ). See the statistical testing 
section for the details of statistical testing procedures. In the 150 ms and 200 ms windows, significant category 
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information was observed on occipitotemporal (O1, O2, P7 and P8), parieto-central (P4, POZ and CP2) with 
high but non-significant frontal (F3, F4, FZ, AFZ, FPZ, FP1 and FP2) areas. At 300 ms post-stimulus onset, pari-
etal (P3, P4, POZ (p < 0.05) and PZ), central (C4) and frontal areas (FC2, FZ, F4, AFZ and FPZ) showed category 
information which declined in the following time windows (i.e. 400, 500 and 600 ms). Together, these patterns 
of distribution repeated many previous observations, which have reported the involvement of occipital, occip-
itotemporal, parietal as well as frontal areas, in category processing following similar temporal dynamics1,25,55. 
However, as explained earlier, their reported category information may have been influenced by the information 
from variations. Therefore, I also provided the per-condition category (Fig. 5B) and variation (Fig. 5C) processing 
scalp maps. Although noisier here compared to the pooled-condition results, the three initial windows (i.e. 0, 50 
and 100 ms) of both categories and variations repeated the pooled results. While the category information was 
more concentrated on posterior electrodes (O1, O2, OZ, P8, CP1 and POZ) plus several frontal electrodes (F3 
and FP2), variation information was found mainly on frontal (FC2, FC5 and FPZ) areas in the 150 and 200 ms 
windows. Parietal information (i.e. information averaged across P3, PZ and POZ electrodes) was significantly 
(p < 0.05, Wilcoxon’s signed rank test) higher for categories compared to variations in the 200 ms window. In the 
following windows (300–600 ms), category information was observed in both parietal and frontal areas, while 
variation information was processed dominantly in occipital and frontal regions. These results which presented 
separated category and variation information on the scalp, showed evidence supporting both spatiotemporally 
shared (in the 100 ms window between category and variation processing maps) as well as distinct (in the 200 ms 
window) mechanisms involved in the processing of category and category-orthogonal properties (i.e. variations).

It has been previously suggested that all variations are not necessarily processed by the same set of brain 
mechanisms in object recognition. In other words, it has been suggested that while size and position are processed 
by the feed-forward mechanisms of the ventral visual stream, variations such as pose and lighting may need 
top-down feedback signals from higher cognitive areas such as prefrontal cortex to be compensated for during 
recognition8,29,32,49. To investigate this, I plotted the scalp maps of each variation separately (Fig. 6). In the 50 ms 
window, information regarding all variations could be found in the centro-frontal (FC1, FC2, F3, F4, F7, F8 and 
FZ) brain areas significantly (p < 0.05, Wilcoxon’s signed-rank test) easier than it could be found on occipital (O1, 
O2 and OZ) and parietal (PZ and POZ) areas. In the 100 ms window, information regarding all variations could 
be consistently found on occipital areas (O1, O2 and OZ). In the 150 ms window, while the information regard-
ing lighting and pose could be observed mainly on centro-frontal areas (CZ, FC1, FC2, F4, F8, FZ and AFZ) 
and not in occipitotemporal areas (O1, O2 and OZ), size and position information were mainly concentrated in 
occipitotemporal areas (O1, O2 and OZ). Almost all variations showed a frontal concentration in the 200 ms win-
dow with higher values for variation in size (which is probably explained by larger stimuli which evoked higher 
brain responses). Pose conditions exposed the previously proposed co-activation of peri-frontal (F3, F4, FZ, AFZ, 
FP1, FP2 and FPZ) and occipitotemporal areas (P3, P4, P7 and P8; Serre et al.29), which may suggest the feed-
back of pose information from PFC to IT cortex. Lighting information consistently covered the occipito-parietal 
areas in the subsequent windows (from 300–500 ms). During the same windows, pose information was mainly 
found on temporal as well as frontal areas enhancing the mentioned possibility for the interaction of those areas. 
Interestingly, size information lingered on occipito-parietal areas (O1, O2, OZ and POZ) as well as frontal (F8 
and FP2) areas which might be explained by previously suggested frame-transformation in object processing 
performed in parietal areas57. As previously observed by several studies8,28,54, position information showed a late 
appearance in the 300 ms window (see also Fig. 3B, right), and appeared on specific temporal (T7) and frontal 
areas (F4). By showing that not all variations exposed similar brain patterns, it could be supported that some 
variations could have activated auxiliary mechanisms such as feedback signals from higher cognitive areas of the 
brain. However, a quantitative evaluation was needed to reveal whether variations and categories were processed 
by the same brain mechanisms and whether there was any interaction between peri-occipital and peri-frontal 
areas regarding these processes. In the following sections, these concerns are addressed.

Selectivity for category and variation information in the brain.  In order to quantitatively determine 
whether categories and variations were processed by the same neural structures, I employed a recently-proposed 
methodology which was developed and used to evaluate the role of single neurons in the processing of categories 
and several variations by measuring their selectivity for each of these processes23. I replaced the selectivity indices 
used in that paper23 by the decodability indices obtained from individual electrodes here. More specifically, to 
know how information-selective different brain areas were, I constructed information-selectivity matrices (which 
the original study called task-specificity matrices23) that reflected color-coded correlation coefficients within and 
between information dimensions (i.e. category- and variation-related aspects of information) at several key time 
instances (Fig. 7A). Please note that, by ‘selectivity’ I mean the tendency of individual brain areas in the process-
ing of specific types of information (i.e. category- and variation-related information). More specifically, if an 
electrode could differentiate between different categories (e.g. showed stronger activity for animals compared 
to cars) the selectivity of the area under that electrode would be for discrimination of animals from cars and if it 
provided discriminable activities for two lighting conditions its selectivity would be for the encoding of the two 
lighting conditions, or if showed both types of encoding, it was considered selective for both aspects of informa-
tion. It should be noted that an area can encode unlimited aspects of information (i.e. not necessarily covered 
in this study). Therefore, in order to evaluate the information-selectivity on the whole-brain scale, the amount 
of correlation (Pearson’s linear correlation) was evaluated at each time point, between the decodability indices 
found for the vector of 31 electrodes on one aspect of information (e.g. decodability of animal from other cate-
gories) and another (e.g. decodability of size’s first condition against other conditions). Accordingly, if the set of 
31 electrodes provided similar (correlated) decodability patterns in the 31-dimensional space across two aspects 
of information, the correlation coefficient would be close to unity meaning that the two aspects were encoded 
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(processed) by the same set of electrodes (and possibly the same mechanisms as the correlations were measured 
on millisecond time scale).

The information-selectivity matrices showed a high-level of information-selectivity at −100 ms prior to 
stimulus-onset (Fig. 7A). Although instances of confusion between some aspects of information (e.g. between 
categorization and position processing, between size and lighting processing, etc.) could be observed, higher 
values of within-aspect correlations could be observed compared to between-aspect correlations. This is not sur-
prising since the information-selectivity is not related to the amplitudes of the decodability indices, which are 
naturally low in the pre-stimulus span, but rather to the decodability patterns (i.e. whether high or low) across 
electrodes, therefore unrelated to the presentation of the stimulus. In other words, information-selectivity is 
another way of looking at ‘background connectivity’ in the brain, which is defined within/across neural popula-
tions as the involvement of different neural populations in same/different information processing aspects58,59. This 
background connectivity, which reflects inherent in the brain, is independent of the amount of input information 
(i.e. stimulus presentation)58,59. Therefore, it is not strange to observe a high level of information-selectivity in 
the pre-stimulus span as this pattern can also be observed in the very late processing time points (e.g. at 328 and 
600 ms post-stimulus) during which the input stimulus has almost no effect. Here, however, I concentrated on 
time instances of significant drops of information-selectivity which reflected the co-processing (entangling) of 
information aspects in shared brain areas. The processing of different aspects of information have been totally 
entangled with almost no differentiation between the aspects at 50 ms post-stimulus instance as well as at 104 ms 
post-stimulus. This processing overlap was attenuated at 200 ms meaning that distinct brain regions have become 
involved in the processing of distinct aspects of information.

I also defined and calculated the information-selectivity index across time (Fig. 7B). The information-selectivity 
index was calculated on each information-selectivity matrix as the average of within-aspect correlation coeffi-
cients (i.e. the average of all correlation values obtained within categorization, lighting, pose, size and position 
processing) minus the average of between-aspect correlation coefficients (e.g. the average of correlation values 
across categorization and lighting processing, etc.). The time instances of the information-selectivity matrices, 
shown in Fig. 7A, are highlighted by red arrows in Fig. 7B. The information-selectivity curve revealed its first and 
second significant (p < 0.05, Wilcoxon’s signed-rank test) declines respectively in the time spans from 43 to 61 ms 
and from 101 to 113 ms post-stimulus. These significant declines totally matched the occipital co-processing of 
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Figure 7.  Information-selectivity in different brain areas. (A) Information-selectivity matrices showing, in 
color codes and at specific time points relative to stimulus onset, the entangling of category and variation 
processing in the brain. Colors show the amount of correlation (Pearson linear correlation) between 
decodability indices obtained from whole-brain EEG electrodes in the decoding of specific aspects of 
information with higher values showing more similarity (information non-selectivity). (B) Time-resolved 
information-selectivity, measured as the difference between the sums of within-information correlations minus 
the sum of across-information correlations. Red arrows indicate the time points used in (A). The black circles 
indicate the time points at which the information-selectivity index was significantly (i.e. p < 0.05, evaluated 
using Wilcoxon’s signed-rank test) different from the same index averaged in the last 200 ms window prior to 
the stimulus onset (before baseline removal). Shaded areas indicate the SEM across subjects.
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category and variation information shown in Figs 5 and 6. Interestingly, these time spans also highly concurred 
with the first stage of visual processing (Fig. 4A, right) in which information regarding categories and variations 
were processed in an in-phase pattern which together support the spatiotemporal co-processing of category and 
variation information in early visual cortices (Fig. 5). During the second stage of visual processing (from 170 
to 450 ms post-stimulus), in which category and variation information were processed in an anti-phase pattern 
(Fig. 4A, right), distinct brain mechanisms were involved in the processing of distinct aspects of information 
(Figs 5 and 6). Together, these quantitative results suggested that, in the earliest stages of sensory processing, 
information about categories and variations were processed by similar neural mechanism and in later time win-
dows, the information-selective brain areas undertook their intrinsic tasks.

Transaction of visual information between peri-occipital and peri-frontal areas.  Although the 
above analyses provided new insights into the distinct stages of category and variation processing in the brain, 
they remained silent on the possible flows of information between brain areas. Recent studies have suggested 
that specific properties of objects (e.g. low-frequency components of the object image) were processed by mech-
anisms of prefrontal cortex in parallel to the ventral visual stream whose results are transferred from lower (i.e. 
V1) to higher visual areas such as IT14,19. These studies and other theoretical and experimental investigations, 
which suggested that some variations may need top-down prefrontal-to-occipital feedback signals for accurate 
recognition20,29,60, provided motivation to evaluate the possible transfer of category and variation information 
between the peri-frontal and peri-occipital areas in object processing. For that purpose, the information process-
ing units of peri-frontal and peri-occipital areas were separated by electrodes (Figs 8 and S1B). Results showed an 
earlier rise to significance (p < 0.05) on peri-frontal electrodes about both categories and variations (respectively 
at 68 and 78 ms) compared to peri-occipital electrodes (respectively at 103 and 108 ms) (Fig. 8, top and mid-
dle). However, information about categories and variations in peri-occipital areas peaked earlier than those in 
peri-frontal areas (Fig. 8, bottom). These results suggest that, in contrast to what might be expected regarding the 
dominant role of posterior brain areas in the processing of category and variation information, the same number 
of electrodes on peri-frontal areas can provide even higher amounts of information compared to peri-occipital 
areas, especially at later stages of processing. The earlier rise of information at frontal brain areas can be explained 
by the magnocellular projections from the eyes to the frontal brain areas which provide a faster parallel pathway 
to those from the eyes to the occipital lobe. This is explained in more details below.

What remains unknown is whether there was any interaction of information between frontal and occipital 
brain areas which is the subject of following analyses. To that end, I evaluated the spatiotemporal dynamics of 
information transfer between peri-occipital (including occipital and parietal electrodes of O1, O2, OZ, POZ, 
P3, P4, P7, P8 and PZ) and peri-frontal (F3, F4, F7, F8, FZ, AFZ, FP1, FP2 and FPZ) areas using a simplified 
version of Granger causality as suggested previously19. For that purpose, first I calculated similarity matrices at 
every time point using the 9-dimentional representational space (i.e. nine electrodes) for object categories and 
variation conditions. Then, using partial correlations between representations at time t and the average of rep-
resentations in the span from t − 130 to t − 80 ms, I investigated the transfer of information between peri-frontal 
and peri-occipital brain areas (see Methods and Goddard et al.19 for more information). I called the information 
directions from peri-occipital to peri-frontal “feed-forward” and from peri-frontal to peri-occipital as “feedback” 
anatomically and not based on the classical feed-forward and feedback flows of visual information which is dom-
inant in the literature. In other words, rather than the role of peri-frontal areas in higher level cognitive processes 
such as attention, decision making, etc.34,35, I am investigating the role of specific compartments within those 
areas such as orbitofrontal cortex in providing a parallel processing pathway to sensory object processing areas 
such as occipitotemporal cortices13,14,19. This is discussed in more details in Discussions.

Partial correlations between peri-frontal and peri-occipital information showed higher values for cate-
gory than for variations (compare the red and green curves with cyan and magenta curves on the top panel of 
Fig. 9A). In order to measure the dominance of information flow on the scalp, I calculated the difference between 
feed-forward and feedback information (i.e. between partial correlations, Fig. 9A, bottom) and evaluated the sig-
nificance of the calculated differences against 1000 randomly generated partial correlation values (see Methods). 
The difference information curves showed highly dynamical patterns switching from feed-forward to feedback at 
around 150 ms and reversing to feed-forward at around 420 ms for both categories and variations. Results showed 
that variation and category information led to significant feed-forward flows respectively at 77 and 97 ms and 
remained significant respectively until 88 and 128 ms post-stimulus. Then, the variation and category information 
turned into significant feedback flows at 147 and 158, remained significant respectively until 408 and 397 ms, 
turned into feed-forward flows again respectively at 469 and 448 ms and remained significant until the end of 
analysis time. Therefore, information regarding categories and variations moved dominantly from peri-occipital 
areas towards peri-frontal areas in the window from the stimulus onset to 130 ms (first stage) post-stimulus, then 
back to peri-occipital areas from around 150 ms to 400 ms (second stage) and then again forth to peri-frontal 
areas from around 450 ms (third stage). The observed stages of category and variation processing confirmed 
many of the results reported above, as follows. The first stage, which supported feed-forward flows of informa-
tion from peri-occipital to peri-frontal areas (Fig. 9A, bottom) co-aligned with the in-phase (Fig. 4A) entangled 
(Fig. 7B) processing of category and variation information. The second stage, which concurred with feedback 
flows of information from peri- frontal to peri-occipital areas (Fig. 9A, bottom), covered the anti-phase (Fig. 4A) 
information- selective (Fig. 7B) stage of category and variation processing. The third stage, which again revealed 
feed-forward flow of information from peri-occipital to peri-frontal areas (Fig. 9A, bottom), covered the in-phase 
(Fig. 4A) information-selective processing windows explained above (Fig. 7B). The observed temporal dynamics 
of information flows were also highly consistent with a seminal study which reported feed-forward flow of object 
information from subcortical/occipital (e.g. V1) areas to orbitofrontal cortex at around 80 ms (i.e. the start time 
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of the first stage of processing in the current study) followed by the feedback of category information starting at 
around 130 ms (i.e. the start time of the second stage of processing of the current study) post-stimulus onset14.
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Figure 8.  Time-resolved decodability of categories (top), variations (middle) and their temporal statistics 
(bottom) in the peri-occipital and peri-frontal areas. The circles indicate the time points at which the color-
matched decodability curves were significantly above the decodability values averaged in the last 200 ms 
pre-stimulus window (i.e. p < 0.05, FDR corrected Wilcoxon’s signed-rank test). (C) Latency (black) and peak 
(colored) time points of decoding in corresponding category and variation decodability curves. Shaded areas 
and error bars indicate the SEM across subjects. Stars show significant (p < 0.05, Wilcoxon’s signed-rank test) 
difference between peak time bars. ‘Cat’ and ‘Var’ respectively stand for categories and variations while ‘PO’ and 
‘PF’ respectively represent peri-occipital and peri-frontal.
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To be able to compare the dynamics of information flow across categories and variations, I provided category 
and variation information flows resolved into their constituent conditions (Fig. 9B). No significant differences 
were observed between categories (Fig. 9B, top). However, as previously suggested8, pose seems to have employed 
a higher level of feedback compared to other variations (Fig. 9B, bottom). More importantly, while category infor-
mation has provided a higher number of significant feed-forward time points during the first stage, variations 
have employed a wider span of significant information feedback.

Comparing the brain’s dynamical behavior with a computational model.  A set of computational 
models of human visual processing have been proposed recently which were able to provide accurate prediction 
of object representations at final layers of the ventral visual stream47,48,51 (V4 and IT). One of these models, HMO, 
which had a hierarchical feed-forward structure, has recently suggested that information regarding both cate-
gories and variations were enhanced as object representations passed through layers of the model61, supporting 
that a unified structure can process category and variation information by entangled mechanisms. However, as 
here I supported the existence of parallel pathways for visual object representations, it was interesting to know 
how one of the most brain-plausible versions of such hierarchical models, known as ‘AlexNet’51, would process 
category and variation information. To that end, I fed the model with the same image set as was used in the EEG 
experiment and measured the decodability indices across categories and variation conditions at the output of 
every model layer (Fig. 10A). Information about categories and variations increased as object images passed the 
first layer of the model. Except for lighting which showed a monotonically decreasing information curve, other 

Figure 9.  Time-resolved flows of category and variation information in the brain. (A) Top, partial correlation of 
representations between peri-occipital and peri-frontal areas. FF and FB refer to the feed-forward (correlation 
between time t representations in peri-occipital and representations during time t − 130 to t − 80 ms in peri-
frontal areas) and feedback information flows, respectively. (A) Bottom, the difference between FF and FB flows 
of information for categories (black) and variations (blue). Stars indicate the time points at which the flows were 
significantly higher (p < 0.05, random permutation test) than correlations obtained from a null distribution. 
(B) The same as (A, Bottom) but for each category (top) and each variation (bottom) with their corresponding 
significant time points indicated with stars. Shaded areas indicate the SEM across subjects.
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variations generally experienced information enhancement by going from the first to the fourth layer of the 
model. After the fourth layer, the variation decodability indices decreased while the category information kept 
increasing until the last layer of the model. Therefore, two distinct stages of information processing seemed to be 
at work in the model: one from the first to the fourth model layer and one from the fourth to the last layer. In order 
to evaluate the relative phase of category and variation decodability in the model, I calculated the correlation of 
decodability patterns in every three consecutive model layers between category and the average of four variation 
decodability curves (Fig. 10B), which showed an in-phase followed by an anti-phase processing pattern. These 
two stages seem to repeat the first and second stages of visual processing obtained from EEG signals (Fig. 9). The 
third stage of processing, however, was absent from the computational model, which seems to be a result of the 
model lacking the decision-related mechanisms present in the brain, as it was most probably the destination of 
information flow during the third stage of visual processing (i.e. PFC). Therefore, the hierarchically-organized 
feed-forward model of visual processing which was used here seemed to be a brain-plausible model which imple-
mented the existing parallel visual pathways (i.e. one going from V1 to orbitofrontal cortex and back to IT and the 
other directly from V1 to IT) that process visual information prior to the convergence of information at IT cortex. 
The parallel processing structures of the model were probably implemented by different convolutional spatial 
filters each of which extracted and processed different sub-band frequencies of the visual input which had been 
inspired by the brain mechanisms for filtering different spatial frequencies14,19.

I also evaluated the spatiotemporal correlation between the category information in the EEG signals, whose 
results reflected the hierarchical structure of computational models (Supplementary Fig. S4). Results of this analy-
sis confirmed the existence of a hierarchical structure for category processing in the brain, as previously observed 
for the same model62. In fact, the results showed that a layer-wise structure could have underlay the observed EEG 
decodability indices, but does not rule out the possibility of parallel visual processing being at work in peri-frontal 
and peri-occipital areas. Next, using the representational vectors which were obtained from the last layer of the 
computational model on an extended version of the current image set8, the representational dissimilarity matri-
ces also showed the distinctiveness of face category exemplars from the other categories validating the results 
explained for Fig. 2A, right (Supplementary Fig. S5A, left). The variation representational dissimilarity matrix also 
showed the decodeability/distinctiveness of different variation levels (size and pose conditions, Supplementary 
Fig. S5A, right). Finally, using the same extended image set8 and the representations obtained from the last model 
layer, I also showed that variations in pose could drastically entangle object representations, whereas lighting 
had little impact on object representations (Supplementary Figs S2C and S5B). This was also reflected in the 
behavioral object recognition performance of my recent work (Supplementary Fig. S5B, light-colored images)8. 
Therefore, although they may divide the visual object processing problem into several sub-problems (e.g. by using 
sets of convolutional filters with different shape- and frequency-based sensitivities), which may not necessarily 
follow those implemented by the brain (e.g. dividing the problem into low- and high-frequency components in 
frontal and occipital brain areas)63, the recently developed computational models of human vision can be proper 
candidates to access primate’s high-level visual representations.

Discussions
This investigation provides a broad-based survey of the spatiotemporal dynamics of category and variation pro-
cessing in the human brain as well as their interactions. Findings of this study provided several insights. First, 
the visual processing of category and variation information was shown, for the first time, to be divided into three 
stages (Figs 7–9): stage one, which covered the time window before 130 ms post-stimulus during which informa-
tion about categories and variations were processed by (temporally and spatially) entangled mechanisms mainly 
concentrated in primary visual cortex and were simultaneously (significantly during 80 to 130 ms window) sent 
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Figure 10.  Correlation of the model with brain data. (A) Decodability indices obtained from pixel-space 
images as well as their representations at the output of every layer of the model for categories (black curve) and 
variations (color curves). (B) Correlation values between the average of four variation indices and the category 
index at three consecutive layers of the model (i.e. three data values were used in the calculation of correlations) 
which showed significantly (p < 0.05, Pearson linear correlation) positive and negative values respectively in the 
first-half and second-half of the model layers.
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to the frontal brain areas13,14; stage two, which covered the time window from 150 to 400 ms post-stimulus during 
which category and variation information, being processed by partially anti-phase distinct mechanisms, were sent 
back to peri-occipital areas; and stage three, which started at around 450 ms with category and variation informa-
tion sent, in a temporally in-phase, to frontal areas possibly for final category-related decisions. Second, this study 
provided experimental support that information regarding categories as well as variations were processed also in 
the peri-frontal areas of the brain (Fig. 5). This added evidence to the previously suggested role of frontal brain 
areas in the processing of low-frequency object information14,19. Third, as subjects’ task was unrelated to object 
recognition (as a result of passive paradigm), it could be concluded that the observed spatiotemporal dynam-
ics of category processing have been mainly driven by the stimulus presentation rather than being task-driven. 
Finally, the results showed that a feed-forward convolutional neural network model could predict the first two 
above-suggested stages of visual processing implying that rather than feedback, the second stage of visual pro-
cessing could support the existence of a processing pathway operating in parallel to the known processing stages 
implemented by the ventral visual stream (from V1 to IT).

Although a few recent studies have observed the information regarding the processing of variations in the 
human brain19,23,64, current study is the first to investigate the whole-brain spatiotemporal dynamics of affine (i.e. 
size and position) and non-affine (i.e. lighting and pose) variation processing using a systematically designed 
image set. These results have extended previous findings which concentrated on specific variations (e.g. posi-
tion28), evaluated limited areas of the brain (e.g. V4 and IT23), used low temporal resolution recording methods 
(e.g. fMRI64,65) or overlooked possible flows of variation information in the brain19. Through different analyses 
(Figs 4–9), this study provided support that significant processing of information about categories and varia-
tions was initiated (before 130 ms post-stimulus) in the primary visual cortex and the information was simul-
taneously sent to peri-frontal areas. This entangled processing of category and variation information was also 
reported by previous studies which suggested the processing of category and variations in alternating layers of 
the ventral visual stream23,64. In the later window (from 150 to 400 ms), which overlapped with the peri-frontal to 
peri-occipital window of information flow (Fig. 9A) previously observed for impoverished objects66 and attended 
object detection67, variation and category information showed spans of in-phase and anti-phase processing pat-
terns (Fig. 4A, right). The relationship between the category and variation phase patterns (Fig. 4A, right) and 
the direction of information flow (Fig. 9A, bottom) suggested distinct mechanisms for transferring informa-
tion from occipital to frontal areas and back to peri-occipital areas. Previous studies have suggested that the 
information from early visual cortex travels through fast dorsal magnocellular pathway to reach OFC14,15. The 
frontal-to-occipital information, however, may use slower pathways which start from frontal cortex and end at 
occipitotemporal and temporal areas17,18,38,67–69. The final window (starting from 450 ms), showed simultaneous 
processing and transferring of category and variation information from occipital to frontal areas. During this 
final window, the representational information was probably transferred to peri-frontal areas for final cognitive 
processes such as decision-making and response preparation70,71.

It should be noted that the aim of current study was to compare the spatiotemporal dynamics of variation 
against category information processing in the brain, and not to address the invariance problem which has been 
previously addressed by several studies25,54. In Isik et al.54, the dynamics of object processing under variations of 
size and position were evaluated which was extended by a later study to the variations of pose and lighting8. On 
the other hand, in the current study as well as several recent studies23,72, the spatiotemporal dynamics of individ-
ual variations were evaluated separately from the information of categories.

Although several studies have recently proposed the contribution of peri-frontal areas (LOC) to the encoding 
of low-frequency object information14,19, the current study seems to be the first to show that information regard-
ing variations was also processed by peri-frontal areas. It did not only show that peri-frontal areas contributed 
to variation processing, but also revealed that this area sent variation information to occipital areas. This implies 
that, in contrast to the consensus that the ventral and dorsal visual streams dominate the processing of category 
and variation information by feed-forward mechanisms73,74, the representations in peri-frontal cortex can provide 
even larger amounts of information compared to those areas in large portions of the processing window (Fig. 8, 
compare the time windows after 200 ms and a related study which showed the same temporal dynamics for feed-
back signals66). Results also showed an earlier (from 0 to 50 ms) rise of information curves in peri-frontal than 
in peri-occipital areas (Figs 4B,C and 8) which can be explained by a previously suggested “framing model”18,75. 
In this model, a frame of the object, which is a vague low-frequency representation or a gist of it, is constructed 
in peri-frontal brain areas (through subcortical pathways from the eyes to the orbitofrontal cortex), enhanced by 
the peri-occipital to peri-frontal flows through magnocellular pathways and is fed back during the second stage 
of processing to enhance the details of object representations for accurate recognition67.

As I did not separate the low- and high-frequency components of the objects, it could not be determined 
which object features were processed by the peri-frontal areas. For variations, however, an advantage was 
observed in the processing of variations of lighting and pose (compared to variations in size and position) in the 
peri-frontal areas compared to peri-occipital areas throughout the processing time (Fig. S3B). This is on par with 
previous suggestions that frontal areas may play role in the compensation of non-affine variations8,29.

An interesting implication of the current results was that the observed role of peri-frontal brain areas in 
object and variation processing seem to be an integral part of visual processing rather than being activated by 
top-down cognitive processes which generally become involved during active object recognition. In fact, as the 
current paradigm was irrelevant to object recognition, the contribution of frontal brain areas could not have been 
mainly driven by the subject’s task. This aspect of the results, while supporting previous findings on the role of 
peri-frontal cortex in active object recognition13,14,19,66,67, has extended those results to the general case of object 
processing as opposed to object recognition which can be highly affected by the task, context, etc.63,76–78. This 
result is on par with a recent study which has suggested that the activation of orbitofrontal cortex is independent 
of the task, the characteristics of the visual input and explicit recognition of the stimuli75.
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The two-stage processing of variations observed in the computational model (Fig. 10, stage one: layers 1–4 and 
stage two: layers 5–7) can be explained by the dimensionality of the model’s representational space at different 
model layers. In other words, a very high correlation (r = 0.7117, p = 0.0728, n = 7; Pearson linear correlation) 
was observed between the size of the representational space (i.e. which were 69987, 43264, 64896, 64896, 9216, 
4096 and 4096 respectively for layers 1 to 7) and the decodability indices across model layers (Fig. 10A). The 
correlation was much less for lighting alone (r = 0.4876, p = 0.267) which was probably a result of lighting (as 
a low-level image feature) being mainly compensated for by the first layer of the model. Moreover, the category 
decodability curve and the model’s representational dimensions showed an anti-correlated pattern (r = −0.9231, 
p = 0.003). It can be concluded that, as suggested by the idea of population coding of variations79, large neural 
populations may be proper candidates to compensate for object variations, while for the encoding of categories, 
the brain may exploit its sparse inter-layer connections (as implemented in the two final fully-connected layers of 
the computational model51).

While some recent studies have reported correlated processing stages between the human brain and those 
computational models (as in Fig. S4)23,62 especially at higher visual areas47,48, they have overlooked possible par-
allel processing mechanisms that could have contributed to those correlated patterns at final layers. In other 
words, computational models and the brain might have implemented different sets of strategies to reach the same 
abstract representations of objects found in their final processing stages as previously proposed63. Therefore, even 
a layer-wise correlation does not rule out the possible existence of parallel, interactive mechanisms for object 
processing in the brain.

One advantage of this study to a most relevant study, which supported the role of peri-frontal areas in 
object recognition19, is that it has used a rapid presentation paradigm in which objects were presented only for 
50 ms. This was important since longer presentation times could have caused the dominance of peri-occipital to 
peri-frontal information (referred to as feed-forward) flow compared to the peri-frontal to peri-occipital (feed-
back) flow, leading to the underestimation of feedback influence. As argued by the authors19, the same reason may 
explain the dominance of feed-forward as well as the lag of feedback information flows in that study. However, 
these results suggested the need for a systematic study to investigate the impact of presentation time on the ampli-
tude and the temporal dynamics of object information flow in the brain.

While the results of current study have provided new insights into the spatiotemporal dynamics of category 
and variation processing in the human brain, they raised several questions. Does the task affect the processing of 
variation information differently from category information? It has been recently shown that the task can signif-
icantly modulate category representations in high-level vision-related areas76 which can result in the modulation 
of processing strategies63. It remains to be studied for variations as well. Second, is the variation information, 
observed here, also observed when objects are presented on complex backgrounds (i.e. clutter)? Third, what 
exactly are the regions which process category and variation information in peri-frontal areas? Although there 
are suggestions on the role of orbitofrontal cortex in that regard, more accurate recording methods (e.g. combined 
EEG and fMRI) can tell if information about categories and variations are processed by the same or different brain 
regions. Regardless of how these questions are addressed, the current study provides new insights into the role of 
peri-frontal brain areas in category and variation processing.
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