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ABSTRACT

Mixed lineage leukemia 1 (MLL1) is a histone
methyltransferase. Kaposi’s sarcoma-associated
herpesvirus (KSHV) is a leading cause of malignancy
in AIDS. KSHV latently infects tumor cells and its
genome is decorated with epigenetic marks. Here,
we show that KSHV latency-associated nuclear anti-
gen (LANA) recruits MLL1 to viral DNA where it es-
tablishes H3K4me3 modifications at the extensive
KSHV terminal repeat elements during primary infec-
tion. LANA interacts with MLL1 complex members,
including WDR5, integrates into the MLL1 complex,
and regulates MLL1 activity. We describe the 1.5-Å
crystal structure of N-terminal LANA peptide com-
plexed with MLL1 complex member WDR5, which re-
veals a potential regulatory mechanism. Disruption
of MLL1 expression rendered KSHV latency estab-
lishment highly deficient. This deficiency was res-
cued by MLL1 but not by catalytically inactive MLL1.
Therefore, MLL1 is LANA regulable and exerts a cen-
tral role in virus infection. These results suggest
broad potential for MLL1 regulation, including by
non-host factors.

INTRODUCTION

Epigenetic H3K4me3 marks are associated with actively
transcribed genes and are deposited by COMPASS his-
tone methyltransferase (HMT) complexes. HMT complexes
are evolutionarily conserved from yeast to humans, and
their methyltransferase activity exerts roles in embryonic
stem cell development, hematopoiesis, and neurogenesis
(1,2). Mixed lineage leukemia 1 (MLL1) is one of six in
a family of HMTs (MLL1−4, Set1A/B) in mammals re-
sponsible for catalyzing methylation of histone H3 at ly-
sine 4 through a SET domain. These members have im-
portant, non-redundant roles (3). In particular, MLL1 has
been intensively studied due to its deregulation in pediatric
and adult leukemia (3). Chromosomal translocations in-
volving MLL1 frequently occur in acute myeloid and lym-
phoid leukemia (1). Mammalian COMPASS complexes are
comprised of MLL or SET1, along with WDR5, ASH2L,
RBBP5 and DPY30 (4–6).

Kaposi’s sarcoma-associated herpesvirus (KSHV) is etio-
logically linked to Kaposi’s sarcoma (KS), the predominant
AIDS malignancy, primary effusion lymphoma (PEL) and
multicentric Castleman’s disease (MCD) (7–10). Upon in-
fection, the KSHV genome is rapidly transported to the nu-
cleus, where it circularizes by fusing at its terminal repeats
(TRs) and persists as a multicopy episome in latently in-
fected cells (11). KSHV encodes ∼100 open reading frames
(ORFs), although only several viral genes, including the
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latency-associated nuclear antigen (LANA), are expressed
during latency (12). LANA binds KSHV TR DNA to me-
diate viral episome persistence by tethering viral genomes
to host mitotic chromosomes to ensure their segregation to
progeny nuclei (13–16).

KSHV enters the cell free of histones and epigenetic mod-
ifications. Following infection, epigenetic marks rapidly ac-
cumulate on the viral genome to suppress lytic gene ex-
pression, while permitting latent gene expression. Broadly
distributed repressive modifications, including H3K27me3,
H2AK119ub and H3K9me3, deposited by Polycomb Re-
pressive Complex (PRC) 2, PRC1 and IFI16 recruited
SUV39H1, respectively, are responsible for silencing lytic
genes (17–23), while activating H3K4me3 modifications are
deposited at several loci, including the latency promoter
(18).

In addition to mediating episome persistence, LANA in-
teracts with chromatin modifiers and histone binding pro-
teins, including KDM3A, SUV39H1, BRD4 and the methyl
CpG binding protein MeCP2 and recruits Polycomb repres-
sive complexes to the KSHV genome during de novo in-
fection, indicating a role in epigenetic regulation (19,23–
26). Further, LANA is enriched at H3K4me3 peaks at viral
and host promoters (27–29). Consistent with its enrichment
at these peaks, LANA interacts with SET1, RbBP5, and
ASH2L (28). The KSHV TRs comprise ∼20% of the ∼170
kb KSHV genome, are noncoding, and lack promoter activ-
ity in latency, yet are highly enriched in H3K4me3 (18,28).
Each of the ∼40 TR elements contains three adjacent
LANA binding sites (LBSs) (30) suggesting LANA may
have a role in modulating TR H3K4me3 levels. The TRs
therefore offer a unique opportunity to explore H3K4me3
establishment on naı̈ve DNA, and LANA’s potential role in
this process.

Here, we show that LANA recruits MLL1 to KSHV TR
DNA and that MLL1 is responsible for a specific temporal
pattern of H3K4me3 deposition during primary infection.
LANA interacts extensively with MLL1 complex mem-
bers and regulates MLL1 activity. A crystal structure of N-
terminal LANA peptide complexed with complex member
WDR5 suggests a mechanism for LANA’s regulatory activ-
ity and implies additional, innate host regulation of MLL1.
Importantly, knockout of MLL1 results in highly deficient
establishment of latent infection, indicating a critical role in
KSHV biology.

MATERIALS AND METHODS

Cell lines

BJAB cells were maintained in RPMI medium containing
10% bovine growth serum (BGS; HyClone) and 15 �g/ml
gentamicin. KSHV PEL BCBL-1 cells were maintained in
RPMI medium containing 10% BGS and 15 �g/ml gentam-
icin. 293T and iSLK cells were maintained in DMEM con-
taining 10% BGS (Clontech) and 15 �g/mL gentamicin.

Plasmids

pCDNA3.0-Flag-WDR5, -Flag-RbBP5 and -ASH2L (534
amino acid ASH2L isoform) (31) were obtained from Ad-
dgene. Full length pcDNA3-MLL-F (32) was obtained

from Dr Nancy Zeleznik-Le and generated by Dr S. Ko-
rsmeyer and M. Seto. pCDNA3.0-Flag-ASH2L was gener-
ated with the Q5 Site-Directed Mutagenesis kit (New Eng-
land Biolabs) followed by sequencing validation. To en-
able purification of N-His6-tag recombination proteins, full
length WDR5, RbBP5, ASH2L or the MLL1-SET domain
(residues 3744-3969) was cloned into pETDuet-1 [Multiple
Clone site 1(MCS1)] (Novagen). WDR5 and MLL1-SET
(3744–3969) were also cloned into pGEX-6P-1 (Millipore
Sigma) to allow expression of GST fusion proteins. pSG5-
T7-LANA (33) encodes LANA with an N-terminal T7 epi-
tope tag. Full length MLL1 was cloned to pCMV-3Tag-
6 (Agilent Technologies) by an in-fusion recombination-
based method (Clontech) through two sequential steps due
to the large size of the MLL1 insert. First, the MLL1 gene
was PCR amplified (oligonucleotides in Supplementary Ta-
ble S3) from nucleotide 1 to 8025 to include the AflII re-
striction site (nt 8010), and inserted into the ClaI and XhoI
sites of pCMV-3Tag-6 to construct pCMV-3Tag-6-MLL1-
1-8025. This construct was then digested by AflII and XhoI
and an independently amplified fragment spanning MLL1-
AflII (nt 8010) to the 3’ end of the MLL1 ORF (nt 11910)
was inserted, following AflII digestion, to generate full
length pCMV-3Tag-6-MLL1, which contains 3X Flag at
the N terminus. pCMV-3Tag-6-MLL1 was validated by se-
quencing. To obtain MLL1 with an alanine substitution
at residue 3906, MLL1-N3906A, MLL1-SbfI (nt 10819)-
end, was first cloned into pCMV-3Tag-6 using BamHI and
XhoI using Clontech In-Fusion cloning. Codon 3906 is just
downstream of the SbfI site. The 3906 codon was altered
to alanine in pCMV-3Tag-6-MLL1-SbfI (10819)-end using
the Q5 Site-Directed Mutagenesis kit (NEB). MLL1-SbfI-
N3906A-end was cloned into pCMV-3Tag-6-MLL1 after
digestion with SbfI and XhoI to generate full length pCMV-
3Tag-6-MLL1/N3906A.

LANA fragments were cloned in pEGFP to generate
GFP-LANA 1–32 (34),-LANA 33–331 (35), -LANA 275–
777 (36) and -LANA 933–1162 (36). GFP LANA 779–1049
was cloned by Takashi Komatsu. GFP LANA 1031–1119
was cloned by Mary Ballestas, GFP LANA 1031–1065 and
GFP LANA 1066–1119 were each cloned using the Q5
Site-Directed Mutagenesis kit (NEB) followed by sequenc-
ing validation. GFP LANA 1–32 23CRK→PAA25 was also
cloned by Q5 Site-Directed Mutagenesis (New England Bi-
olabs) followed by sequencing validation.

LentiCrispr V2 (37) was obtained from Addgene. Guide
RNA sequences, listed in Supplementary Table S3, were de-
signed by CHOPCHOP (38) and were cloned into Lenti-
Crispr V2 as previously described (37). The coding se-
quences of LANA�33–888 (35) were PCR-amplified and
inserted into the pMAL vector (NEB) by Murli Narayan or
into pETDuet-1[Multiple Clone site 1(MCS1)] (Novagen)
to generate 6x His N-terminal tagged fusions, termed
pMAL-LANA�33–888, or pETDuet-1-LANA�33–888,
respectively.

Antibodies

Antibodies used included anti-Flag (Sigma, F3165-5MG,
clone M2), anti-MLL1C (Bethyl, A300-374A), anti-RbBP5
(Bethyl, A300-109A), anti-ASH2L (Bethyl, A300-112A),
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anti-WDR5 (Bethyl, A302-430A), anti-GFP (Clontech,
632377, clone JL-8), anti-trimethyl-Histone H3 (Lys4)
(EMD Millipore, 07-473), anti-LANA LN53 (Millipore,
MABE1109), goat anti-rat IgG (H + L) Alexa Fluor 488
(Invitrogen A11006), goat anti-rabbit IgG (H + L) Alexa
Fluor 647 (Invitrogen A21245), human anti -LANA sera
adsorbed against uninfected cell extract for western blot or
affinity purified against carboxy-terminal LANA for ChIP,
Anti-T7 tag® antibody (Abcam, ab9138), and anti-alpha-
tubulin (Sigma T9026, cline DM1A).

Virus infections and outgrowth experiments

rKSHV.219 virus was induced from iSLK.219 cells (39).
Cells were treated with 1 �g/ml doxycycline, 20 ng/ml TPA
and 1mM sodium butyrate for 16 h to induce RTA expres-
sion and activate the lytic cycle. The cells were then main-
tained in DMEM for five additional days. Virus containing
supernatant was filtered with a 0.45 �M membrane. Virus
was then collected by ultracentrifugation at 25,000g for 4
h and resuspended in medium containing 10% BGS.

For short term experiments, KSHV infection was per-
formed in 12-well plates with cells at ∼80% confluence at
a MOI of ∼2–3. Cells were then spinoculated by centrifu-
gation at 2000 × g for 1 h, washed with 1 ml of culture
medium, and incubated at 37◦C.

For puromycin resistant outgrowth experiments, KSHV
infection was performed as above, but with a MOI of 0.1.
Forty-eight hours after infection, 2 × 104 cells were seeded
in 15 cm dishes containing 20 ml of DMEM with 10% BGS.
Twelve hours following seeding, 1 �g/ml puromycin was
added to the medium. Puromycin was replenished twice a
week in fresh media until individual clones grow out after
∼2 weeks. Cell colonies were stained with crystal violet and
counted.

CRSPR knockouts

Gene knockouts were generated by transient transfection
of LentiCrispr V2 as previously described (37). Briefly, cells
were transfected with gRNA cloned into LentiCrispr V2
by polyethylenimine (PEI) (Sigma). Thirty-six hours post
transfection, 1x104 cells were seeded in a 15 cm dish with
25 ml medium containing 2 �g/ml puromycin (InvivoGen)
for another 48 h selection to kill untransfected cells. Sur-
viving cells were cultured in medium without drug selection
and individual clones selected. Gene knockouts were vali-
dated either by immunoblot or sequencing of amplified ge-
nomic DNA.

Immunoprecipitation

Cells grown in 6 cm plates were lysed in cell lysis buffer
containing 50 mM Tris−HCl pH 7.9, 150 mM NaCl, 1%
Triton X-100, 10% glycerol, 1 mM DTT, 4 U/�l micro-
coccal nuclease (New England Biolabs, Catalog #M0247S),
and a complete protease inhibitor tablet (Roche). Antibod-
ies (2 �g anti-LANA or 5 �g anti-MLL1C) conjugated
with Dynabeads Protein G (Invitrogen) or anti-Flag M2 (2
�g)-conjugated agarose beads (Sigma) were incubated with

whole cell lysates overnight at 4◦C. Beads were washed 3–6
times with cell lysis buffer, bound proteins eluted in SDS
buffer (4% SDS, 20% glycerol, 10% 2-mercaptoethanol,
0.004% bromophenol blue and 125 mM Tris−HCl, pH 6.8),
resolved by SDS-PAGE, and detected by western blot. For
immunoprecipitations of endogenous proteins, nuclear ex-
tract lysate from 20 × 106 cells was used as previously de-
scribed (40).

ChIP

At different time points post infection, cells from one well
of a 12-well plate (∼1 × 106 cells) were cross-linked with 1%
formaldehyde for 10 min and the reaction stopped with 125
mM glycine. Cells were resuspended in nuclei lysis buffer
(1% SDS, 10 mM EDTA and 50 mM Tris, pH 8.1) and son-
icated with a Bioruptor Sonicator (Diagenode). The soni-
cated cell supernatant was diluted 10-fold in ChIP dilution
buffer (0.01% SDS, 1.1% Triton X- 100, 1.2 mM EDTA,
16.7 mM Tris−HCl, pH 8.1, 167 mM NaCl). Samples
were incubated with the appropriate antibodies [affinity-
purified anti-LANA antibody, 2 �g; anti-trimethyl-Histone
H3 (Lys4) (Millipore), 1.5 �g; anti-MLL1C (Bethyl), 4
�g; Anti-trimethyl-Histone H3 (Lys27) (Millipore), 2 �g;
Anti-trimethyl-Histone H3 (Lys9) (Sigma), 2 �g], or with
an equal amount of corresponding IgG control (all ChIP
Abs are polyclonal) overnight at 4◦C. Protein A or G
agarose/salmon sperm DNA beads (Millipore) were added
and incubated for 30 min at 4◦C with agitation, and
immunoprecipitations performed according to the manu-
facturer’s instructions. In brief, immunoprecipitates were
washed once, each with low-salt (0.1% SDS, 1% Triton
X-100, 2 mM EDTA, 20mM Tris–HCl, pH 8.1, 150 mM
NaCl), high-salt (0.1% SDS, 1% Triton X-100, 2 mM
EDTA, 20 mM Tris–HCl, pH 8.1, 500 mM NaCl) and LiCl
buffer (0.25 M LiCl, 1% IGEPAL CA630, 1% deoxycholic
acid (sodium salt), 1 mM EDTA, 10 mM Tris, pH 8.1), fol-
lowed by two washes with TE Buffer. DNA was released by
reversing crosslinking by heating at 65◦C for 4 h and treat-
ment with Proteinase K for 1 h. DNA was purified using
a PCR purification kit (Qiagen) and analyzed by quantita-
tive real-time PCR using Power SYBR Green PCR Master
Mix (Applied Biosystems) and a QuantStudio 3.0 System
(Applied Biosystems) to detect amplified product in accor-
dance with the manufacturer’s instructions. Primers used
for quantitative PCR reactions were: forward primer 5′-
GGGGGACCCCGGGCAGCGAG-3′, reverse primer 5′-
GGCTCCCCCAAACAGGCTCA-3′ (flanking KSHV TR
nucleotides 677–766). For quantification, 5%, 1%, 0.2% or
0.04% of DNA from KSHV latently infected 293T cells was
used to generate a standard curve for quantification com-
parison, which was performed using QuantStudio 3.0 soft-
ware.

For assessing LANA-directed TR loading of MLL1 by
ChIP assay, 1x107 BJAB cells, or BJAB cells stably express-
ing LANA (BJAB/LANA), were transfected with 5 �g of
p8TR (34) by nucleofection with the Amaxa Nucleofector
II, using previously described conditions (40). 5%, 1%, 0.2%
or 0.04% of input DNA was used to generate a standard
curve for quantification comparison.
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Generation of MLL1 expressing cell lines

To stably express MLL1 or MLL1/N3906A in MLL1 KO
cells, MLL1 KO clones were transfected with pCMV-3Tag-
6-MLL1 or -MLL/N3906A using PEI. Forty-eight hours
after transfection, 1 × 105 cells were seeded in 15 cm dishes
in DMEM medium. Twenty-four hours later, 100 �g/ml hy-
gromycin was added since the transfected vectors encode
for hygromycin resistance. Single colonies that grew out
were picked and screened for expression of MLL1 by im-
munoblot.

Fluorescence microscopy

1 × 105 BCBL1 cells were incubated in a well of a 12-
well slide chamber (Ibidi) in 200 �l RPMI with 10%
BGS for 24 h at 37◦C. Supernatant was removed and
cells fixed with 4% paraformaldehyde in PBS for 15 min.
After fixation, cells were rinsed ×2 with 1× PBS, and
blocked/permeabilized with block/perm buffer (10% BGS,
100 mM glycine, 0.2% Triton-X100 in PBS) with the ad-
dition of 5 �g/sample of human IgG. After 30 min, the
block/perm buffer was removed and cells were incubated
with primary antibodies anti-LANA LN53 (Millipore)
and anti-MLL1C (Bethyl), or anti-LANA LN53 and anti-
WDR5 (Bethyl) diluted in block/perm buffer at 1:200. Af-
ter 1h of incubation at room temperature, antibodies were
removed, and cells washed ×2 with 1× PBS. Secondary
antibodies goat anti rat Alexa Fluor 488 (Invitrogen) and
goat anti rabbit Alexa Fluor 647 (Invitrogen)) were added
at 1:1000 dilutions, and incubated for 1h at room tempera-
ture in dark. Cells were washed ×2 with 1× PBS and cover-
slips mounted using ProlongGold antifade with DAPI (Life
Technologies). Images were captured using a Zeiss LSM
800 confocal microscope and 63× objective. Co-localization
was quantified using Zen Blue software and Pearson’s cor-
relation coefficient.

Protein expression and purification

pETDuet-1-WDR5, -ASH2L, -RBBP5, -MLL1-SET
(residues 3745–3969) or -LANA�33–888 were over-
expressed as 6× N-terminal histidine fusion proteins in
Rosetta cells (Novagen) with 0.1 mM IPTG for 16 h at 18◦C.
Cells were harvested in buffer containing 50 mM Na2HPO4
pH 8.0, 1.5 M NaCl, 10 mM imidazole, lysed by sonica-
tion and clarified by centrifugation and filtration. Proteins
were purified by nickel nitrilotriacetic acid chromatography
with Protino Ni-NTA Agarose (Macherey-Nagel). Proteins
were then eluted with buffer containing 50 mM Na2HPO4
PH 8.0, 300 mM NaCl, 250 mM imidazole followed by
dialysis into a final buffer of 20 mM Tris–HCl pH 7.5,
300 mM sodium chloride and 5 mM �-mercaptoethanol
(�-ME). pGEX-6p-1-WDR5 and MBP-tagged pMAL-
LANA �33–888 were overexpressed in Rosetta cells
(Novagen) with 0.1 mM IPTG for 16 h at RT. Cells were
harvested in phosphate buffered saline for pGEX-6p-1
vectors, or in 20 mM Tris–HCl PH 7.4, 200 mM NaCl, 1
mM EDTA and 10 mM �-ME for pMAL vectors, lysed by
sonication, and clarified by centrifugation and filtration.
GST-WDR5 was purified by Glutathione Sepharose 4B
GST-tagged protein purification resin (GE Life Science)

followed by elution with reduced glutathione. MBP-LANA
�33–888 was purified with Amylose Resin (New England
Biolabs) according to the manufacturer’s protocol. Purified
recombined protein was dialyzed into a final buffer of
20 mM Tris–HCl pH 7.5, 300 mM sodium chloride and
5 mM �-mercaptoethanol (�-ME). Protein concentration
was quantified by Bradford assay (Bio-Rad).

For gel-filtration chromatography, LANA (�33–888)
was cloned into a modified pET28b vector with a 6× His–
SUMO tag fused at the N terminus. LANA protein was
expressed in Escherichia coli Transetta (DE3) (TransGen
Biotech) and purified with Ni-NTA agarose beads (Qiagen)
in lysis buffer (50 mM Tris–HCl pH 7.5, 500 mM NaCl,
10% glycerol, 5 mM 2-mercaptoethanol, 1 mM PMSF, 5
mM benzamidine, 1 �g/ml leupeptin and 1 �g/ml pep-
statin). The 6× His–SUMO tag was removed by Ulp1
protease digestion. The LANA protein was further puri-
fied by HiLoad Superdex 200 gel-filtration chromatogra-
phy (GE Healthcare) in column buffer A (25 mM Tris–
HCl pH 7.5 and 150 mM NaCl). MLL1, WDR5, RBBP5
and ASH2L–DPY30 proteins were purified as described
earlier.(41) The purified LANA, MLL1, WDR5, RBBP5
and ASH2L–DPY30 proteins were mixed in a molar ra-
tio of 2.4:2.4:1.2:1.2:1. After incubation on ice for 1 h,
the assembled LANA–MLL1 complexes were separated
from the free individual components through a Superose 6
gel-filtration chromatography (GE Healthcare) in column
buffer A.

For structural studies, the full-length human WDR5 and
the N-terminal 24-residue deletion construct WDR5�24
were both cloned into pET47b (+) (KanR) plasmid (No-
vagen), with an N-terminal His-tag, and a 3C protease
cleavage site. WDR5 proteins were prepared by plasmid
transformation into E. coli BL21 star (DE3) (Invitrogen)
with the codon plus plasmid pRARE2 (CamR) (Novagen).
WDR5 proteins were overexpressed in ZYP-5052 auto-
induction medium supplemented with the corresponding
antibiotics. The cells were grown at 37◦C until the OD600
reached 0.7 and the temperature was then lowered to 18◦C.
Cells were harvested 22 h post induction and lysed by son-
ication in a buffer containing 10 mM PBS pH 7.5, 500
mM NaCl, 5% glycerol, 0.1% CHAPS, 1 mM DTT, sup-
plemented with 5 mM MgCl2, 5 U/ml OmniCleave (Epi-
centre), 0.25 mg/ml lysozyme and a complete EDTA-free
protease inhibitor cocktail (Roche). The lysate was clarified
by centrifugation at 19,000 rpm for 45 minutes at 4◦C. The
supernatant was loaded in a HisTrap FF 5ml column (GE
Healthcare) and the protein was eluted with a linear gradi-
ent of elution buffer (20 mM HEPES, 500 mM NaCl, 500
mM imidazole, 1 mM DTT, 10% glycerol, pH 7.5). To re-
move the His-Tag, 3C protease was added in a 1:100 mo-
lar ratio to the eluted protein with the addition of 2 mM
DTT and 1 mM EDTA. WDR5 was then further puri-
fied by size exclusion chromatography (HiLoad 16/600 Su-
perdex 75pg column (GE Healthcare), pre-equilibrated in
buffer containing 20 mM HEPES, 150 mM NaCl, 0.1 mM
TCEP, pH 7.0 for crystallization experiments or 20 mM
Na/K Phosphate, 150 mM NaCl, 0.1 mM TCEP, pH 7.0 for
isothermal titration calorimetry analysis (ITC). The peak
fraction was collected and concentrated to 10– 15 mg/ml
for further use.
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In vitro methyltransferase assay

Methyltransferase assays were performed as previously de-
scribed (42). Briefly, purified, recombinant MLL1-SET was
incubated with equimolar amounts of WDR5, RbBP5
and ASH2L in 50 mM Tris pH 8.0, 200 mM NaCl, 3 mM
Dithiothreitol (DTT), 5 mM MgCl2, 5% glycerol along with
1 mM histone H3 peptide corresponding to the first N-
terminal 21 H3 residues (Millipore). Reactions were initi-
ated by adding 1 �Ci of tritiated, S-adenosyl-L-methionine
(AdoMet)(PerkinElmer) (0.07 mM tritiated AdoMet) and
stopped by spotting reactions onto Whatman P-81 filter pa-
pers. Free AdoMet was removed by washing the filter paper
four times with 250 ml of 50 mM sodium bicarbonate pH
9.0 and methyltransferase activity quantified by liquid scin-
tillation counting.

GST or MBP fusion protein precipitations

GST or MBP fusion proteins were incubated with purified
or in vitro translated protein in binding buffer (50 mM Tris–
HCl, pH 7.5, 300 mM NaCl, 0.1% NP-40, 1 mM PMSF) for
at least 2 h at 4◦C. GST beads (GE Life Sciences) or Amy-
lose Resin (NEB) was added, and the mixture incubated for
1 h with rotation. Beads were then washed three times with
binding buffer and bound proteins assessed by SDS–PAGE
followed by western blotting or Coomassie blue staining.

Measurement of LANA peptide binding

To understand the energetic contribution made by various
contacts between WDR5 and LANA, we performed de-
tailed binding analyses using isothermal titration calorime-
try (ITC), using protein preparations of either WDR5 or
WDR5�24 in the cell. The assays with LANA peptides
were performed with wild-type or WDR5�24 proteins to
assess the roles of N-terminal LANA residues predicted to
be essential for peptide binding. Peptides for complex for-
mation were obtained from Genscript, with the exception
of WDR510-19, LANA23-32 and LANA21-32 (ProteoGenix)
and synthesized with an N-terminal acetyl moiety, and a C-
terminal amidylation group.

ITC titrations were performed in a MicroCalTM iTC200
Isothermal Titration Calorimeter (Malvern) at 20◦C.
WDR5 protein concentration was determined by using the
extinction coefficient (69 900 M–1 cm–1) after measuring the
absorbance at 280 nm using a NanoDrop spectrophotome-
ter (NanoDrop Technologies). Lyophilized LANA pep-
tides (10 mM) were solubilized in ITC buffer (20 mM
Na/K phosphate, 150 mM NaCl, 0.1 mM TCEP, pH 7.0),
aliquoted, and stored at –20◦C for further use. In each of
the experiments, injections of between 1.5 and 2 �l of the
titrant were performed at 180 s intervals, with the sample
stirred at 800 rpm throughout the experiment. The titration
curves were fitted assuming a single-site binding model in
the Origin 7.0 software, and included analysis using NIT-
PIC, SEDPHAT and plotted with GUSSI (43). The binding
constant (KD) and enthalpy (�H) values calculated using
SEDPHAT and Origin models were generally in the same
range, although in some instances intervention by manual
peak integration was required.

Crystallization

Crystallization trials were set up using the vapor diffusion
method with the PACT, JCSG and Stura MacroSol screens
(Molecular dimensions) at 293 K. The droplets consisted of
100 nl protein solution and 100 nl reservoir solution and
were set up in 96-well three-drop Swissci plates sitting drop
format and optimized by hanging drop in 24-well XRL
Plate (Molecular Dimensions). Crystals grew in 2–3 days
and suggested that the protein crystallizes with medium-
molecular-weight polyethylene glycols. Diffraction quality
crystals were obtained after several rounds of optimization,
which included fine screening with PEG 4K, 3350K, 8K
and 6K and various buffers at neutral or acidic pH, mi-
croseeding, streak-seeding, drop-size and drop-ratio varia-
tion. WDR5�24 in complex with LANAWIN peptides were
prepared by mixing both components at a 1:2 or 1:5 molar
ratio.

Crystals appeared after 3–4 days and grew to full size
within 1–2 weeks. The WDR5WIN crystals were grown by
hanging drop vapor diffusion in the presence of 26% PEG
3350, 100 mM Bis–Tris pH 5.5, 50 mM (NH4)2SO4 at 14.65
mg/ml with 2:1 drop ratio. The WDR5�24-LANA23-32
crystals were grown using the same method as described
above, with 10 mg/ml with 2-fold peptide molar excess in 1:1
drop ratio in 100 mM Bis–Tris pH 5.5, 50 mM (NH4)2SO4,
25% PEG3350. The crystals used for data collection were
stabilized by a 1% increase in PEG3550 to the crystalliza-
tion buffer and cryo-protected by adding 20% glycerol, be-
fore being harvested and flash-cooled in liquid nitrogen.

Crystallographic Data Analysis and Structure determination

The diffraction data were collected on beamline IO4
(WDR5WIN) using X-rays of wavelength 0.9762 Å at
Diamond Light Source (Oxfordshire, UK) and ID30B
(LANAWIN) using X-rays of wavelength 0.9918 Å at the
ESRF (Grenoble, France) Synchrotron sources from crys-
tals cryocooled to 100 K. The WDR5WIN data set was pro-
cessed by xia2 pipeline (44), automated diffraction data re-
duction tool which utilizes XDS (45) and the CCP4i2 suite
(46,47) for data integration and truncation. The WDR5WIN
crystal was indexed in space group P212121, with unit-cell
parameters a = 46, b = 57, c = 68.1 Å, � = 90, � = 90, �
= 90◦. The structure of the WDR5–WIN complex was de-
termined by molecular replacement with Phaser (48) using
the WDR5 structure (PDB entry 4ery) (49) as the search
model. Both the WIN motif binding peptide (WDR11–19)
and the WDR5 structure were represented by excellent elec-
tron density. The structure was refined at 1.3 Å resolution
using iterative cycles of manual building in COOT (50) and
refinement with REFMAC (51).

The WDR5�24-LANA23–32 diffraction data were pro-
cessed with xia2 (44) using DIALS (52) for indexing, re-
finement and integration. POINTLESS (53) and AIMLESS
(54) were used for scaling and merging of data. The crystal
diffracted to 1.25 Å in space group P1 and resulted in 86.4%
complete data set to a resolution of 1.50 Å and was in-
dexed in space group P1, with unit-cell parameters a = 51.2,
b = 59.7, c = 63.1 Å, � = 80.15, � = 82.98, � = 89.27◦.
The Matthews coefficient was consistent with two molecules
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of WDR5 in the asymmetric unit (VM = 1.94 Å3/Da, sol-
vent content 36.7%). The native Patterson function showed
a strong non-origin peak with 20.3% of the origin peak
height and located at 0.335, 0.003, 0.001, indicating transla-
tional non-crystallographic symmetry (tNCS) with a trans-
lation vector of 15.6 Å. The observed translational pseudo-
symmetry impacted both the intensity statistics and subse-
quent analyses, which led to the higher than expected re-
finement statistics (Supplementary Table S2). The structure
of the WDR5�24–LANA23-32 complex was determined
by molecular replacement with MOLREP (55) using the
WDR5WIN structure. The structure was refined at 1.5 Å res-
olution using iterative cycles of manual building in COOT
(50) and refinement with PHENIX (56).

Structural quality was validated by MolProbity and the
structure has no Ramachandran outliers, no poor back-
bone angles or bonds and only 4–5 poor rotamers for the
protein side chains (two protomers in the asymmetric unit)
in the P1 structure according to the MolProbity server
(57). Structure representation was carried out using Py-
MOL (Schrödinger, LLC) with electrostatic surfaces gener-
ated using the APBS plugin (58), the protein structure was
prepared using pdb2pqr (59). The coordinates and struc-
ture factors have been deposited in the PDB with PDB ID:
7BED for the WDR5WIN structure, and PDB ID: 7BCY for
the LANAWIN structure.

Statistical analyses

Statistical analyses were performed using Graphpad 7.

RESULTS

LANA interacts with the MLL1 complex and recruits MLL1
to KSHV DNA

Tandem affinity purification of LANA associated com-
plexes (40) identified core components of the MLL1 his-
tone methyltransferase (HMT) complex including MLL1,
WDR5, ASH2L and RBBP5, as potential LANA interact-
ing partners. We further assessed these interactions by co-
immunoprecipitation (IP). MLL1, WDR5, or ASH2L, each
co-precipitated with LANA after transient co-expression ei-
ther after IP of LANA or the reciprocal IP (Figure 1A, B,
D). However, only weak LANA signal was observed after IP
of RbBP5, and no RbBP5 was evident after IP of LANA,
suggesting a weak, possibly indirect, interaction between
these proteins (Figure 1C). Purified GST-WDR5 also pre-
cipitated in vitro translated LANA (Figure 1E).

We assessed endogenous interactions between LANA
and MLL1 or WDR5 in KSHV naturally infected BCBL1
PEL cells. Both MLL1 and WDR5 co-precipitated with
LANA (Figure 1F) from BCBL1 cells. LANA concentrates
to dots at sites of KSHV genomes in infected cells (13).
Immune fluorescent microscopy demonstrated that LANA
(green) colocalized in dots with WDR5 (magenta) or MLL1
(magenta) in BCBL1 cells (overlay generates white) (Figure
2A, Supplementary Figure S1).

We asked if LANA can recruit MLL1 to KSHV DNA.
Each KSHV TR contains three adjacent LANA binding

sites. We performed MLL1 ChIP after transfection of TR
DNA into uninfected BJAB B lymphoma cells or BJAB
cells stably expressing LANA at physiologic levels. MLL1
association with TR DNA increased in cells expressing
LANA (Figure 2B). Together, these data indicate LANA
interacts with the MLL1 complex and recruits MLL1 to
KSHV TR DNA.

MLL1 deposits H3K4me3 modifications on KSHV TR chro-
matin

Since high H3K4me3 levels are present at KSHV TR DNA
(18,28), we asked if MLL1 is involved in establishing these
modifications. We used CRISPR-Cas9 to knock out en-
dogenous MLL1 expression in 293T cells, generating clones
M2-9 and M3-9 (Figure 3A, Supplementary Figure S2A).
Following KSHV infection in WT cells, H3K4me3 lev-
els peaked at 16 h post-infection (hpi), and then progres-
sively declined (Figure 3B). In contrast, in M2-9 or M3-9
cells, H3K4me3 levels progressively increased through 48–
72 hpi. In the absence of MLL1 in these cells, H3K4me3
modifications may be due to LANA recruitment of other
MLL/HMT proteins, such as SET1 (28). In fact, in KSHV
latently infected MLL1 knockout (KO) cells, LANA re-
tained interaction with endogenous MLL1 complex com-
ponents WDR5, RBBP5 and ASH2L (Supplementary Fig-
ure S2C).

We asked if MLL1 catalytic activity is important for the
observed rapid, high level, TR H3K4me3 modification. We
stably expressed a full length MLL1 catalytic inactive mu-
tant, MLL1-N3906A (60,61), in M2-9 or M3-9 cells (Fig-
ure 3A). MLL1-N3906A retained the ability to interact with
LANA (Supplementary Figure S2D). Following KSHV in-
fection, H3K4me3 levels progressively increased in M2-
9/3906 or M3-9/3906 cells, in a pattern similar to that of
M2-9 or M3-9, although H3K4me3 levels were substan-
tially lower (Figure 3B). The lower H3K4me3 levels suggest
that the presence of MLL1-N3906A in the complex may in-
hibit recruitment of other MLL HMT proteins to deposit
H3K4me3 onto TR DNA. In contrast, stable expression
of WT MLL1 in M2-9 cells resulted in a WT pattern of
H3K4me3 deposition (Supplementary Figure S2B). These
results indicate that MLL1 is necessary for rapid, high level,
H3K4me3 deposition on KSHV TR DNA following infec-
tion.

LANA directly interacts with the MLL1 complex and regu-
lates its enzymatic activity

Since LANA interacts with the MLL1 complex and recruits
MLL1 to TR DNA, we assessed the relationship between
LANA expression and H3K4me3 TR modification. LANA
expression gradually increased following infection, peaking
at ∼36–48 hpi (Figure 3C). Correspondingly, LANA levels
increased over time at TR DNA in 293T, MLL1 KO (M2-
9, M3-9), or MLL1-N3906A cells (Figure 3D). Compari-
son of LANA and H3K4me3 TR levels following infection
demonstrated that TR H3K4me3 levels decreased as LANA
levels increased, suggesting LANA may inhibit MLL1 ac-
tivity (Figure 3B, D).
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This result led us to pursue the physical interaction of
LANA with the MLL1 complex in greater detail. In co-
IP experiments following transient expression, MLL1 inter-
acted with C-terminal LANA, while WDR5 interacted with
either N- or C-terminal LANA (Figure 4A-C). Although
both MLL1 and WDR5 interacted with C-terminal LANA,
the binding patterns were different. WDR5 interacted with
LANA 779–1049, while MLL1 did not. Further, MLL1 in-
teracted only with LANA 1031–1065, while WDR5 inter-
acted with both LANA 1031–1065 or LANA 1066–1119
(Supplementary Figure S3A, B). Consistent with both these

sequences interacting with WDR5, LANA residues 1060–
1070 contain a bend, reminiscent of RbBP5’s contact point
with WDR5 (62).

We asked if LANA directly interacts with the MLL1
complex. LANA�33–888 contains the LANA N- and C-
terminal regions required for interaction with MLL1 or
WDR5. Purified GST-MLL1-SET domain co-precipitated
purified LANA�33–888 and WDR5 (Figure 4D). Since
MLL1-SET interacts with WDR5 (63), these proteins
may form a ternary complex through multiple interac-
tions. Further, GST-MLL1-SET co-precipitated purified
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LANA�33–888, WDR5, RbBP5, and ASH2L (Figure
4E). Size exclusion chromatography showed LANA�33–
888 shifted the elution profile of the purified MLL1
complex to an earlier elution volume, and co-eluted
with the complex components (Supplementary Figure
S3C). These findings indicate LANA directly interacts
with MLL1 complex member(s) and integrates into the
complex.

We investigated the effect of LANA on MLL1 complex
enzymatic activity. The MLL1-SET domain alone exhib-
ited little HMT activity, and the presence of RbBP5 and
ASH2L enhanced the activity, consistent with prior data
with MLL or SET1 complexes (42). Inclusion of WDR5
was necessary for maximal HMT activity (Supplementary
Figure S3D). We next assessed the effect of LANA�33–
888 on MLL1 complex HMT activity. At an equimolar ra-
tio, LANA exerted little effect on MLL1 catalytic activity
(Figure 4F). However, at increasing concentrations, LANA

progressively inhibited HMT activity, and activity was un-
detectable at a 4:1 molar ratio.

This dose-dependent inhibitory effect provided a poten-
tial explanation for the dynamic TR H3K4me3 profile early
during de novo infection (Figure 3B). At 8 hpi, little LANA
is present at the TR (Figure 3D) to recruit MLL1, and
therefore, there is little H3K4me3 deposition. By 16 hpi in-
creased LANA levels allow recruitment of MLL1 and high
level H3K4me3 deposition. However, as LANA levels sub-
sequently increase at the TR, MLL1 catalytic activity is in-
hibited, resulting in decreasing levels of H3K4me3 in con-
junction with the expected presence of histone demethy-
lase activity such as from KDM1A, KDM1B or KDM2B
(64,65). In contrast, in MLL1 KO or MLL1-N3906A cells,
the H3K4me3 levels at the TR do not decrease in response
to increasing LANA levels (Figure 3B–D), suggesting that
the HMT(s) substituting for MLL1 are not inhibited by
LANA. MLL1 is unique among MLL proteins in requiring
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WDR5 for catalytic activity (66), and LANA interacts with
WDR5. Therefore, the dose-dependent effect of LANA on
the MLL1 complex could indicate a mechanism in which
LANA competes with MLL1 for WDR5 binding to inhibit
MLL1 activity.

N-terminal LANA contains a WIN motif that binds WDR5

We explored the possibility that LANA might bind WDR5
in a manner similar to that of MLL1. Biochemical
and structural studies have demonstrated that the MLL1
WDR5 interaction motif (MLL1WIN) is critical for MLL1
catalytic activity (67,68). The WIN motif is a short 11 amino
acid peptide present in all MLL proteins that contains a
conserved arginine critical for WDR5 interaction (42). We
identified a WIN-like motif in N-terminal LANA that con-
tains the conserved arginine (Figure 4G). Substitution mu-
tations of the arginine along with the preceding and sub-
sequent amino acids eliminated the interaction between N-
terminal LANA and WDR5 (Figure 4H). We investigated
the interaction of LANAWIN with WDR5 or WDR5�24,
which lacks the 24 N-terminal WDR5 residues, by isother-
mal titration calorimetry (ITC) analysis. LANAWIN peptide
16

AcAPLTRGSCRKRNRSPERNH2
32, or similar LANA

peptide with N-terminal truncations at residues 19, 21, or
23, bound with affinities ranging from 2.3�M-25�M (Sup-

plementary Figure S4, Supplementary Table S1). Inclusion
of LANA residues 28RSPER32 were required for micromo-
lar affinity since 16

AcAPLTRGSCRKRNNH2
27 binding was

greatly reduced. Binding was governed by exothermic heat,
and entropy driven.

We explored whether LANAWIN occupies the WDR5
WIN binding pocket as expected from its homology
with MLLWIN. The small molecule MM-401 occupies
the WDR5 WIN binding pocket and thereby inhibits
MLL1-WDR5 interaction (66). MM-401, but not its enan-
tiomer, blocked the interaction of WDR5 with LANA
(Figure 4I). Since the interaction was blocked despite
an independent C-LANA-WDR5 interaction (Figure 4B),
C-LANA binding may also be dependent on or may
overlap the WDR5 WIN binding pocket. MM-401 also
excluded nearly all WDR5 from the LANA/MLL1
complex (Figure 4J) despite WDR5’s additional inter-
action with RbBP5 (62). These findings demonstrate
that LANAWIN binds WDR5 similarly to MLL1WIN
and that MM401 excludes WDR5 from the LANA
complex.

Crystal structure of WDR5 with LANAWIN

We solved the X-ray crystal structure of LANAWIN peptide
(23CRKRNRSPER32) complexed with WDR5�24 to 1.5 Å
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resolution (Supplementary Table S2) and built an atomic
model for LANA residues 23–29 (Figure 5A–E). Initial at-
tempts to co-crystallize LANAWIN peptide with WDR5 re-
sulted in solution only of the X-ray crystal structure of
WDR5 to 1.3 Å resolution. This structure demonstrated
WDR5 N-terminal residues (11EAARAQPTP19) at the site
of the WIN motif binding pocket (Supplementary Figure
S5C). The next visible residue in the crystal structure, Lys27,
was too far away (50 Å) from WDR5 Pro19 to be connected
by the intervening residues (20SSSATQS26), indicating the
WDR5 N-terminal peptide had likely been cleaved to en-
able binding. Since the WDR5 peptide occupied the pocket,
we therefore used WDR5�24 for LANA co-crystals. N-
terminal LANAWIN binds to WDR5 in a 310-helical con-
formation with the conserved arginine inserted into the
Win motif-binding pocket. N-terminal LANAWIN is well
ordered, stabilized by the conserved Arg24 residue that in-
serts into the central channel of the WDR5 �-propeller,
analogous to a pin socket mode of interaction, and forms
a large number of interactions through a network of hy-
drogen bonds and cation-� interactions which provide a
major contribution to complex formation (Figure 5A-D).
The WDR5 binding cleft contains two adjacent hydropho-
bic pockets, one (Site 1) that binds LANA Arg24 (P0), and
a neighboring pocket (Site 2) that binds Cys23 (P–1), and
is selective for small hydrophobic sidechains, such as that
of the conserved alanine in the P–1 position that binds simi-
larly in all other WDR5–WIN complexes. The overall struc-
ture of WDR5 is maintained when bound with LANAWIN.
Comparison of the WDR5-LANAWIN complex with those
of WDR5 and MLL1WIN, histone H3WIN, (68–73) or N-
terminal WDR5 shows LANA uses the same binding sur-
face for WDR5 interaction (Figure 5E, F, Supplementary
Figure S5D–F). LANAWIN binding is most similar to that
of H3WIN, with conformational similarity between LANA
Lys25 and histone H3 Lys4. LANAWIN can also bind two
WDR5 molecules, similar to H3WIN (Supplementary Fig-
ure S5A, B). However, LANAWIN differs from other WIN
peptides in its use of Cys23 rather than the shorter alanine
sidechain at this position. The WDR5 peptidyl-arginine-
binding cleft is flexible, allowing structurally divergent con-
formations of WIN motif C-terminal ends (42). This plas-
ticity is evident as C-terminal LANA peptide shows dis-
order of both Arg26 and Arg28 although their confor-
mations remain constrained by hydrophobic interactions
with Tyr131, Tyr191 and Phe149 of WDR5. The hydropho-
bic cleft to which LANA binds is negatively charged (Fig-
ure 5C, D), providing favorable charge complementarity
with the positive electrostatic potential of LANAWIN, and
demonstrating N-terminal LANA has evolved for specific
WDR5 binding.

These results suggest a mechanism for LANA inhibi-
tion of MLL1 activity. LANAWIN and MLL1WIN both bind
the WDR5 WIN pocket. The KD value for MLL1WIN is
1.1 �M (42), indicating MLL1 preferably binds WDR5.
At low LANA concentration, the MLL1 complex inter-
acts with WDR5 for optimal catalytic activity. At increasing
LANA concentration, competition shifts WDR5 binding
from MLL1WIN to LANAWIN, inhibiting MLL1 catalytic
activity. However, as LANA also interacts with MLL1-SET
(Figure 4A, C, D) through a motif yet to be defined, we can-

not exclude the possibility that LANA may directly act at
the MLL1 catalytic site.

MLL1 is critical for KSHV latent infection

Since LANA functionally interacts with the MLL1 com-
plex, and since MLL1 deposits H3K4me3 marks on KSHV
TR chromatin, we asked if MLL1 exerts a role in KSHV
latency. We assessed MLL1’s role in latency establishment
using a stringent assay requiring stable, long term, latent in-
fection. We infected 293T cells, MLL1 knockout cells M2–
9, M3–9 or M3–11 (Figure 6A, 6B, Supplementary Figure
S6A), or MLL1 partially deficient cells M2-7 (Supplemen-
tary Figure S6A) with KSHV. Forty-eight hours after in-
fection, flow cytometry analysis for GFP expression, con-
stitutively expressed from the recombinant viral genome,
demonstrated similar infection rates between the different
cell lines (Figure 6C, Supplementary Figure S6B). This re-
sult indicates that loss of MLL1 does not alter KSHV in-
fection of cells or trafficking to the nucleus. KSHV latently
infects cells as a multicopy episome and selection is re-
quired for long term latent infection and maintenance of
KSHV episomes ex vivo (13,15,34,74,75). Therefore, KSHV
infected cells were placed under puromycin selection, for
which the virus encodes resistance. Infection of control
293T cells led to efficient outgrowth of latently infected cell
colonies (Figure 6D, E). In contrast, infection of MLL1
knockout cell lines M2-9, M3-9 or M3-11 were highly de-
ficient for outgrowth of latently infected cells (Figure 6D,
E; Supplementary Figure S6C, D), averaging at least ∼5-
fold fewer drug resistant colonies compared to WT cells.
Infection of M2–7 cells, which are partially deficient for
MLL1 expression (Supplementary Figure S6A) resulted in
outgrowth that was intermediate between WT and MLL1
KO cells (Supplementary Figure S6C, D). Stable expression
of MLL1 in MLL1 KO M2-9 or M3-9 cells (Figure 6B; Sup-
plementary Figure S7A) rescued the ability of KSHV to
establish long term latency (Figure 6D, E; Supplementary
Figure S7B, C). In contrast, stable expression of catalyti-
cally inactive MLL1-N3906A in KO M2–9 or M3–9 cells
(Supplementary Figure S7A) was highly deficient in its abil-
ity to rescue latent infection (Supplementary Figure S7B,
C), indicating MLL1 catalytic activity exerts a key role in
KSHV infection.

DISCUSSION

These results demonstrate that MLL1 has a unique role
in KSHV infection. LANA recruits MLL1 to KSHV TR
DNA and regulates its function, leading to a dynamic
H3K4me3 profile during the initial hours following infec-
tion. Knockout of MLL1, or loss of MLL1 catalytic ac-
tivity, led to substantial changes in TR H3K4me3 deposi-
tion dynamics. The occurrence of H3K4me3 modifications
despite the absence of MLL1 suggests other MLL family
members can substitute for MLL1, perhaps within a LANA
recruited complex. However, the altered H3K4me3 modifi-
cation kinetics in the absence of MLL1 indicate other MLL
molecules are not functionally interchangeable with MLL1.

This work provides direct evidence for MLL1 regulation
by LANA and implies a mechanism through competition
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motif and (D) a zoomed view of the hydrophobic pockets (‘Site 1, 2’) that recognize both LANAWIN Cys23 and Arg24. Charged surfaces (red, negatively
charged; blue, positively charged) were calculated with APBS (87). (E and F) Maestro representations of the ligand interactions of (E) LANAWIN or (F)
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for MLLWIN binding to WDR5. MLL1WIN, histone H3WIN,
N-terminal WDR5, and LANAWIN all bind to the same
WDR5 binding cleft (Figure 5, Supplementary Figure S5)
(68–73). MLL1 is unique among the MLL family members
in its need for WDR5 binding to stimulate HMT activity.
This requirement is likely due to the unique structural or-
ganization between MLL1, RBBP5 and WDR5 as com-
pared to that of other MLL family members (41). It has
been suggested that competition for binding to WDR5 be-
tween MLL1WIN and histone H3WIN (also an MLL1 sub-
strate) may lead to regulation of MLL1 activity (72). Our
findings demonstrate that MLL1 methylase activity is reg-
ulable by LANA, and imply other WIN motif containing
host or pathogen proteins may similarly regulate MLL1.

Furthermore, since N-terminal WDR5WIN can occupy the
WDR5 pocket, there is potential for regulation by neigh-
boring WDR5 molecules, therefore providing an additional
layer of regulatory complexity. These findings suggest com-
petition for MLLWIN binding to WDR5 calibrates MLL1
activity. For instance, increasing or decreasing local LANA
concentration could fine tune MLL1 catalytic activity.

LANA’s interaction with MLL1 may occur at the nucle-
osome. Recent cryo-electron microscopy structures demon-
strate the MLL1 complex makes extensive contacts with
the nucleosome surface, allowing access to the histone
H3 tail in order to deposit methyl marks (41,76). The
LANA N-terminus, immediately upstream of LANAWIN,
binds the conserved acidic patch at the interface of hi-
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stones H2A/H2B (77). Superposition of the X-ray crys-
tal structure of N-terminal LANA complexed with the
nucleosome (77) with that of the structure of the MLL1
complex and the nucleosome (41) suggests that LANAWIN
residues 23–29 are not in close proximity to residues 4–
17 binding histones H2A/H2B; therefore, it is unlikely
a single LANA molecule simultaneously binds both the
WDR5 pocket and histones H2A/H2B. However, LANA
dimerizes through its C-terminal domain (78). Therefore,
a LANA molecule could bind to the WDR5 pocket while
a second LANA molecule within the dimer could inter-
act with the H2A/H2B acidic patch. Since C-LANA inter-
acts with MLL1 or WDR5 (Figure 4), the carboxy-terminal
domain of one LANA molecule in a dimer could interact
with MLL1, while the other LANA molecule interacts with
WDR5. Further, LANA dimers can undergo higher order
oligomerization through dimer–dimer interactions (79–82),
so additional LANA molecules could potentially interact
with an adjacent nucleosome, or with a distinct MLL1 com-
plex.

MLL1 deregulation is linked to leukemia, and this work
now links MLL1 to KSHV, a tumor virus. MLL1 dereg-
ulation occurs in up to 10% of acute leukemias in all age
groups and in ∼75% of acute lymphoblastic leukemia in in-
fants (83). Typically, one MLL1 allele contains a transloca-
tion in which one of ∼80 host partners is fused in frame with
MLL1, resulting in preservation of N-terminal MLL1 but
loss of its C-terminal SET domain (3). Rearranged MLL1
proteins likely promote mislocalization of the fusion part-
ners, leading to expression of genes that promote tumorige-
nesis (84). It is possible that LANA regulation and/or mis-
localization of MLL1 to host genes may promote KSHV tu-
morigenesis. Alternatively, MLL1 complexes could recruit
LANA, which could in turn deregulate genes through de-
creasing MLL1 activity and/or recruitment of LANA tran-
scriptional regulatory partners. Consistent with these pos-
sibilities, ChIP seq analyses demonstrate that LANA often
localizes near transcriptional start sites at H3K4me3 peaks
(28,29).

This work demonstrates that MLL1 exerts an important
role in KSHV latent infection and that its catalytic activity is
central to this function. These results suggest that the alter-
ations in TR H3K4me3 levels induced by MLL1 following
infection, likely combined with MLL1 activity at additional
KSHV genomic sites, are key for latency establishment. In
addition, MLL1 may act at host genes that are critical for
the promotion and maintenance of latency. Once epigenetic
marks are established, the viral genome persists as an epi-
some, and LANA may function with the MLL1 complex
to maintain the marks and drive latency, as suggested by
LANA’s colocalization with MLL1 and WDR5 in latently
infected cells (Figure 2A) in dots at viral genomes. Further,
MLL1 deposition of H3K4me3 marks at the TR elements
may function in roles other than gene expression regula-
tion. For instance, LANA mediates viral DNA replication
of TR DNA and tethers TR DNA to mitotic chromosomes
to segregate viral genomes to progeny cell nuclei. It is pos-
sible LANA’s MLL1 interaction may affect these functions,
which are also essential to latency.

In summary, we show that LANA recruits MLL1 to
KSHV DNA where TR H3K4me3 marks are established

early following virus infection. LANA regulates MLL1 and
the crystal structure of LANAWIN with WDR5 implies a
regulatory mechanism and additional host regulation of
MLL1. These results suggest local LANA concentration
acts to calibrate MLL1 activity and that specific activity lev-
els are key for successful KSHV infection. Strategies that
disrupt MLL1 regulation or function may be applicable to
prevention or treatment of KSHV malignancy.
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