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Abstract: Contact charge electrophoresis (CCEP) is an electrically controllable manipulation technique
of conductive droplets and particles by charging and discharging when in contact with the electrode.
Given its straightforward operation mechanism, low cost, and ease of system construction, it has
gained traction as a versatile and potential strategy for the realistic establishment of lab-on-a-chip
(LOC) in various engineering applications. We present a CCEP-based digital microfluidics (DMF)
platform with two parallel electrode modules comprising assembled conventional pin header sockets,
allowing for efficient mixing through horizontal and vertical shaking via droplet reciprocating
motions. The temporal chromic change caused by the chemical reaction between the pH indicator
and base solutions within the shaking droplets is quantitatively analyzed under various CCEP
actuation conditions to evaluate the mixing performance in shaking droplets by vertical and horizontal
reciprocating motions on the DMF platform. Furthermore, mixing flow patterns within shaking
droplets are successfully visualized by a high-speed camera system. The suggested techniques can
mix samples and reagents rapidly and efficiently in droplet-based microreactors for DMF applications,
such as biochemical analysis and medical diagnostics.

Keywords: digital microfluidics; lab-on-a-chip; contact charge electrophoresis; droplet mixing;
droplet reciprocating motions

1. Introduction

Digital microfluidics (DMF) is a sophisticated and versatile technology for manip-
ulating microdroplets on demand which allows for the creation of lab-on-a-chip (LOC)
platforms by using an array of independently controlled electrodes and programmable
electrical signals [1–4]. The DMF platform enables the creation, transportation, integration,
fusion, and reaction of droplets carrying biological (or chemical) samples (or reagents) with
volumes ranging from microliter to nanoliter without a mechanical-fluidic control appa-
ratus [3,4]. Given these advantages, the DMF platform has been widely used in various
biomedical and biochemical sectors, including digital polymerase chain reaction assays,
cell culture, and drug screening [3,4].

Electrowetting-on-dielectric (EWOD) has long been acknowledged as the most com-
mon technology for building the DMF platform and a potential candidate for commer-
cialization in industrial areas [5–8]. Here, EWOD refers to a technique for manipulating
droplets in which the contact angle (or contact line) of a conducting discrete liquid placed
on a dielectric-covered electrode array can be electrically controlled [9,10]. EWOD enables
precise and rapid handling of microdroplets while costing less power. In addition, its
effortless individual addressability of electrodes allows for the simultaneous handling
of microdroplets containing different samples (or reagents). Despite these technological
advantages, it has the disadvantage of being difficult to operate when dealing with non-
liquid objects, such as gels or solids [11,12]. For example, if two droplets carrying different
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reactants meet and chemically react to gelify or solidify on the EWOD chip, it loses its ability
to manipulate [12]. Furthermore, complicated, time-consuming, and costly lithographic
microfabrication processes are required to fabricate and extend the electrode array [13].

Contact charge electrophoresis (CCEP) has been gained traction as an easy-to-use
technology capable of competing with EWOD in the DMF research realm [12,14–16]. CCEP
allows for the electrically controlled direction of conductive droplets and particles by charg-
ing and discharging when in contact with electrodes [16]. Compared with EWOD, CCEP is
capable of directing gel or solid particles in addition to droplets, thereby minimizing the
contact area between the objects and the solid electrodes [12]. Additionally, an electrode
array can be readily constructed without using lithographic microfabrication procedures
by assembling pin header sockets that are routinely used in conventional electronics. For
example, Im and his colleagues built the first CCEP-based DMF platforms with electrode
arrays made of ordinary pin header sockets with a 2.54 mm pitch, enabling 2D droplet
manipulation [12]. Review papers provide a concise summary of the fundamentals and
DMF applications of CCEP-based particle and droplet manipulation [14–16].

Despite the passionate extensive efforts of researchers focusing on DMF-related re-
search based on the CCEP, technical issues remain to be resolved. Compared with EWOD
technology, the CCEP technology’s droplet manipulation capabilities are primarily limited
to transporting and merging. A few papers, to the best of our knowledge, have reported
simple mixing performance via horizontal reciprocation and the merging of two droplets
via CCEP manipulation on a two-dimensional DMF platform to broaden the CCEP droplet
handling function [12,17]. However, the time required to completely mix different reagents
(i.e., phosphate-buffered saline and calcium chloride) in horizontally shaking droplets
employing CCEP actuation took up two minutes or longer in that research [12].

For effective active mixing, a three-dimensional (3D) DMF platform with two parallel
electrode modules comprising assembled pin header sockets (2 × 5 pins with 2 mm pitch)
is designed in this study, as illustrated in Figure 1. Droplets can therefore reciprocate
horizontally and vertically in response to the CCEP actuation on the platform, causing
horizontal and vertical droplet shaking, respectively. In this study, pin header sockets with
a narrow pitch (2 mm) are used instead of the previously used sockets with a 2.54 mm
pitch [12,18,19]. Consequently, the same electric field can be generated at a lower voltage
and a more compact DMF platform than in previous studies [12]. A temporal color change
experiment by the chemical reaction between sodium hydroxide aqueous solution and
phenolphthalein (PHP) indicator solution is performed to compare and evaluate the mixing
performance in shaking droplets by vertical and horizontal reciprocating droplet motions
on the CCEP-based DMF platform.
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comprises a pin-typed electrode array assembled by combining three (6 × 5) pin header 
sockets (2 × 5 pins with 2 mm pitch) that are commonly used in conventional electronics 
(bottom in Figure 2a). In this study, pin header sockets with a narrow pitch (2 mm) are 
used instead of sockets with a 2.54 mm pitch that were previously used [12,18,19]. As a 
result, the same electric field can be created at a lower voltage and a more compact DMF 
platform can be built than in previous studies [12]. The frames with holes that are nearly 
the same size as the pin of electrodes are manufactured with a digital light processing 
(DLP) 3D printer (Asiga MAX UV, Asiga, Alexandria, Australia) and printable resin 
(PlasClear V2, Asiga) to hold the pin header sockets and prevent liquid leakage by 
exposing only the pin portion of the sockets. Following insertion of the sockets into the 
3D-printed frame, the gap between the pin-typed electrodes is filled with 
polydimethylsiloxane (PDMS), creating a smooth surface and preventing dielectric oil 
medium leakage. Notably, the amount of PDMS used is adjusted so that only the tip of 
the electrode pin is exposed. In this instance, the PDMS precursor mixture (Sylgard 184, 
Dow Corning, Midland, MI, USA) is used at a 7:1 weight ratio of base to curing agent. The 
electrode module filled with the PDMS is cured for two hours at 100 °C in an oven. Then, 
the surface of the electrode module is hydrophobically coated with a Teflon solution 
containing 0.2% (v/v) Teflon AF1600 (DuPont), dissolved in FC-40 solvent (Sigma Aldrich, 
St. Louis, MO, USA), and baked at 110 °C for 5 min. After washing with isopropyl alcohol 
and subsequent air blowing, the Teflon coating remained only on the PDMS surface. Thus, 
the pinning of the droplets on solid surfaces can be prevented during CCEP actuation. 
Except for the pinning problem, it is found that whether the Teflon coating is treated or 

Figure 1. Conceptual diagram of the proposed digital microfluidic mixing via the reciprocating
motion of droplets driven by contact charge electrophoresis.

2. Materials and Methods

The schematic of the DMF platform for droplet mixing with reciprocating droplet
motion driven by CCEP is shown in Figure 2, as well as the entire experimental setup for
steering droplet motion using CCEP actuation. The electrode module of the DMF platform
comprises a pin-typed electrode array assembled by combining three (6 × 5) pin header
sockets (2 × 5 pins with 2 mm pitch) that are commonly used in conventional electronics
(bottom in Figure 2a). In this study, pin header sockets with a narrow pitch (2 mm) are used
instead of sockets with a 2.54 mm pitch that were previously used [12,18,19]. As a result,
the same electric field can be created at a lower voltage and a more compact DMF platform
can be built than in previous studies [12]. The frames with holes that are nearly the same
size as the pin of electrodes are manufactured with a digital light processing (DLP) 3D
printer (Asiga MAX UV, Asiga, Alexandria, Australia) and printable resin (PlasClear V2,
Asiga) to hold the pin header sockets and prevent liquid leakage by exposing only the pin
portion of the sockets. Following insertion of the sockets into the 3D-printed frame, the
gap between the pin-typed electrodes is filled with polydimethylsiloxane (PDMS), creating
a smooth surface and preventing dielectric oil medium leakage. Notably, the amount of
PDMS used is adjusted so that only the tip of the electrode pin is exposed. In this instance,
the PDMS precursor mixture (Sylgard 184, Dow Corning, Midland, MI, USA) is used at
a 7:1 weight ratio of base to curing agent. The electrode module filled with the PDMS
is cured for two hours at 100 ◦C in an oven. Then, the surface of the electrode module
is hydrophobically coated with a Teflon solution containing 0.2% (v/v) Teflon AF1600
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(DuPont), dissolved in FC-40 solvent (Sigma Aldrich, St. Louis, MO, USA), and baked at
110 ◦C for 5 min. After washing with isopropyl alcohol and subsequent air blowing, the
Teflon coating remained only on the PDMS surface. Thus, the pinning of the droplets on
solid surfaces can be prevented during CCEP actuation. Except for the pinning problem,
it is found that whether the Teflon coating is treated or not has no effect on the charging
process of the droplets or subsequent movement behaviors after charging.
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Figure 2. (a) Schematic of the digital microfluidic (DMF) platform for droplet mixing using recip-
rocating droplet motion driven by contact charge electrophoresis (CCEP). The electrode system of
the DMF platform comprises a small commercial pin socket and a 3D-printed enclosure. (b) Entire
experimental setup for DMF mixing with CCEP actuations.

A DMF platform with two parallel electrode modules is constructed, allowing droplets
to reciprocate horizontally and vertically in response to the CCEP actuation (top in Figure 2a).
The lower electrode module is mounted in a U-shaped chamber created with a DLP 3D
printer and printable resin. Thereafter, transparent acrylic plates with a 2 mm thickness are
attached to the chamber’s walls to contain a dielectric oil medium and allow front and back
view observations. The upper electrode module is linked to the translation stage through
a 3D printed supporter. By adopting a translation stage, the vertical distance between
the upper and lower electrodes can be manually adjusted between 2 mm and 4 mm in a
1 mm increment.

The PHP reaction is introduced to visualize and quantify the mixing process that
occurs during the reciprocating motions of droplets driven by the CCEP actuation because
the color of PHP changes from colorless to pink when it reacts with bases. For this,
sodium hydroxide (NaOH) aqueous solution (0.4 wt%, Comscience) and PHP indicator
solution (ethanol:distilled water:PHP = 79:20:1 in wt%, Taejin Chemical, Seoul, Korea) are
used. Two droplets with a fixed volume of 0.2 ± 0.05 µL (equivalent to a diameter of
0.72 ± 0.06 mm) each of sodium hydroxide aqueous solution and PHP indicator solution
are gently dispensed into a chamber filled with silicone oil (KF-96L, ShinEtsu, dynamic
viscosity of 28.6 mPa·s) used as the dielectric suspending medium. The current DMF system,
which employs ordinary header sockets with a 2 mm pitch, enables reliable 3D manipulation
of droplets with volumes less than 1.5 µL (equivalent to a diameter of 1.4 mm) without
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risk of electrolysis. The densities of NaOH aqueous solution, PHP indicator solution, and
silicone oil are 1.01 g/cm3, 0.78 g/cm3, and 0.95 g/cm3, respectively.

A data acquisition (DAQ) board based on an open-source microcontroller Arduino
(Arduino mega 2560) is employed to apply programmable electrical voltages to each pin-
typed electrode. The relays with 10 channels are controlled by an Arduino and transfer
signals to a DAQ board. DC electrical signals are generated using a function generator
(33500B, Agilent, Santa Clara, CA, USA), which are then amplified by a high-voltage
amplifier (A800D, Pendulum, Banino, Poland). The applied voltage ranges from 200 V to
400 V, with increments of 100 V. Our high-voltage amplifier has a maximum input voltage
of 4 V. Thus, the maximum applied voltage in this experiment is limited to 400 V. When
the relay is activated, the amplified voltage is applied to the pin-typed electrode linked to
the channel.

The droplet motion and mixing process within shaking droplets under CCEP actuation
are consecutively recorded at 120 frames per second using a digital camera (EOS 90D,
Canon, Tokyo, Japan) equipped with a macro lens (MP-E 65 mm, Canon). Internal flow
patterns within the shaking droplets are also successively observed using a high-speed
camera (Fastcam Mini UX100, Photron, Tokyo, Japan) fitted with a macro lens at frame
rates ranging from 250 to 1000 frames per second. To extract quantitative information
from the acquired consecutive images, such as temporal variations of displacement and
mixing index of shaking droplets by horizontal and vertical reciprocating motions, digital
image processing and data analysis are performed using Adobe Premiere Pro software
(v22.0.0, Adobe, Mountain View, CA, USA) and an in-house MATLAB-based program
(MATLAB R2021A, MathWorks, Natick, MA, USA). The droplet transport velocity is
estimated by extracting information on the change in droplet center displacement over
time from successive images acquired. Meanwhile, the mixing index is calculated using
the imaging process shown in Figure 3 to extract intensity information on the change in
color of shaking droplets during the PHP reaction. The imaging process for calculating the
mixing index has the following steps: (1) a suitable section (450 × 450 pixels) is selected and
cropped from raw images, (2) the image type is converted from RGB to grayscale, (3) the
region of interest (ROI) is identified after edge recognition, (4) images within the ROI are
corrected by subtracting the grayscale intensity value from the green intensity value [20],
(5) information on the number of pixels versus pixel intensity level from the corrected image
is acquired, as shown in the histogram of Figure 3. Note that the monochromic information
on images converted to grayscale is employed solely for the purpose of identifying the
region of interest (ROI). After determining the ROI, the mixing index is calculated using
the color information. The standard deviation of the corrected intensity (σ) is calculated
using the following formula [20]:

σ =

[
1
n ∑n

i=1

(
Ii − Imin

Imax

)2]1/2

.
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Figure 3. Schematic of the imaging process procedures used to determine the temporal variation in
the mixing index within CCEP-actuated shaking droplets.

Here, n is the number of pixels within the ROI, Ii is the corrected intensity of pixel
i-th within the ROI, Imin and Imax are the image set average values of the maximum and
minimum pixel intensities of each frame, respectively. When mixing is not performed,
the standard deviation of the corrected intensity equals one, whereas when full mixing is
performed, it should equal zero as all pixels achieve uniform darkest intensity. The level of
the mixing index (M) is calculated as follows [21]:

M(%) =

(
1 −

σ − σf inal

σf inal

)
× 100

Here, σf denotes the standard deviation of each experimental image set’s last frame.

3. Results and Discussion

To qualitatively show the mixing process within the shaking droplets induced by
reciprocating motions of droplets in response to CCEP actuation, we preferentially exam-
ine the possibility of programmable droplet handling in the horizontal direction, which
includes horizontal transport of two oppositely charged microdroplets containing differ-
ent chemicals, merging via electrical interaction (i.e., electrocoalescence), and horizontal
shaking via horizontal reciprocating motion (Figure 4). When a droplet of NaOH solution
comes in contact with the ground electrode (the droplet on the right in the first image of
Figure 4a), it becomes negatively charged. Then, by sequentially sending a positive signal
to neighboring electrodes, the droplet can be moved horizontally to the left. When a droplet
of PHP indicator solution encounters a positively activated electrode (the droplet on the left
in the initial image of Figure 4a), the droplet becomes positively charged. By sequentially
delivering a ground signal to neighboring electrodes, the droplet can be moved horizontally
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to the right. When two droplets with opposite charges meet, they are merged electrically
through the electrostatic interaction. Finally, the electrocoalesced droplets reciprocate hori-
zontally between the positive and ground electrodes. By monitoring the chromatic change
of PHP from colorless to pink, we confirm that mixing proceeds and is completed within
roughly one minute during the reciprocating motion of the droplet. Later in this section,
quantitative information on mixing performance will be presented and discussed. Similarly,
we demonstrate that droplets of different colors can be horizontally transported, merged,
and mixed using the same droplet handling procedures, as shown in Figure 4b.

We also demonstrate the feasibility of programmable 3D droplet handling by hor-
izontally and vertically transporting two oppositely charged microdroplets containing
different chemicals, merging them, and shaking them vertically via vertical reciprocating
motion (Figure 5). The following is the detailed droplet handling procedure. First, at both
ends, two droplets of PHP indicator solution and NaOH solution come in contact with the
positive electrode and charge with a positive charge. Second, the droplets can be moved
horizontally toward each other by sequentially applying a ground signal to neighboring
electrodes. Third, the droplets can be moved vertically by applying a ground signal to
the upper electrode. Fourth, the droplets vertically reciprocate between the upper and
lower electrodes and take on opposite charges from a certain point due to the difference in
vertical reciprocation speed caused by the density difference between the two droplets. The
densities of the NaOH aqueous solution and the PHP indicator solution, in this case, are 1.01
g/cm3 and 0.78 g/cm3, respectively. Fifth, the droplets with opposite charges electrically
merge when they touch. Finally, the coalesced droplets reciprocate vertically between the
lower and upper electrodes, completing the mixing process within roughly one minute. A
quantitative analysis is required to determine which of the horizontal reciprocating and
vertical reciprocating motions has the greater mixing efficiency, which will be described
and discussed later. Similarly, we demonstrate that droplets of different colors can be
three-dimensionally transported, merged, and mixed via vertical reciprocation motion
using the same droplet handling procedures, as shown in Figure 5b.

To conduct quantitative analysis and comparison of the mixing performance of CCEP-
actuated shaking droplets, the temporal variation in the mixing index is acquired using
digital image processing and data analysis with an in-house MATLAB-based tool, as
illustrated in Figure 6. First, the effect of voltage on the mixing index within a shaking
droplet via horizontal reciprocating motion driven by CCEP actuations at different voltages
is investigated. The pure diffusion experiment is carried out in the current work by
manually and gently merging two droplets of distinct reagents through a micropipette
tip. Regardless of the applied voltage, all the droplets exhibit the steepest increase up to
mixing index values ranging from 0.7 to 0.8 at the early stage (within nearly 2 s), after
which they gradually increase with a gentle curve, as shown in Figure 6a. As the applied
voltage increases, the slope of the steeply growing portion mildly increases and the time
necessary for complete mixing slightly decreases. This may be because the frequency of
horizontal reciprocating motion intensifies as the applied voltage increases. Here, the
average frequencies of horizontal reciprocating motions at applied voltages of 200 V, 300 V,
and 400 V are measured to be approximately 2.6 Hz, 4.7 Hz, and 7.4 Hz, respectively.
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Figure 4. Programmable droplet handling procedure including horizontal transport of two oppo-
sitely charged microdroplets containing different chemicals, merging via electrical interaction (i.e.,
electrocoalescence), and horizontal shaking via horizontal reciprocating motion. (a) Mixing between
a droplet of PHP indicator solution (left) and a droplet of sodium hydroxide aqueous solution (right)
(Video S1 in Supplementary Materials). (b) Mixing between a blue dye droplet (left) and a yellow
dye droplet (right) (Video S2 in Supplementary Materials). The distance between the pin electrodes is
2 mm in this case, and the applied voltage is 400 V.
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Figure 5. Programmable droplet handling procedure, including horizontal and vertical transport
of two oppositely charged microdroplets containing different chemicals, merging via electrical
interaction, and vertical shaking via vertical reciprocating motion. (a) Mixing between a droplet of
PHP indicator solution (left) and a droplet of sodium hydroxide aqueous solution (right) (Video S3 in
Supplementary Materials). (b) Mixing between a blue dye droplet (left) and a yellow dye droplet
(right) (Video S4 in Supplementary Materials). The distance between the pin electrodes is 2 mm in
this case, and the applied voltage is 400 V.
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Figure 6. (a) Temporal variation in the mixing index as a function of applied voltage in the case of
horizontal shaking via horizontal reciprocating motion. (b) Temporal variation in the mixing index
as a function of electrode distance in the case of vertical shaking via vertical reciprocating motion.
The insets of the graphs exhibit temporal variation in the mixing index at the early stage (within
nearly 2 s). The graph insets show temporal variation in the mixing index at an early stage (within
nearly 2 s).

We also evaluate the influence of the distance between the lower and upper electrodes
on the mixing index within a shaking droplet subjected to vertical reciprocating motion
caused by the CCEP actuation, as shown in Figure 6b. Because the applied voltage is
constant, this is the same as examining at the influence of the electric field. The growing
tendency of the overall mixing index is confirmed to begin abruptly and then steadily
increase, comparable to the horizontal reciprocating motion. Interestingly, even though the
strength of the electric field decreases as the distance between the electrodes increases, the
mixing time (i.e., the time required to achieve a mixing index of 0.95) is confirmed to be
shorter. This may be because when the electrode distance is small, vertical reciprocating
motion occurs at an extremely short distance for inertial force caused by gravity to develop;
however, when the electrode distance is increased, the inertial force can positively affect
the mixing. In this study, total mixing in the shortest time (approximately 2.4 s) can be
achieved by vertical reciprocation motion at experimental conditions with an electrode
distance of 4 mm and an applied voltage of 400 V.

We succeed in visualizing mixing flow patterns within droplets driven by only diffu-
sion and reciprocation motions under different CCEP actuation conditions by a high-speed
imaging system, as shown in Figure 7. Without an external stimulus, mixing proceeds
slowly via diffusion from NaOH to the PHP indicator solution within a stationary droplet,
as shown in Figure 7a. When the droplet is shaken horizontally using CCEP actuation,
the internal convection flows slightly facilitate the mixing process (Figure 7b). It can be
visually confirmed that the mixing process gets slow when the droplet is shaken vertically
at the same electrode spacing and applied voltage conditions as in the horizontal shaking
situation since the inertial force owing to gravity does not develop well, shown in Figure 7c.
However, if the moving distance where the inertial force is developed is secured, it can
be confirmed that mixing occurs rapidly due to internal convection flow. However, as the
distance between the electrodes increases and inertia develops during the droplet’s vertical
reciprocating motion, it is demonstrated that fast mixing is achievable due to internal
convection flow (Figure 7d).
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Figure 7. High-speed images of mixing flow patterns driven by (a) only diffusion and (b–d) recip-
rocation motions: (b) horizontal reciprocation motion with an electrode distance of 2 mm and an
applied voltage of 400 V; (c) vertical reciprocation motion with an electrode distance of 2 mm and an
applied voltage of 400 V; (d) vertical reciprocation motion with an electrode distance of 4 mm and an
applied voltage of 400 V.

4. Conclusions

We created a 3D DMF platform based on CCEP using two parallel electrode modules
constructed from ordinary pin header sockets and a 3D-printed housing. We successfully
demonstrated the feasibility of programmable 3D droplet handling on the platform, includ-
ing horizontal and vertical transport of two oppositely charged microdroplets containing
distinct chemicals, electrocoalescence, and mixing via horizontal and vertical reciprocating
motions of the droplets. In addition, the mixing performance of CCEP-actuated shaking
droplets was systematically assessed using quantitative analysis of the temporal chromic
change caused by the chemical reaction between the pH indicator and base solutions
within the shaking droplets. Finally, mixing flow patterns within the shaking droplets
were visualized by a high-speed imaging system, which can indirectly elucidate differences
in mixing performance under various CCEP actuation situations. To actually adopt the
3D DFM platform proposed in this study to biochemical and biomedical applications,
multi-step droplet handling operations such as droplet formation, coalescence, splitting,
and transporting will be required. As a result, to extend the CCEP-based DMF function,
we will preferentially integrate an EHD jetting-based droplet production system [22] and a
CCEP-based 3D droplet manipulation system in the near future. While the droplet han-
dling function requires further advancement, The proposed CCEP-steerable 3D droplet
manipulation and active mixing will serve as fundamental and critical strategies to develop
3D DMF platforms for a variety of engineering applications, including biochemical and
biomedical applications.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13040593/s1, Video S1: Horizontal mixing between a droplet
of PHP indicator solution and a droplet of sodium hydroxide aqueous solution; Video S2: Horizontal
mixing between a blue dye droplet and a yellow dye droplet; Video S3: Vertical mixing between a
droplet of PHP indicator solution and a droplet of sodium hydroxide aqueous solution; Video S4:
Vertical mixing between a blue dye droplet and a yellow dye droplet.
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