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Simple Summary: Endogenous retroviruses (ERVs) are viral sequences that have been incorporated
into the human genome over millions of years via integrations in germ-line cells. In this study, we
investigated whether the expression of ERVs was associated with two different aspects of prostate
cancer (PCa). First, Black American men have a higher incidence and poorer outcome of PCa
compared to White men. We identified differences in ERV expression among prostate tumors
between men of primarily African versus primarily European or Middle Eastern ancestry, which may
be associated with differences in the mechanism of cancer progression in patients of these distinct
ancestries. Second, we determined whether ERV expression might be correlated with the progression
of disease, regardless of ancestry. We identified the ERV expression signatures that correlated with
biochemical relapse among PCa patients of all ancestries, indicating that ERVs may be useful for
identifying cancer patients at greatest risk of progression. The utility of ERV expression for studying
cancer progression may extend to other cancers.

Abstract: Endogenous retroviruses (ERVs) are abundant, repetitive elements dispersed across the
human genome and are implicated in various diseases. We investigated two potential roles for ERVs
in prostate cancer (PCa). First, the PCa of Black Americans (BA) is diagnosed at an earlier median age
and at a more advanced stage than the PCa of White Americans (WA). We used publicly available
RNA-seq data from tumor-enriched samples of 27 BA and 65 WA PCa patients in order to identify
12 differentially expressed ERVs (padj < 0.1) and used a tissue microarray of the PCa cores from an
independent set of BA and WA patients to validate the differential protein expression of one of these
ERVs, ERV3-1 (p = 2.829 × 10−7). Second, we used 57 PCa tumors from patients of all ancestries from
one hospital as a training set to identify the ERVs associated with time to biochemical relapse. A
29-ERV prognostic panel was then tested and validated on 35 separate PCa tumors from patients
obtained in two different hospitals with a dramatic increase in prognostic power relative to clinical
parameters alone (p = 7.4 × 10−11). In summary, ERV RNA expression differences in the prostate
tumors of patients of different ancestries may be associated with dissimilarities in the mechanism of
cancer progression. In addition, the correlation of expression of certain ERVs in prostate tumors with
the risk of biochemical relapse indicates a possible role for ERV expression in cancer progression.

Keywords: human endogenous retrovirus; prostate cancer; cancer prognostics; genetic variation;
ancestral differences
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1. Introduction

Prostate cancer (PCa) affects millions of men worldwide and remains the most com-
mon cancer diagnosed in men in the United States [1]. Many of these cancers are ultimately
not the proximate cause of death [2]. However, the percentage of aggressive PCa is dissimi-
lar between men of different ancestries. There is a higher prostate cancer burden among
Black American (BA) as compared to White American (WA) patients [3,4]. Being Black
American is an independent predictor of disease relapse in patients undergoing radical
prostatectomy [5,6]. Recent studies indicate that larger numbers of PCa patients of African
descent assigned to active surveillance undergo aggressive treatments within five years due
to disease progression when compared to patients of European descent who are afflicted
with the disease [7]. The correlations between the genetic factors and ethnic disparities in
cancer, including PCa, have been uncovered and studied [4,8–12], occasionally focusing on
gene expression differences in the PCa tumors of men of different ancestries [8,13–15].

Human endogenous retroviruses (ERVs) are viral sequences that have been continually
incorporated into the mammalian genome over millions of years via new integrations in
germ-line cells. ERVs constitute approximately 8% of the human genome, whereas protein-
coding genes only represent 1–2% of human DNA [16,17]. However, few studies have
focused on the impact of ERVs on human health and disease. Understanding how each
ERV modulates both itself and other components, such as functional proteins, antigens,
or regulatory elements, is necessary in order to characterize how the ERVs affect human
disease [17,18].

Long terminal repeats (LTRs) of ERVs serve as genomic regulators and affect the
transcription or splicing of nearby genes [17,19,20]. ERVs are silenced through DNA methy-
lation and histone modifications, and while the majority of ERVs are functionally inactive,
many ERVs can be activated after removing repressive epigenetic markers [18]. They
have been implicated in autoimmune disease pathogenesis [21], but their immunogenic
properties may play a beneficial role in cancer therapy by eliciting an immune response
when activated in cancers [22]. The analysis of high-throughput sequencing data in The
Cancer Genome Atlas suggests that patients with high expression levels of ERV transcripts
and antiviral immune response genes have a more favorable prognosis and benefit more
from immune therapy than those lacking the expression of these genes in their tumor
cells [22–24].

Here, we investigated expression among intact and autonomous ERVs in a curated
collection of 3220 ERVs from the ERVmap database [17], which were applied to published
RNA-seq data from 92 tumor-enriched PCa samples (GSE54460 [1]) (27 BA and 65 WA).
We also separately analyzed the expression of all of the other host genes and identified
those that were adjacent to the ERVs. Of the ERV-adjacent genes, we identified those that
had concordant regulation to the ERVs in both the BA and the WA patients separately.

Most of the ERV sequences have acquired numerous mutations over time and, there-
fore, do not have protein-coding potential nor the capability to generate infectious viral
particles [17]. However, a few of the ERVs retain a complete open reading frame, allow-
ing the quantification of their protein expression in tissue samples. We used PCa tissue
microarrays (TMAs) from 142 independent PCa patients of two different ancestral groups
(i.e., 52 BA and 90 WA) in order to characterize the protein expression of ERV3-1. This
ERV was chosen because it appears as one of the twelve most significantly differentially
expressed ERVs and is one of the small minorities that retains its protein-coding capability.

ERVs can be useful as prognostic biomarkers [25–28]. Therefore, we looked at the
association between ERV expression and the risk of biochemical relapse (BCR). By using the
same RNA-seq data as above, we employed a subset of samples from one hospital (regard-
less of ancestry) as a training set to identify a panel of predictive ERVs using a Lasso-Cox
proportional hazard model [29]. We show that when the resulting 29-gene ERV expression
prognosticator is applied to a separate test set of patients from two other hospitals, the risk
assessment for relapse greatly improves compared to the clinical parameters alone.
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2. Materials and Methods
2.1. Sample Selection

Raw RNA-seq data of tumor epithelium from 106 PCa samples were obtained from the
gene expression omnibus (GEO) database (GSE54460), accompanied with complete clinical
data [1]. A total of 6 duplicates were identified and subsequently removed from further
analysis. The specimens were collected from three different hospitals (Atlanta Veterans
Affairs Medical Center at the Emory School of Medicine, Decatur, VA, USA, Sunnybrook
Health Sciences Center at the University of Toronto, and Moffitt Cancer Center in Tampa,
Tampa, FL, USA).

2.2. Locating Ancestry from Sequence Reads (LASER)

In order to identify the preponderant geographical ancestry of each patient, we used
LASER, which estimates individual ancestry by directly analyzing sequence reads without
calling genotypes [30]. LASER places each sample into a reference principal component
analysis space constructed with 632,958 SNPs of reference individuals, and the estimated
coordinates of the sequence samples reflect their ancestral background. The reads were first
aligned to the NCBI hg19 build (hs37d5.fa) using STAR [31]. Using the SAMtools [32] pileup
command and the genomic regions BED file provided alongside the LASER executable, we
generated pileup files containing annotated regions from the alignments [30,33]. Using the
LASER pipeline, we then predicted the ancestry of each patient by allowing the program
to compute 3 principal components for the reference panel and 20 principal components
for the projection of the study samples. LASER verified the primary geographical ancestry
of the patients and imputed the primary ancestry of patients lacking ancestry information
in the dataset (GSE54460), as previously described [34].

2.3. RNA-Seq Analysis of ERVmap

Following the LASER analysis, patients of primarily Asian ancestry (n = 4) and
samples of low read quality (n = 4) were removed prior to the alignment, resulting in
92 overall patient samples to be analyzed. We developed a pipeline to analyze and count
reads for ERVs found in the ERVmap [17] database, which contains 3220 autonomous
and recently incorporated ERVs, identified in the context of different diseases [17]. Briefly,
raw reads were first trimmed and checked by Trimmomatic [35] to remove the Illumina
adapters. The trimmed reads were then aligned to the human genome reference sequence
(hg38) with STAR [31] using a strict mapping criterion to ensure that reads were counted
only when they mapped uniquely to one location. The ERVmap database contains only
genomic region annotations for ERVs with start and end loci. The BAM file containing
the alignments, together with a BED file containing the ERVmap were used as inputs for
the BEDTools [36] coverage function to generate the number of reads mapping at each ERV
locus, thus producing the raw expression data for the ERVs.

2.4. Transcriptome Analysis of ERVs in Black American and White American PCa Patients

In order to determine ERV expression differences between BA and WA PCa patients in
the tumor samples [1], raw read counts for the regions provided by ERVmap were imported
for use by DeSeq2 [37]. Normalization of the ERV read counts was done by applying the
size factors from the cellular gene expression of the same samples. Briefly, a GTF file
containing the gene annotations from Ensembl was provided as an additional parameter to
the previously mentioned STAR pipeline to produce the raw counts for the cellular genes.
DeSeq2 was used to calculate the size factors after collecting the read counts. The size
factors were then applied to the raw ERV counts to generate the normalized expression
counts, which were then provided as an input for the differential expression pipeline.

2.5. ERV-Targeted Genes

ERVs may modulate the activity of nearby genes [38–40]. Adjacent genes located
within 5000 bp of each significantly differentially expressed ERV (padj < 0.1) were identified
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using the BEDtools [36] closest function. Two inputs were provided, as follows: a filtered
ERVmap BED file containing ERVs with significant differential expression between BA and
WA patients and a BED file containing the gene annotations from Ensembl.

2.6. PCa Tissue Microarrays and Immunohistochemistry

Prostate cancer tissue microarrays (TMAs) of 54 self-reported BA patients and 106 self-
reported WA patients were constructed at the Baylor Department of Pathology and Im-
munology using surgical radical prostatectomy resected specimens (https://www.bcm.
edu/research/atc-core-labs/human-tissue-acquisition-and-pathology (accessed on 14 De-
cember 2021).

Blocks from each TMA were stained with primary antibody for ERV3-1 (Thermo
Fisher CAT # PA5-48577, 1:200) by Crown Bioscience, Inc. Immunohistochemistry was per-
formed on the Bond RX autostainer (Leica Biosystems) by a heat-induced epitope retrieval
treatment in citrate buffer at pH 6.0. Bond Polymer Refine Detection (Leica Biosystems,
DS9800) uses a secondary antibody according to the manufacturer’s standard protocol.
After staining, sections were dehydrated, and films were covered using a Tissue-Tek Prisma
and Coverslipper (Sakura, Japan). Slide scanning was performed on a NanoZoomer Digital
Slide System NDP2.0-HT (Hamamatsu, Japan).

2.7. Statistical Analysis of ERV Protein Expression in TMAs from BA and WA PCa Patients

From the original set of 160 TMA samples, 18 cores that lacked an appropriate amount
of tissue were excluded for ERV3-1. As a result, 52 tumor tissue cores from BA and 90 from
WA patients were quantified using QuPath [41]. Positive pixel counts were computed
for each individual core to quantify the amount of stained tissue on the slides. Percent
positivity was calculated by dividing the number of positive pixels by the total number of
pixels identified for the stain, excluding non-stained background regions. A student’s t test
was used for comparison between the BA and WA tissue microarray data. A p-value < 0.05
was considered significant.

2.8. Selection of ERV Biomarkers for Prognostication of Biochemical Relapse

Normalization of the raw ERV expression counts produced from GSE54460 [1] was
performed by using the size factors obtained from standard cellular gene expression
analysis and processing in the DeSeq2 [37] package as previously described. A variance-
stabilizing transformation (z-score) was then applied to the normalized expression data
for downstream analysis. Samples from the Atlanta VA Medical Center (n = 57) were
selected as the training set to generate the initial ERV panel. A preselection step was
completed by providing individual ERV expression and survival data as the parameters
for a univariate Cox model. ERVs that passed a FDR threshold of 0.10 were selected as
inputs to a Lasso-Cox proportional hazards model, along with time to relapse and event
status using the glmnet [42] package. This model was used to identify ERV markers that
are significantly associated with biochemical relapse time, where the tuning parameter for
the lasso penalization was selected using a leave-one-out cross-validation technique. An
internal 10-fold cross-validation confirmed the selected ERV markers.

2.9. Risk Evaluation

A risk-prediction model was built using ERV expression data from the panel of
selected ERVs + clinical data, including Gleason score, tumor stage, age, and prostate-
specific antigen (PSA), by fitting a Cox proportional hazards model. Gleason scores were
divided into four categories based on the Epstein Grade group [43] prior to model creation.
The PSA data was log-transformed by log(PSA+1) to avoid skewing by extreme outliers. To
generate the initial risk assessment model, samples from the Atlanta VA Medical Center
(n = 57) were once again selected as the training set. Samples were then assigned to
high- and low-risk score groups based on whether the linear predictors from the Cox
proportional hazards model were greater (higher risk) or less (lower risk) than 0. Another

https://www.bcm.edu/research/atc-core-labs/human-tissue-acquisition-and-pathology
https://www.bcm.edu/research/atc-core-labs/human-tissue-acquisition-and-pathology
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risk model, consisting of only the clinical data (Gleason score, tumor stage, age, and PSA),
was produced using the same procedure mentioned above.

The test set for this model consisted of a combined set of patients (n = 35) from two
different hospitals, the Moffitt Cancer Center and the University of Toronto Sunnybrook
Medical Centre. The trained model was applied to the data from the test set, using both the
predictors from the model made with the ERV panel + clinical data and the model made
using only the clinical data.

To compare the performance of the model created with the ERV panel and clinical
data with that of the clinical data alone, the following three measures were used: median
improvement in risk score, integrated discrimination improvement, and net classification
improvement [44].

2.10. Survival Model

As previously mentioned in Section 2.8, the ERVs first underwent a preselection step
through a univariate Cox proportional hazards model. The list of ERVs that survived were
used as inputs for a penalized Lasso-Cox proportional hazards model, which produced a
group of ERVs that, together, had significant prognostic value in determining recurrence.

The group of ERVs selected from the lasso model was provided as an input for a
multivariate Cox proportional hazards model alongside the aforementioned clinical data.
This model produced linear predictors that separated samples into a binary classification
of either high or low risk.

This risk evaluation and the time to recurrence were provided as inputs to the survfit
function in the survival R package to generate the Kaplan–Meier model. Plotting of the
survival curve was done by using the survfit function and the plot function present in the R
standard base library.

3. Results
3.1. ERV Expression Profiles of Tumor-Enriched Samples from Black and White American
PCa Patients

In order to explore whether the ERV expression varies among PCa patients with
different geographical ancestries, we analyzed the tumor-enriched RNA-seq data from
GEO GSE54460 [1] (Tables S1 and S2). Of the 92 samples used, ancestral breakdowns,
confirmed by LASER analysis, were as follows: 27 of primarily African ancestry, 54 of
primarily European ancestry, and 11 of primarily Middle Eastern ancestry. We classified
those of Middle Eastern ancestry (n = 11) and European ancestry (n = 54) under an aggregate
classification of the White cohort (n = 65) because population studies using 1000 genomes
revealed a smaller genetic distance between Middle Eastern and European ancestries when
compared to those of African descent [45,46]. After the alignment, differential expression
analysis was performed on the count data for the ERVs. Of the 3220 autonomous, full
length ERVs from the ERVmap, we identified 12 with a significant differential expression
(padj < 0.1) (Table S3), four of which had a |log2(FC)| > 2 and were upregulated in WA
versus BA patients (Figure 1). Among the four with a high fold-change difference were
members of the ERVK (ERVK9 and ERVK14) and ERVW (W-10) families, and all were
clustered within 50kbp of each other on chromosome 1 (chr1: 205,860,000-295,910,000)
(Figure 2). ERV3-1, which contains an open reading frame and can be studied through
protein expression analysis, was also among the top 12 most significant ERVs identified.
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Figure 1. Four most differentially expressed ERVs among Black and White Americans. ERVs from 92 tumor-enriched
PCa samples were mapped to the ERVmap database. Differential expression analysis and hierarchical clustering analysis
(Euclidean) was performed in DeSeq2 to organize tumor samples based on their ERV transcription profiles and the ancestry
of the PCa patients. The heat map represents the hierarchical clustering of the four significantly differentially expressed
ERVs (padj < 0.1) and had a |log2(FC)| > 2 in BA (n = 27) vs. WA (n = 65). Each column represents one sample and each row
represents a single ERV. The ERV expression is depicted as a color intensity (−2.0 to 4.0) on a log scale; yellow indicates
ERVs with higher expression and blue indicates lower expression. Expression was normalized to the mean of all samples.
In the dendrogram on top, the ancestral origin of each patient is indicated by color. Red indicates patients of predominantly
European (n = 54) or Middle Eastern (n = 11) geographical ancestries while blue represents patients of African ancestry.

3.2. Protein Expression Analysis of ERV3-1 in PCa of BA and WA Patients Using TMAs

Twelve ERVs from the ERVmap were differentially expressed at the RNA level between
the BA and WA patients, including ERV3-1, which was expressed at a significantly lower
level (padj < 0.1) in the BA patients than in WA patients (Figure 3, Table S3). In order to
determine if differential expression of ERVs between people of different ancestry was also
manifested at the protein level, we further investigated ERV3-1. This ERV was selected
because it is not only one of the twelve most significant (padj < 0.1) in the RNA-seq analysis,
but also one of few ERVs that retains an open reading frame, allowing for the investigation
of its protein expression. An ERV3 antibody was applied to a large tissue microarray of
tumor tissue from an independent set of BA (n = 52) (Table S4) and WA (n = 90) (Table S5)
patients, and protein production was scored as percent positive pixels using QuPath, as
described. Representative stains of both tissue microarrays can be found in Figure 3. As
was consistent with the RNA expression data, we found significant differences in the
protein expression for ERV3-1 (p = 2.829 × 10−7, Figure 3).
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positivity in tissue microarrays (TMA) from 52 BA and 90 WA patient samples is also shown on the right. Blue represents
BA while red represents WA.

3.3. Expression of Genes Adjacent to Differentially Regulated ERVs

Numerous studies suggest that LTR elements of ERVs may exert regulatory functions
on nearby genes [47,48]. ERVs serve as cis and trans transcriptional regulators, alternative
promoters, polyadenylation signals for several cellular genes, and splice donors or re-
ceivers [17]. ERVs also contain binding sites for transcriptional factors, such as STAT1 and
p53, which may regulate the expression of their nearby genes [17,39,48,49]. As an ex-
ample, in the CRISPR-Cas9 deletion of four different individual LTR elements in the
MER41 family of ERVs in the human genome, each impaired expression of an adjacent
interferon-stimulated gene [48]. We therefore looked for coordinated expression of adja-
cent genes among ERVs that were differentially expressed between the BA and the WA
PCa patients.

Among the nearby upregulated genes, in concordance with ERVs (i.e., MER61) in
WA patients, was TP53TG1. Studies have shown that this gene plays an important role in
the regulation of various cancers, inducing cell proliferation and inhibiting apoptosis in
pancreatic ductal adenocarcinomas, while inducing apoptosis and increasing sensitivity to
cisplatin in non-small cell lung cancer [50,51]. One of the other nearby genes found to be
upregulated in the WA patients and the nearby significantly different ERVs (ERV #6164,
ERV #6165, ERV #6166, and ERVW-10) was lncRNA ribosomal protein 4 (RP4). This gene
has been identified to have a role in cell proliferation, tumor growth, and early apoptosis
in colorectal cancer cells [52]. The combination of the regulatory effects and cancerous
associations suggests a link between the expression of these elements among patients of
different ancestries.

Of the nearby genes with differential expression downregulated in the BA patients,
in the same direction as the ERVs, was haptoglobin-related protein (HPR). HPR is a high-
affinity hemoglobin-binding plasma protein that has been shown to have an association
between its expression, breast cancer malignancy, and recurrence [53]. Furthermore, it has
been identified as a possible serum marker of lymphomas [54,55].

3.4. Biochemical Relapse Risk Assessment of Selected ERVs in PCa Patients

Classifying patients into those that are at low risk and those that are at higher proba-
bility of disease progression is of importance for patient management. Although Gleason
score, a measure of cellular abnormality, remains an important indicator of disease pro-
gression, clinical parameters alone have shown limited utility in predicting the risk of
biochemical relapse (BCR) after prostatectomy [56]. Fortunately, supplementation of clini-
cal parameters with gene expression data can strengthen the accuracy of a risk assessment.
In a 2014 study, Long et al. identified 24 genes that are differentially expressed in PCas of
dissimilar BCR risk, which can be utilized to enhance the prediction precision and thereby
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improve the clinical management of prostate cancer [1]. Similar analyses focusing on
ERV expression within PCa samples, and its possible association with BCR, have not been
performed to date.

We built a training model using only samples from the Atlanta VA Medical Center,
regardless of ancestry (n = 57), and a testing model using patients (n = 35) from the two
other hospitals, the Moffitt Cancer Center and the University of Toronto Sunnybrook
Research Centre (Table 1).

Table 1. Summary statistics for all samples filtered from GSE54460. Gleason value was assigned as
shown below and ancestries were identified using LASER.

Characteristic Training Set, n = 57 1 Test Set, n = 35 1

Gleason Value
1 (<3) 3 (5.3%) 7 (20%)

2 (3 + 4) 36 (63%) 15 (43%)
3 (4 + 3) 10 (18%) 7 (20%)

4 (>7) 8 (14%) 6 (17%)
Age 62 (56, 65) 61 (57, 66)

Pre-PSA 7 (5, 13) 8 (6, 13)
Ancestry

BA 23 (40%) 4 (11%)
WA 34 (60%) 31 (89%)

Tumor Stage
1 0 (0%) 12 (34%)
2 45 (79%) 19 (54%)
3 11 (19%) 4 (11%)
4 1 (1.8%) 0 (0%)

1 n (%); Median (IQR).

After a preselection step using univariate Cox analysis, the expression levels of
3220 ERVs from samples in the training set were used to build a 29-ERV prognostica-
tor of BCR using a Lasso-Cox proportional hazards model, and the final risk-prediction
model was built by combining this panel of 29 markers with the available clinical data,
including Gleason value, PSA, age, and tumor stage (Table S6). For comparison, we also
built a prediction model using only the previously listed clinical variables by fitting a Cox
proportional hazards model. The linear predictors from both models separated patients
into high- and low-risk groups (Appendix A, Figure A1).

Kaplan–Meier survival analysis, using only clinical parameters, reached a significance
level of p = 1.3252 × 10−5 (Figure A1a). The full model, which incorporated the 29-ERV
panel and clinical data, discriminated the two risk groups of patients for time to BCR at a
much higher significance level of p = 1.797 × 10−19 (Figure A1b). The 29-ERV panel was
internally validated by a 10-fold cross-validation performed by the glmnet [42] package
when creating the Lasso-Cox proportional hazards model [29].

External validation with a separate test set of patients was done by using a combined
set (n = 35) of patients from the two other hospitals, the Moffitt Cancer Center and the
University of Toronto Sunnybrook Research Centre. Briefly, the linear predictors created
from the training set were applied to each patient from the test set. Subsequently, subjects
were divided into BCR risk groups. The clinical model alone had a marginal prognostic
value in the test set (p = 0.05323) (Figure 4a), while a significant prognostic value was
achieved in the combined panel of ERV biomarkers and clinical variables (p = 7.362 × 10−11)
(Figure 4b). The improvement of the full model over the clinical model was further assessed
by using the median improvement in the risk score (score: 0.591, p < 0.001), integrated
discrimination improvement (score: 0.859, p < 0.001), and net classification improvement
(score: 0.472, p < 0.001) [44]. Based on the ROC, the AUC value for the ERVmap model
was 0.878.
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We also performed a 10-fold cross-validation, in which all 92 samples, from both
hospitals, participated in one of ten non-overlapping test sets. In each of the ten validations,
10% of the samples were chosen for the test set and the remaining 90% were selected as the
training sets. This analysis yielded a p-value of 3.077 × 10−16, indicating that the prognostic
value of the biomarkers was widely present among the 92.

4. Discussion

Prostate cancer accounts for more than 34,000 deaths per year among males in the
United States [1,57] with a higher incidence and greater mortality in Black Americans (BA)
as compared to White Americans (WA) [3,58]. The differences in the rate and progression
of diseases between people of different geographical ancestry have been associated with
variations in gene expression [11–13]. However, the association between global ERV
expression and geographical ancestry has, to date, not been investigated in PCa.

One barrier to investigating gene regulation by ERVs is the difficulty in the mapping of
transcripts of the highly repetitive ERV families to unique loci when using the paired-end
100 bp and 150 bp reads typical of Illumina sequencing data. We developed a pipeline to
work around these technological barriers, where instead of allowing the reads to map to
all of the possible genome locations, we force them to map to a single best location. If no
singular genome location can be identified as best match, the read remains unmapped and
is not further analyzed. In the future, if the cost of generating longer reads falls, the yield
of uniquely mapped reads will increase as more SNPs in each read allow for more frequent
unique mapping.

To identify the expression levels of unique ERVs, we used the locations provided in the
ERVmap database, which contains autonomous, more recent ERVs that are more likely to
be transcribed [17]. When ERV expression in the PCa tumor samples of the 27 BA patients
was compared to the 65 WA patients using the ERVmap database, some members of the
ERVK, ERVW, and ERVH families were expressed at significantly different levels in the BA
versus the WA patients (downregulated in BA). MER61, and its nearby gene TP53TG1, were
also identified as downregulated. In a study by Wang et al., it was revealed that MER61 and
LTR10 contain p53 binding sites, which impact the transcriptional network of human tumor
suppressor protein p53 [59]. This suggests a critical role for ERV p53 sites in the direct
regulation of p53 target genes. The HERVK-env (envelope protein) family of ERVs are
among a small number of ERVs with protein-coding potential due to their open reading
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frame. Although controversial, studies suggest that human ERVK expression can stimulate
the innate and adaptive immune response in breast cancer patients [28] where HERVK acts
as a tumor-associated antigen, activating cytolytic T cells (CTLs), interferon production,
and T helper 1 cytokine responses [28]. We identified multiple ERV loci with significantly
different (padj < 0.1) expression rates at a high fold-change difference (|log2(FC)| > 2),
containing multiple ERVK elements, that were upregulated in the WA patients over the BA
patients (Figure 1).

In addition, ERV3-1 was found to be one of the twelve most significantly downregu-
lated ERVs at the RNA level (padj < 0.1) in these 27 BA patients versus the 65 WA patients
(Table S3). ERV3-1 is also one of the few ERVs with an open reading frame, which is
why it was chosen for validation in the tissue microarray analysis. We probed PCa tissue
microarrays from an additional 52 BA and 90 WA patients with an antibody directed to
this protein, which revealed the same direction and magnitude of differential expression
as seen with RNA (p = 2.829 × 10−7) (Figure 3). Furthermore, the biological value of
ERV3-1 has also been seen in its possible tumor-suppressing capabilities in Hodgkin’s
lymphoma patients and upregulation in prostate cancer patients [60]. This observation, in
two independent datasets, reinforces the possibility that the expression differences between
BA and WA ancestries may play a role in predisposition to disease and in the immune
response to tumors [60,61]. Our data indicates that these ancestral predispositions may be
linked to ERV differences.

Among genes and ERVs that were within 5000 bp distance from each other, and both
significantly differentially expressed in the same direction (concordant), we identified two
genes that played a role in various cancer types, TP53TG1 and RP4. The TP53TG1 gene has
been proven to have both cancer inhibiting and cancer promoting effects in different cancer
types [50,51]. The close proximity to the significantly differentially expressed ERVs lends
credence to the idea that ERVs may have a regulatory effect on cancer related genes and
possibly, between individuals of different ancestral backgrounds.

About 25–50% of men diagnosed with prostate cancer have low-grade disease, based
on the PSA levels and clinical staging of prostate biopsies, and the majority of these
patients are assigned to active surveillance without aggressive procedures, such as prosta-
tectomy [6]. Gleason score and other clinical parameters, including age and tumor stage,
are important indicators of disease progression and help to predict which patients can
remain on active surveillance and which patients need further intervention, even after
prostatectomy. However, prognostication using these markers remains imprecise, and the
addition of other biomarkers, such as expression signatures to elevate prediction accuracy,
is highly desirable [1].

As ERVs have been shown to have an underlying difference in expression levels in PCa
patients of different ancestries, which are known to differ in the risk of cancer progression,
we investigated whether ERVs might also predict BCR. Using the same publicly available
RNA-seq data from tumor-enriched samples from PCa patients (GSE54460) [1] that was
used here to identify expression differences in the ERVs between patients of varying ances-
tries, we selected a training set of samples (n = 57) from patients at the Atlanta VA Medical
Center, while the other hospitals were assigned to the test set (n = 35). We built a panel
of 29 ERVs potentially prognostic of BCR, using a Lasso-Cox proportional hazards model.
A final risk-prediction model was built using the scores based on this panel combined
with the clinical parameters. The 29-ERV signature in combination with the clinical data
was a significantly better risk predictor than the clinical data alone, when validated on the
separate test set (Figure 4). The ERV hazards ratio suggest that upregulation of specific
ERVs results in increased risk for recurrence, while others may result in a lower overall
risk (Table S6).

Of the 29 ERVs in the prognosticator, 25 contained elements (ERV1, HERVH-int,
and ERVL–MaLR) that were previously shown to play a role in cancer [62,63] and four
(ERV #1875, ERV #5137, ERV #5270, and ERVK-10) contained ERVK elements, which
may play a role in prostate cancer patients [26,64,65]. Further investigation of other
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ERVs may reveal the effects of ERVs in various disease contexts and their prognostic
effects. As RNA-seq data becomes more abundant in healthcare, so does the importance
of prognosticators in determining the risk scores for patients. ERVs have the potential to
supplement and improve existing prognostic models for determining risk of relapse in
prostate cancer patients.

5. Conclusions

We identified the ERV expression differences in prostate cancer from patients of differ-
ent ancestries to better understand the biological basis for PCa disparities. We identified
ERVs and their nearby genes that had significant concordant expression differences be-
tween the two ancestries and determined the metabolic and immune pathways where
these genes have important functions.

We built a BCR risk-prediction model using clinical data and ERV transcripts. We
found that the combination of ERVs and clinical information outperforms prediction
models based on clinical prognosticators alone. Measuring ERV expression may have
the potential to help physicians to predict which patients would most benefit from active
surveillance or radical therapy. Potentially, ERVs could also be of utility in clinically
relevant prognostic models for other cancers. Ultimately, combining ERVs with other
prognosticators, such as the ones identified by Long et al. [1], and with clinical parameters,
may constitute an even more accurate method of identifying risk. In the future, experiments
to knock out or overexpress ERVs in cell and tissue culture may further advance our
understanding of the consequences of differential regulation of ERVs among people of
different geographical ancestry.
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