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Abstract

Heat shock protein 70 (Hsp70) is a molecular chaperone providing tolerance to heat and other challenges at the cellular and
organismal levels. We sequenced a genomic cluster containing three hsp70 family genes linked with major
histocompatibility complex (MHC) class III region from an extremely heat tolerant animal, camel (Camelus dromedarius).
Two hsp70 family genes comprising the cluster contain heat shock elements (HSEs), while the third gene lacks HSEs and
should not be induced by heat shock. Comparison of the camel hsp70 cluster with the corresponding regions from several
mammalian species revealed similar organization of genes forming the cluster. Specifically, the two heat inducible hsp70
genes are arranged in tandem, while the third constitutively expressed hsp70 family member is present in inverted
orientation. Comparison of regulatory regions of hsp70 genes from camel and other mammals demonstrates that
transcription factor matches with highest significance are located in the highly conserved 250-bp upstream region and
correspond to HSEs followed by NF-Y and Sp1 binding sites. The high degree of sequence conservation leaves little room for
putative camel-specific regulatory elements. Surprisingly, RT-PCR and 59/39-RACE analysis demonstrated that all three hsp70
genes are expressed in camel’s muscle and blood cells not only after heat shock, but under normal physiological conditions
as well, and may account for tolerance of camel cells to extreme environmental conditions. A high degree of evolutionary
conservation observed for the hsp70 cluster always linked with MHC locus in mammals suggests an important role of such
organization for coordinated functioning of these vital genes.
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Introduction

Among multiple changes in cellular activity and physiology, the

most remarkable event in stressed cells of all organisms studied so

far is the rapid production of a highly conserved set of stress

proteins usually termed ‘‘Heat Shock Proteins’’ or Hsps because

these proteins were originally described in Drosophila melanogaster

after temperature elevation [1]. Hsps are broadly classified based

on their molecular weights and specific functions, and there are

several excellent reviews on Hsps classification and function [2–4].

In our previous work we concentrated mainly on the role of Hsp70

family in cellular and whole body adaptation of diverse animals to

high temperature and other extreme environmental factors [5,6].

There is a wealth of experimental data suggesting that members of

Hsp70 family play an important role in whole body adaptation of

animals to adverse environmental conditions [3,7,8]. It should be

emphasized that the Hsp70 family is most diverse and includes

many stress-inducible as well as constitutive proteins playing

various roles in different cell compartments and under different

cellular conditions [4,8,9].

After the discovery of heat shock proteins in Drosophila, we

decided to investigate whether there is a correlation between the

general pattern of Hsps synthesis and the whole body adaptation

in various animals inhabiting thermally contrasting conditions. In

our studies we usually compared Hsps synthesis in close species

existing under conditions that differ sharply in mean temperature

and other parameters of their ecological niches [5–7].

Specifically, it has been demonstrated that in poikilothermal

organisms high constitutive thermotolerance usually correlates

with high contents of Hsp70 in the cells under normal

physiological conditions, while inducible thermotolerance develops

due to the accumulation of Hsps and especially Hsp70 after

temperature elevation [3,7,10].

Our studies of heat shock response (HS) were not restricted to

insects and other poikilothermic organisms. Previously, we

investigated protein synthesis in different human tribes and in

camel Camelus dromedarius [6,11]. Camel is a homoiothermal

organism perfectly adapted to extreme conditions of arid zone,

while its tolerance to heat is accompanied by a significant elevation

of the whole body temperature [12]. Previously, one of us (ME)

investigated by 2D electrophoresis Hsp70 family proteins in the

camel and demonstrated constitutive and differential synthesis of

these proteins in cells of different origin [6]. Furthermore,

comparison of S35-methionine incorporation into the proteins of
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camel and human lymphocytes at different temperatures showed

that camel cells incorporate significantly more label at extreme

temperature [6]. Subsequently, other authors demonstrated that

unlike fibroblast cells isolated from mice (L929), camel fibroblasts

are more resistant to high temperature. Camel cells survive 42uC
heat stress in a time-dependent manner and even show growth on

par with those cells that were kept at the control temperature of

37uC [13].

Keeping all these data in mind, we continued our studies in

order to reveal general organization of camel (C. dromedarius) major

hsp70 cluster playing an important role in cellular and possibly

whole body adaptation to extreme conditions. Such hsp70 clusters

linked with major histocompatibility complex (MHC) class III

region have already been described in detail in several mammalian

species including mice, rats, humans etc. [14–16]. Gene

duplications leading to the three-gene cluster linked with MHC

occurred early in the evolution because such a structure was

described in frogs [17]. It was of significant interest to compare the

organization of these clusters isolated from different organisms.

It is known that, while in humans there are 17 members of

HSP70 family genes located at different genomic sites, among all

these genes only three HSP70 family members form a cluster [14].

These three genes located next to the MHC region attracted much

attention, probably because they are major players providing

cellular response to high temperature and other extreme

conditions [3,8,9]. In all mammalian species studied, two inducible

members of this cluster hsp70A1A and hsp70A1B are found in

tandem orientation separated by 7–9 kb [14–16]. The third gene

termed hsp70-like (hspA1L) contains an intron shared by all

mammalian species investigated and found in close vicinity to

hspA1A gene located in inverse orientation. Inducible members of

the cluster in all mammals studied so far contain heat shock

elements (HSEs) and a canonical TATA box in their regulatory

regions, while hsp70A1L gene does not contain either HSEs or

canonical TATA in the promoter and, hence, other regulatory

elements are apparently responsible for its constitutive expression

in various tissues with a high level in testis.

Recently, the transcriptome of C. dromedarius has been

annotated, which includes 23602 putative gene sequences

searched for hits in the NIH Mammalian Gene Collection Project

(http://mgc.nci.nih.gov) to identify matches to full-length cDNA

sequences of Homo sapiens, Mus musculus, Rattus norvegicus, and Bos

taurus. There are transcripts homologous to hspA1A and hspA1B in

the transcriptome [18]. However, the genome of C. dromedarius has

not yet been sequenced, and the general organization of the cluster

and the promoter structure of hsp70 family genes of this

exceptionally thermoresistant organism are unknown.

Herein we provide the detailed structure of the C. dromedarius

hsp70 genes cluster, and compare regulatory regions of hsp70 genes

of this animal with available data on the organization of

corresponding hsp70 genes in other mammals studied in this

respect. To this end, we obtained a lambda phage genomic library

from C. dromedarius. Analysis of clones containing hsp70-homolo-

gous sequences enabled us to isolate and sequence the whole

cluster containing the three genes belonging to the hsp70 family.

The analysis showed that the organization of hsp70 cluster in camel

is similar to that described in other mammals. Since we failed to

detect specific features in regulatory regions of camel hsp70 genes it

is questionable whether expression of these genes may be

implicated in extraordinary high heat tolerance of camel at the

cellular and organism level.

Results

General organization of C. dromedarius hspA1 cluster
In the course of this analysis, we have isolated 24 lambda clones

after screening of a genomic library, and following preliminary

PCR and restriction studies we have chosen two phages, which

apparently include two overlapping halves of the investigated gene

cluster (Figure 1A). The first phage, named ‘‘C3’’, contains two

genes, identified as orthologues of human HSPA1L and HSPA1A,

located in inverted orientation, and a short 59-fragment of the

third gene homologous to human HSPA1B, separated by

approximately 7.6 kb from the 39-end of hspA1A. The second

Figure 1. General organization of the hsp70 cluster in camel and human. A – restriction maps of two overlapping recombinant phages, C3
and N10, used in the analysis (H – HindIII, X – XhoI, R – EcoRI, B – BamHI). B – general structure of the C. dromedarius HspA1 cluster. C – general
structure of H. sapiens HSPA1 cluster provided for comparison. The length of the intergenic region between hspA1A and hspA1B genes is given in bps.
doi:10.1371/journal.pone.0027205.g001

Mammals Have Similar Structure of hsp70 Cluster
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phage (‘‘N10’’) contains only hspA1B, with long 59- and 39-flanking

regions, and overlaps with the phage C3 by 59-flanking and 59-

coding regions of the hspA1B gene. The detailed organization of

hsp70 gene cluster of C. dromedarius was determined by subcloning

and sequencing of these overlapping recombinant lambda clones

isolated from genomic library, submitted into GenBank (Accession

Number JF837187.1) and is depicted in Figure 1B. The

arrangement of the cluster is in general similar to that described

in human and other mammalian species. However, the distances

between individual hsp70 copies in camel are smaller and, hence,

the whole cluster is more compact than in humans (Figure 1B, C).

Southern analysis of genomic DNA
We have performed Southern blot analysis of C. dromedarius

genomic DNA with hspA1A radioactively labeled probe to obtain

independent data on the structure of the hsp70A1 cluster and total

number of hsp70-related genes. Figure 2 shows that restriction

fragment length corresponds to the size of the fragments mapped

within phages C3 and N10 exploiting the same restriction

endonucleases, and hence these data fully corroborate our results

based on phage analysis. Additional weakly hybridizing bands

probably correspond to other hsp70-related genes, such as hspA6 or

grp78, which are located in other regions of the camel genome.

Structure of ORF and UTR regions of hspA1 genes of C.
dromedarius

Detailed functional organization of the camel hspA1 cluster

including the boundaries of transcribed regions has been

determined by phage DNA sequencing combined with the results

of 39- and 59-RACE analysis with outward orientated primers

specific to hspA1A/B or hspA1L.

ORFs of all three hsp70 genes investigated have the same length

equal to 1926 bp, including the stop codon. In the case of

inducible hspA1A and hsp70A1B tandemly arranged genes, TAG

serves as a stop codon, while in the case of hspA1L, which encodes

a constitutively expressed protein, the stop codon is represented by

TAA. HspA1A/B genes in camel do not have introns, resembling

in this respect the corresponding genes from human and other

mammals.

On the other hand, the hspA1L gene has two exons 173 bp and

2254 bp in length respectively. As in other mammals, the ORF in

this gene starts in the second exon. While the boundaries of the

hspA1L intron are identical in camel and other mammals, the

intron length varies between species, due to the presence of

transposable element insertions, microsatellite repeat expansions

etc. In the camel, the intron is significantly smaller than in humans,

i.e. 1169 bp vs. 2898 bp (Figure 1C). As expected, intron sequence

conservation between species is much lower (60–70% identity)

than that of coding and 59-regulatory sequences.

ORFs of hspA1A and hspA1B are almost identical and differ by

only four substitutions, one of which is silent. All differences in

amino acid (a.a.) content between the two proteins are restricted to

the N-terminus of the protein, which contains the ATP-binding

domain (positions of a.a. substitutions: 55, 70 and 145) and, hence,

may have some functional significance. In general, our data

corroborate the previously demonstrated exceptionally high

conservatism of hsp70 genes in mammals as well as in other

eukaryotic organisms [3,4]. Interestingly, camel hspA1A contains

only three substitutions in comparison with the corresponding Bos

taurus protein. Table 1 summarizes the data on homology of camel

hspA1 genes (ORF) compared with the corresponding ORFs of

other organisms. Characteristically, hspA1L ORF exhibits only

82% identity with hspA1A and hspA1B ORFs, while at the protein

level the identity reaches almost 90%. It is noteworthy that in this

case most of the substitutions are found in the C-terminal domain,

corroborating previous results that demonstrated comparatively

high variability of this domain in the entire hsp70 gene family.

Furthermore, 59-UTRs of hspA1A and hspA1B exhibit 82%

Figure 2. Southern blot of camel genomic DNA with PCR-probe
to hspA1A/B genes. 1 – BamHI, 2 – XbaI, 3 – XbaI/BamHI, 4 – EcoRI. M –
fragment length markers.
doi:10.1371/journal.pone.0027205.g002

Table 1. Identity of camel hspA1 genes with orthologues
from other organisms.

Gene symbol Species Identity level in %

A1A (1923 bps) Bubalus bubalis 96

Bos indicus 96

Homo sapiens 95

Xenopus laevis 73

A1B (1923 bps) Bubalus bubalis 96

Bos indicus 96

Homo sapiens 95

A1L (1923 bps) Sus scrofa 94

Equus caballus 94

Bos taurus 93

Homo sapiens 91

Xenopus laevis 73

ygrp78 or BiP (1216 bps, partial CDS) Equus caballus 96

Bos taurus 96

yGrp78 taken from different mammalian species exhibits 100% identity at
amino acid level.

doi:10.1371/journal.pone.0027205.t001

Mammals Have Similar Structure of hsp70 Cluster
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identity. Interestingly, 174 bp upstream from the actual ORF

start, an additional ATG codon is located. However, in camel the

next triplet is represented by the stop codon TAG and, hence, this

ATG codon is apparently not functional. It is noteworthy that

similar silenced ATG codons exist within UTRs of hspA1A

described in other mammals, e.g. Bos taurus and Bubalus bubalis

(Access. Nos. NM_174550.1 and HM025989.2). However, in all

these cases the surrounding context of these ATG codons is not

optimal for initiation, and probably these codons are also silent

(Table 2). On the other hand, in contrast to camel, in Bos taurus

and Bubalus bubalis there are no stop codons following this ATG,

and uninterrupted ORFs 369 bp in length do exist. As expected,

the 39-UTRs of C. dromedarius hspA1A and hspA1B genes are more

variable than 59-UTRs and exhibit only 50% homology. In both

hspA1A/B genes, the 39-UTR contains a canonical polyadenylation

signal (AATAAA), while the 39-UTR of hspA1L contains an

AGTAAA signal found also in orthologous genes of rats and

humans. 39-RACE analysis using specific primers (Table 3)

demonstrated that all three C. dromedarius hspA1 type mRNAs are

effectively polyadenylated.

The structure of intergenic regions in C. dromedarius
hspA1 cluster

In camel, transcription start sites and polyA sites of hspA1 genes

were localized by 59- and 39-RACE analysis and comparison of

RACE fragments with known phage DNA sequences.

The region between hspA1A and hspA1L genes is organized in C.

dromedarius as an inverted repeat that constitutes only 414 bp, while

in the human hsp70 cluster the distance between the corresponding

transcription starts is equal to 505 bp.

Promoters of hspA1A and hspA1B genes in C. dromedarius contain

canonical TATA-boxes, while the promoter of hspA1L apparently

belongs to the TATA-less type of promoters. In this respect, camel

does not differ from close species (Bos taurus) and humans. In mice

and rats, promoters of hspA1A and hsp70A1B genes do not include

the classic sequence (TATAAA) but contain an alternative motif

TTAAAG [15].

We performed comparative analysis of promoter sequences of

camel hspA1 family group genes with the corresponding regulatory

regions of orthologous genes from diverse mammalian species.

Intergenic regions between the hspA1A and hspA1L inverted gene

pair, as well as regions of comparable length upstream from

hspA1B, were extracted from GenBank for Bos taurus, Equus caballus,

Sus scrofa, Homo sapiens, Mus musculus, Canis familiaris, Pteropus

vampyrus, and Tursiops truncatus, and aligned with the corresponding

Table 2. The structure of Hsp70 translation start and
surrounding sequences in various organisms.

Species ATG context

Kozak cons. gccgcca/gccatgga/ct

Camel hspA1A ggcaca ggcatgg cg

Camel hspA1B ggcaca ggcatgg cg

Bubalus hspA1A ggcacc ggcatgg cg

Bos hspA1A ggcacc ggcatgg cg

Homo hspA1A ggaacc ggcatgg cc

Homo hspA1B ggcacc ggcatgg cc

Camel hspA1A si agcttc acgatgt ag

Bos hspA1A si agttgc gttatgt tg

Bubalus hspA1A si agcttc acgatgt tg

Nucleotides disturbing optimal context for translation initiation are marked by
bold shrift. The position of ATG is underlined. si – upstream (silenced) ATG.
Kozak cons. – consensus sequence optimal for translation initiation [29].
doi:10.1371/journal.pone.0027205.t002

Table 3. List of primers used in the experiments.

Name Sequence Position Application

CamORF1 CATCGGCATCGACCTGGGCA 59-hspA1A/B inward RT-PCR for detection of

CamORF2 CACTGATGATGGGGTTACACAC 39-hspA1A/B inward transcription,of hspA1A/B coding

region amplification fragment

for Southern hybridization

RT-1A GATCAACGACGGAGATAAGCCG 59-hspA1A/B inward RT-PCR for detection

RT-2A GCGTAAGACTCCAGGGCGTTC 39-hspA1A/B inward of transcription

RT-1L AAAGCAGGTCAGGGAGAGCGA 59-end of the hspA1L

second exon inward

RT-2L GGAGGGATTCCAGTCAGGTCA 39-end of the hspA1L RT-PCR for detection

second exon inward of transcription

5-RACE-A1 CGTGTTCTGCGGGTTCAGCG 59-hspA1A/B 59-RACE-analysis of hspA1A/B

5-RACE-A2 TGGTGCGGTTGCCCTGGTCG outward transcripts

3-RACE-A1 CTGGAGTCTTACGCCTTCAACA 39-hspA1A/B 39-RACE-analysis of hspA1A/B

3-RACE-A2 CCGACAAGAAGAAAGTGCTGGA outward transcripts

5-RACE-L1 TCAGTACCATAGAAGAGATTTCCT 59-end of the hspA1L 59-RACE-analysis of hspA1L

5-RACE-L2 ACCTTGGGCTTGCCTCCTTCA second exon outward transcript

3-RACE-L1 ATGAAGAGTGCTGTGAGTGATGA 39-end of the hspA1L

3-RACE-L2 AAGGGCAAGATTAGTGAGTCTGA second exon 39-RACE-analysis of hspA1L

3-RACE-L3 GAGAAAGGAATTGGAGCAGGTG outward transcript

doi:10.1371/journal.pone.0027205.t003

Mammals Have Similar Structure of hsp70 Cluster
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camel sequences by ClustalW. The 250-bp region immediately

upstream of the TATA box of hspA1A/B genes exhibits the

highest degree of conservation, likely reflecting the location of the

most important regulatory elements. Outside of this region, the

degree of sequence variability increases considerably in all

species. Fig. 3 shows the results of conserved motif search done

as described in Materials and Methods. Matches with highest

significance are located in the 250-bp upstream region and

correspond to HSE followed by NF-Y and Sp1 binding sites, an

arrangement which is repeated twice in both hspA1A and hspA1B

in each of the nine species shown in Fig. 3. For hspA1L, only the

Sp1 binding site could be detected. The high degree of sequence

conservation leaves little room for putative camel-specific

regulatory elements in the 250-bp region upstream of the TATA

box. Indeed, there are only five single-nucleotide differences

shared between hspA1A and hspA1B from camel but not other

mammals, however none of these apparently affect recognition of

binding sites for known transcription factors, as may be seen from

Fig. 3.

It is necessary to mention that promoter of camel hspA1B gene

besides a couple of canonical HSEs contain three additional

candidate HSEs in the interval from 900 to 2900 bps upstream of

the TATA signal (Figure 3). One of these distant HSEs located at

2015 bps position from the transcription start represents a

canonical structure GAAAGTTCCTGAA while the two other

HSEs located at 1164 and 710 bps from the transcription start also

contain three units with two substitutions in one of the units. These

candidate HSEs may be responsible for differential expression of

Figure 3. Comparison of 59-regulatory regions of hspA1 genes from camel and other mammals. (A) Identification of conserved motifs in
the region between hsp1L and hsp1A (designated LA) and upstream of hspA1B (designated B) from Camelus dromedarius (C), Bos taurus (B), Sus scrofa
(S), Equus caballus (E), Homo sapiens (H), Mus musculus (M), Pteropus vampyrus (P), Tursiops truncatus (T), and Canis familiaris (D). Transcription start
sites are indicated by arrows, and ATG codons – by triangles. Intron sequences of hsp1L genes (located 16 bp upstream from the ATG codon, as
indicated by a vertical dotted line) were removed to reduce sequence heterogeneity. Motifs are numbered in the order of identification by MEME,
and numbers at the bottom indicate approximate base pairs in the alignment. (B) Matches between selected motifs from panel A and binding sites of
known transcription factors in the TRANSFAC database identified by TOMTOM. Shown are the logos with the corresponding p- and q-values for each
TF. The remaining motifs do not yield any matches to binding sites of known TFs.
doi:10.1371/journal.pone.0027205.g003

Mammals Have Similar Structure of hsp70 Cluster
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hspA1A and hspA1B genes in various tissues and under different

temperature conditions.

The 39-UTR regions of hspA1A/B also exhibit a high degree of

conservation between species: for instance, there are only five

nucleotide substitutions in the 39-UTR of hspA1A from camel and

from its closest relative Lama pacos (the 59-regulatory region from

this species is missing from the database). It remains to be seen

whether any of these mismatches could influence the levels of

hspA1 expression in camel.

Differential expression of hspA1A, hspA1B and hspA1L in
camel cells of different origin

RT-PCR experiments exploiting primers homologous to

hspA1A, hspA1B and hspA1L genes revealed the corresponding

transcripts both in lymphocytes and heart muscle (Figure 4).

Interestingly, transcription of all three members of the hsp70

family, including the constitutively expressed hspA1L, has been

demonstrated by RT-PCR experiments under normal physiolog-

ical conditions (Figure 4). After temperature elevation (43uC,

20 min), an additional fragment 1253 bp in length has been

detected with the first primer pair (Table 3). Subsequent

sequencing demonstrated that this fragment corresponds to cDNA

of grp78 gene (JF837188.1), another glucose-regulated member of

hsp70 family (Figure 4).

As expected, transcripts of hspA1A, hspA1B and hspA1L are

evident after HS using all three pairs of primers (Figure 4). The

data accumulated in the course of RT-PCR studies have been

corroborated by 59- and 39-RACE experiments. The latter

approach revealed 59- and 39-untranslated fragments homologous

to all three hspA1-type genes both in control (non-heated sample)

and after temperature elevation, strongly suggesting that these

genes are actively transcribed after heat shock and under normal

physiological conditions. Since sequencing revealed characteristic

differences in 59- and 39-UTRs of hspA1A and hspA1B genes, the

presence of fragments homologous to both hspA1A and hspA1B

enables us to conclude that both genes are expressed in

lymphocytes.

An independent series of RT-PCR experiments with RNA

isolated from heart muscle also detected significant signals with

primers homologous to hspA1A, hspA1B and hspA1L genes

(Figure 4B). Therefore, one may conclude that hspA1A/B and

hspA1L genes are expressed to some extent both in camel

lymphocytes and heart muscle tissue under normal conditions.

This conclusion was subsequently confirmed and extended by

analysis of proteins isolated from camel heart muscle (Figure 5)

and identified by peptide sequencing (MALDI-fingerprinting).

Molecular weights of hspA1A/B and hspA1L proteins, determined

by electrophoresis and mass-spectrometry, precisely coincide with

values obtained by conceptual translation (70.14 kD for hspA1A,

70.11 for hspA1B and 70.31 for hspA1L). The analysis enabled us

to detect hspA1A/B proteins which are almost identical and,

hence, can not be further resolved, as well as hspA1L and grp75

which also belongs to Hsp70 family and is expressed in

mitochondria (data not shown). It is evident that hspA1A/B and

hspA1L are represented by bands of similar intensity and, hence,

corresponding loci are expressed approximately to the same extent

in camel muscle under normal physiological conditions.

Discussion

The hsp70 gene family represents one of the most ancient and

highly conserved protective systems present in all living organism

studied so far. However, although individual members belonging

Figure 4. A – RT-PCR with total RNA from camel’s blood. B – RT-
PCR with total RNA from camel’s heart muscle. 1 – primers CamORF1/2
to hspA1A/B genes and grp78, 2 – primers PT-1A and RT-2A to hspA1A/B
genes, and 3 – primers RT-1L and RT-2L to hspA1L (see Table 3). RT –
negative control of RT-PCR, samples without reverse transcriptase.
doi:10.1371/journal.pone.0027205.g004

Figure 5. Hsp70 family proteins isolated from camel heart. The
identity of proteins was determined by trypsin fingerprinting and
microsequencing. Lane 2 – molecular weight marker.
doi:10.1371/journal.pone.0027205.g005

Mammals Have Similar Structure of hsp70 Cluster
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to this family exhibit exceptionally high levels of homology even

when distant organisms are compared, various phylogenetic

groups of organisms exhibit strikingly different trends in the

evolution and organization of hsp70 gene clusters. Thus, in our

previous studies on Diptera species including representatives of

virilis group species of Drosophila and various species belonging to

Stratiomyidae family, we have shown that the hsp70 gene cluster is

involved in active rearrangement processes, and closely related

species and even geographical strains may differ by number and

relative position of individual hsp70 copies comprising the cluster

[10,19]. On the other hand, lizard species belonging to different

families judging by Southern analysis preserve practically identical

structural organization of the hsp70 cluster [20].

In mammals, the major hsp70 cluster has a very peculiar

structure. In all mammalian species studied in this respect, the

cluster contains two inducible members of hsp70 family arranged

as tandem pair, and one hsp70-like gene which is constitutively

expressed with a high level in testis, and is located in inverse

orientation (Figure 1). Interestingly, in various mammalian species,

as well as in Xenopus, the hsp70 cluster is linked with MHCIII

locus [14,17]. Linkage of these two vital loci is probably not

random, taking into account similar structure of peptide binding

sites of hsp70 and MHC. Based on these results, it was suggested

that MHC locus may have been formed by recombination

between an immunoglobulin-like C-domain and the peptide-

binding domain of hsp70-like genes at the early stages of vertebrate

evolution [16,17].

Along these lines, multiple recent studies implicate the Hsp70

family of proteins in modulation of the innate immune response of

an organism [21]. High conservation of hspA1 loci organization

observed in the genomes of all mammalian species studied may

provide specific chromatin conformation necessary for optimal

functioning of vital MHC and hspA1 loci involved in antigen

processing and antigen presentation.

Furthermore, recently we have compared the ability of Hsp70

preparations of different origin to protect model animals from

endotoxic shock and modify response of myeloid cells to

lipopolysaccharide (LPS) challenge. Our experiments demonstrat-

ed that in several cellular models exogenous Hsp70 preparations

isolated from camel’s muscle were significantly more efficient than

human recombinant Hsp70 in innate immunity modulation and

stimulation of endogenous protective mechanisms [22].

Our analysis of the hspA1 cluster in the camel did not reveal

camel-specific features, either in general organization of the cluster

or in the structure of regulatory regions of hsp70 genes. The high

degree of sequence conservation leaves little room for putative

camel-specific regulatory elements in the promoters studied. It is

noteworthy, however, that we detected three additional non-

canonical but possibly functional HSEs in the regulatory region of

hsp70A1B, which may account for higher levels of hsp70 expression

observed for camel cells in comparison with comparable cells of

other organisms [6,13]. Furthermore, a few substitutions observed

in camel’s hspA1-group proteins may lead to higher stability of the

proteins.

Although it is widely accepted that Hsp70 plays an important

role in thermoresistance, we can not exclude other factors that

may contribute to heat tolerance exhibited by camel cells. Thus it

was demonstrated that expression levels of Akt, an important

prosurvival kinase, are uniform in camel fibroblasts, irrespective of

the temperature, while stress activated kinase (Jnk) was induced in

these cells by temperature elevation [13]. It is also possible that

activated heat shock transcription factor (HSF1) exists in camel

cells at normal physiological temperatures, providing constitutive

expression of heat inducible members of Hsp70 family, as was

previously described for desert lizard species [20].

In accordance with this supposition, our RT-PCR and 59- and

39-RACE experiments clearly demonstrated that all hspA1-group

genes are expressed both after heat shock and under normal

physiological conditions. These results corroborate our previous

results showing that temperature elevation increases the level of

constitutively expressed Hsp70 in camel cells [23].

It is not clear, however, what regulatory motifs are responsible

for high level of expression of camel constitutive hsp70 genes

lacking HSEs after HS.

General structure of hsp70 cluster of camel is very similar to the

organization of hsp70 clusters described in other mammalian

species described so far. A high degree of evolutionary conserva-

tion observed for the hsp70 cluster always linked with MHC locus

in mammalian species suggests an important role of such

organization for coordinated functioning of these vital genes. All

three hsp70 genes comprising the cluster are actively transcribed in

different camel tissues not only after heat shock, but under normal

physiological conditions as well, and may account for tolerance of

camel cells to extreme environmental conditions.

Our data strongly suggest that the three hspA1 genes are likely to

functionally interact with each other and probably with linked

MHC locus in many processes, both positively and negatively,

including tolerance to various deleterious factors and innate

immunity modulation. Their role in these and other processes

should be uncovered in future by exploring various cellular and

animal models, enabling to directly investigate the interactions

between these vitally important genomic loci.

Materials and Methods

Animals
All procedures involving live animals were reviewed and

approved by the Animal Care and Use Committee of The

Severtsev Institute of Problems of Evolution and Ecology RAS

where animals were housed. All animal experiments were

performed in accordance with the guidance of the National

Institutes of Health for care and use of laboratory animals, NIH

Publications No. 8023, revised 1978. Certification for this project

has been provided by Animal Care and Use Committee of

Severtsev Institute of Problems of Ecology and Evolution RAS.

(Protocol No. 229/131).

DNA isolation, genomic library construction, screening
and clone analysis

Genomic DNA was isolated from C. dromedarius frozen heart

muscle by standard method with phenol/chloroform extraction

described in [24]. Frozen heart muscle was obtained as a by-

product by our expedition to Ashhabad (Turkmenistan) in 2005

from a meat factory where camel meat is produced for food

industry.

Genomic library was prepared by partial Sau3A digestion of

camel DNA with subsequent ligation into the BamHI site of

lambda Dash phage arms (Stratagene). Before ligation, restriction

mixture was separated by ultracentrifugation in sucrose gradient

for removal of short restriction fragments, so that the resulting

fraction contained fragments 14–23 kb in length that were used

for cloning. Gradient parameters were: 10–40% sucrose in 1 M

NaCl, 20 mM Tris-HCl pH 8.0 and 5 mM EDTA with

ultracentrifugation at 26,000 g for 24 hours. Ligated DNA was

packaged into phage particles using lambda packaging extracts

Gold (Stratagene). Recombinant phages were selected, amplified

and screened using E. coli XL-Blue MRA (P2) host strains. For
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screening of the genomic library, a fragment of human HSPA1A

cDNA obtained by PCR amplification with specific primers

indicated in Table 3 was used as a probe after random prime

labeling. Positive recombinant phages containing the presumptive

camel hsp70 genes were investigated by restriction analysis and

hybridization, and fragments of interest were subcloned into the

phagemid pBluescript SK+ for sequencing. Clones were se-

quenced using Sequenase II (Amersham) and ABI 377 sequencer.

Sequences were assembled manually and aligned using NCBI

Blast and Vector NTI.

Southern blotting
Southern blot analysis of C. dromedarius genomic DNA was

performed as described [24]. Briefly, ten micrograms of each DNA

sample was digested with different restriction endonucleases. After

agarose gel electrophoresis, gels were treated for 15 min in 0.25 M

HCl and then incubated twice in denaturing buffer (1.5 M NaCl,

0.5 M NaOH) for 30 min. After 30 min incubation in neutrali-

zation buffer (1.5 M NaCl, 0.5 M Tris-HCl pH 7.5), gels were

capillary-blotted onto nylon membranes and fixed by UV cross-

linking using the UV Stratalinker 2400 (Stratagene). Hybridization

and washing temperature was 65uC. To detect hsp70-containing

sequences, the Southern blot was probed with the PCR-fragment

of previously cloned C. dromedarius hspA1A gene obtained with

primers indicated in Table 3.

Isolation of lymphocytes from venous blood and heat
shock conditions

The camel blood was obtained from the jugular vein of adult

animal and EDTA was immediately added to prevent coagulation.

The blood cells were separated on Ficoll gradient as described

[25]. Lymphocyte fraction was isolated, washed in 3X PBS by

spinning at 100 rpm for 10 min to get rid of thrombocytes, and

heat shocked in a Petri dish (43uC 20 min) when necessary.

RNA isolation and RT-PCR and RACE analysis
Total RNA from heat shocked and control lymphocytes and

heart muscle was prepared by the standard method with TRIZOL

(Invitrogen). Synthesis of first strand of cDNA from total RNA and

subsequent amplification of specific interval cDNA fragments were

performed using MINT cDNA kit (Evrogen) in accordance with

manufacturer’s instructions. For specific 59- and 39-end amplifi-

cation (RACE analysis), outward primers to 59- and 39-fragments

of hspA1A/B and hspA1L coding regions were used (Table 3). PCR

conditions depended on primer annealing time and temperature.

All reactions contained 1.25 units of Encyclo DNA polymerase

(Evrogen) per probe, 1.5–2.5 mM MgCl2, 0.2 mM of each dNTP,

suitable quantity of DNA and 10 pM of each primer in 50 ml (total

volume). Primers specific for different camel hsp70 genes are given

in Table 3. The resulting PCR fragments were cloned into

pTOPO-II vector (Invitrogen) and sequenced using plasmid-

specific primers. In all RT-PCR experiments, probes containing

all components but lacking reverse transcriptase were routinely

used as negative controls.

Purification of camel proteins belonging to Hsp70 family
and fingerprinting analysis

200 grams of heart muscle tissue were homogenized in low salt

buffer (20 mM NaCl, 20mM Tris pH 7.5, 0.1 mM EDTA, 0.1%

Triton X-100) and centrifuged at 4000 g 45 min. Supernatant was

filtered through filter paper and placed onto chromatography

column with DEAE sepharose (GE), and Hsp70 family proteins

were partially purified as described [26] with slight modifications.

Three isolated proteins belonging to Hsp70 family were separated

by standard SDS-PAGE method and identified by trypsin

fingerprinting and a database search as previously described

[27]. Protein identification was done by trypsin fingerprinting

using surface-enhanced laser desorption ionization-time-of-flight-

mass spectrometry (MALDI-TOF-MS) followed by NCBI data-

base search using Profound search engine. Proteins used in these

experiments were obtained as gel slices after SDS-PAGE

electrophoresis stained with Coomassie Blue (G-250). In-gel

trypsin proteolysis was performed as described in [7].

Sequence analysis
Sequences from genome databases included into the analysis

were as follows:

Bos taurus (cow) heat-shock 70-kilodalton protein 1A (hspA1A)

gene, hspA1A-D allele, complete cds GenBank: AY149619.1

Bos taurus heat-shock 70-kilodalton protein 1A (hspA1A) and

heat-shock 70-kilodalton protein 1B (hspA1B) genes, complete cds

GenBank: AY149618.1AY149618.1

Sus scrofa (pig) DNA sequence from clone PigI-711D2, complete

sequence GenBank: AL773559.16

Equus caballus (horse) hspA1A-A1L GenBank WGS AAWR-

02009906.1:9200-12000, contig 2.9905, and hspA1B AAWR-

02009906.1:20000-22000

Homo sapiens (human) heat shock 70 kDa protein 1-like

(HSPA1L), RefSeqGene on chromosome 6 NCBI Reference

Sequence: NG_011855.1

Mus musculus (mouse) DNA sequence from clone RP24-186I6 on

chromosome 17, complete sequence GenBank: CU457784.5

Pteropus vampyrus (large flying fox) hspA1A-A1L GenBank WGS

ABRP01095227, contig 1.95226, and hspA1B ABRP01287833,

contig 1.287832

Tursiops truncatus (bottlenosed dolphin) hspA1A-A1L GenBank

WGS ABRN01328970 contig 1.328969, and hspA1B ABRN-

01328973, contig 1.328972

Canis familiaris (dog) hspA1A-A1L GenBank WGS NW_

876254:1286040-1288108 chromosome 12 contig, and hspA1B

NW_876254:1300000-1302000.

Regulatory regions of hsp70 genes were searched for common

motifs by MEME, and identification of matches to known

transcription factors has been performed in the TRANSFAC

and JASPAR databases by TOMTOM in the MEME suite

(http://meme.nbcr.net) [28].
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