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Abstract: Salivary gland tumors are relatively uncommon neoplasms that represent less than 5% of
head and neck tumors, and about 90% are in the parotid gland. The wide variety of histologies and tu-
mor characteristics makes diagnosis and treatment challenging. In the present study, Matrix-assisted
laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to discriminate the
pathological regions of patient-derived biopsies of parotid neoplasms by metabolomic and lipidomic
profiles. Fresh frozen parotid tissues were analyzed by MALDI time-of-flight (TOF) MSI, both in
positive and negative ionization modes, and additional MALDI-Fourier-transform ion cyclotron
resonance (FT-ICR) MSI was carried out for metabolite annotation. MALDI-TOF-MSI spatial seg-
mentation maps with different molecular signatures were compared with the histologic annotation.
To maximize the information related to specific alterations between the pathological and healthy
tissues, unsupervised (principal component analysis, PCA) and supervised (partial least squares-
discriminant analysis, PLS-DA) multivariate analyses were performed presenting a 95.00% accuracy
in cross-validation. Glycerophospholipids significantly increased in tumor tissues, while sphin-
gomyelins and triacylglycerols, key players in the signaling pathway and energy production, were
sensibly reduced. In addition, a significant increase of amino acids and nucleotide intermediates,
consistent with the bioenergetics request of tumor cells, was observed. These results underline the
potential of MALDI-MSI as a complementary diagnostic tool to improve the specificity of diagnosis
and monitoring of pharmacological therapies.

Keywords: mass spectrometry imaging; MALDI-MSI; metabolomics; lipidomics; parotid tumor;
spatial segmentation

1. Introduction

Salivary gland disorders are rare diseases that occur at a rate of about 1–3 cases per
100,000 people per year (in different countries) [1,2] and represent around 5% of all head and
neck neoplasms [3]. The parotid gland is the most frequent site of salivary gland tumors,
although only 25% of such lesions are malignant [4]. Benign parotid neoplasms, although
not aggressive, are excised in most cases, since they can continue to grow, compressing
adjacent regions and becoming very painful as well as unsightly, and, at worst, turn
malignant [5].
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Due to the heterogeneous cellular compositions of parotid tissues and the diverse
histological appearances of tumor lesions, the recognition of a tumorous mass, as well
as the distinctions between tumor types, can be difficult, particularly based on the usual
diagnosis tools, such as fine-needle aspiration (FNA) or a core needle biopsy [6]. In addition
to the overlapping morphologic patterns of salivary gland tumors, the complex evaluations
of cytological parameters in the various histotypes do not follow (in some cases) the
canonical morphological correlations, making an accurate differential diagnosis between
benign and malignant lesions, particularly impervious. Metabolic reprogramming is a
hallmark of cancer and can be exploited for both diagnostic and therapeutic purposes [7,8].
In this regard, mass spectrometry-based metabolomics allows for monitoring the main
molecular changes related to cancer cell signaling, disease onset mechanisms, and tumor
progression [9], and has increasingly emerged as a valid tool for early diagnosis and to
identify predictive biomarkers of cancer [10]. Gas chromatography–mass spectrometry
(GC–MS) and nuclear magnetic resonance (NMR) are usually employed for metabolome
analyses of clinical samples [11,12], even though high-resolution mass spectrometry (HRMS)
in direct infusion (DI) and/or coupled to ultra-high performance liquid chromatography
(UHPLC–HRMS) has become the gold standard for metabolomics [13]. However, these
approaches require tissue homogenization prior to extraction and analysis and are unable
to provide detailed information concerning the spatial localization of key metabolites. For
this purpose, mass spectrometry imaging (MSI) offers an unbiased, label-free visualization
of the spatial distributions of biomolecules; it is highly useful to correlate the modulations
with different histopathological features of the tumor tissue, allowing further insights into
the tumor environment [14], and improving or individuating individualized therapies.

It has been demonstrated that lipid metabolism perturbations are associated with
many cancer types [15], including oral cavity cancer [16,17]. The complex lipid metabolic
changes may be explained by the high proliferation rate of cancerous cells leading to contin-
uous cell membrane synthesis, disruption of energy homeostasis, sustained cell signaling,
and protein distribution, with variations in the serum or tissue levels of phospholipid
components [18]. In this regard, previous MALDI imaging data have highlighted global
lipidomic changes associated with head and neck cancer tissues [17,19]. In particular,
phosphatidylcholine distribution (visualized through MSI) has specifically increased in
the Warthin tumor lymphoid stroma of salivary glands [20]. The Warthin tumor is the
second most common tumor of the parotid gland (after pleomorphic adenoma) with a
bilayer of epithelial cells resting on a dense lymphoid stroma. Adenolymphoma, also
called papillary cystadenoma lymphomatosum papilliferum, is the only benign neoplasm
of salivary glands associated with smoking and arises from the incorporation of lymphoid
tissue in the parotid gland and induction of cystic and oncocytic changes by inflammatory
infiltration. Besides lipid metabolism, alterations in nucleotide biosynthesis, glycolysis,
the tricarboxylic acid (TCA) cycle pathway, and amino acid metabolism represent com-
mon traits of tumor cells [21]. Specifically, the metabolome profiles in the saliva of the
neck and oral cancer have suggested an alteration, mainly in the metabolic pathways of
glycogenic and ketogenic amino acids [16,22]. Despite this, polar metabolite imaging of
pathological regions in parotid neoplastic tissues has been poorly investigated. In this
regard, the concomitant investigation of multi-omic alterations induced by tumor cells
could improve the comprehension of the complex metabolic mechanisms involved in the
physiopathology of salivary gland tumors. Hence, in the present study, MALDI-MSI was
applied to investigate metabo-lipidomic differences between healthy and tumor regions
of patient-derived biopsies of the parotid tissues. Applying spatial segmentation and
unsupervised and supervised multivariate approaches for data analyses, characteristic
metabo-lipidomic signatures have been assigned to tumor and healthy adjacent parotid
sections, underlying the growing energy request and continuous cellular proliferation of
neoplastic tissues.
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2. Results and Discussion
2.1. Histopathological Assessment

All corresponding H&E-stained sections were independently annotated by an expert
pathologist (L.C.) to distinguish the tumor and non-tumor areas by their histological
features (Figure S1).

Microscopic descriptions of Warthin tumor areas exhibited variable proportions of
papillary-cystic structures lined with bilayer of epithelial cells, consisting of oncocytic
columnar cells with underlying discontinuous basal cells and resting on dense lymphoid
stroma with variable germinal centers. Lymphocytes are typically small–mature and have
high nucleus–cytoplasm ratios with deeply-stained nuclei and relatively small amounts of
cytoplasms. Oncocytes show densely granular cytoplasms (stuffed with mitochondria on
electron microscopy), centrally located nuclei, and small nucleoli.

To test the applicability of the approach to different histopathological conditions,
pleomorphic adenoma and salivary glands with chronic sialoadenitis were also included in
the study. The section of pleomorphic adenoma has epithelial, myoepithelial, and stromal
components. The histopathologic appearance shows a tumor with a lobulated growth
pattern with tubular and acinar structures formed by the epithelial component mixed with
myoepithelial cells in the background of the myxoid stroma. In chronic sialoadenitis, the
histopathological area shows various degrees of acinar destruction, fibrosis, and chronic
and active periductal inflammation with lymphoid aggregates and focal granulomatous
reaction. Ducts may undergo squamous and mucous metaplasia. Microliths can be seen.

The normal parotid salivary gland tissue consists of secretory acini, serous and mu-
cous, and intercalated ducts, which are lined by a simple low cuboidal epithelium and
surrounded by myoepithelial cells. The glands are divided into lobules by connective tissue
septa and there are adipocytes between acini.

2.2. MALDI-MSI of Polar and Non-Polar Metabolites in Parotid Sections

In the current study, MALDI-MSI methods were developed to map both lipids and
metabolites in consecutive sections of 22 fresh frozen human parotid tissue samples
(n = 11 patients). DHB and 9-AA were selected for MALDI-positive and -negative, re-
spectively, MSI analyses, to detect the highest possible number of metabolites.

Metabolome and lipidome profiling by MALDI-TOF MSI were performed at a lateral
resolution of 50 µm. For the technical repeatability evaluation of the experiments, three tech-
nical replicates of two biological replicates were performed. In this regard, the coefficient
of variation (CV%) relative to the average peak area was 15.19% ± 14.49 for the positive
ion mode and 6.09% ± 6.72 for negative ionization, indicating satisfying repeatability for
both metabolite classes.

The molecules imaged were initially identified using the accurate mass information
provided by MALDI-FT-ICR MS, which delivers sub-ppm mass accuracy and high resolu-
tion (>100,000) together with isotopic fine structure (ISF) of the FT-ICR measurement. This
results in resolving metabolite peaks with similar nominal masses in full-scan mode pro-
viding accurate molecular formula measurements [23]. The annotation was also performed
“off-tissue” by UHPLC–HRMS/MS [24,25] (Supplementary Materials Section S1).

A total of 354 compounds were annotated, 301 lipids and 53 metabolites (Table S1),
which were mainly divided into: amino acids, peptides, and analogues (30%); carbohy-
drates and carbohydrate conjugates (4%); carboxylic acids and derivatives (6%); purine
and pyrimidines derivatives (2%); quinolines and derivatives (0.3%), fatty acyls (FA) (14%);
glycerophospholipids (GP) (glycerophosphocholines 31%, glycerophosphoethanolamines
12%, glycerophosphoglycerols 0.7%, glycerophosphoinositols 2%, glycerophosphoserines
8%, and glycerophosphates 6%), sphingolipids (SP) (13%), sterol lipids (ST) (4%), and
glycerolipids (GL) (9%).
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2.3. Exploratory Analysis, Classification, and Model Validation
2.3.1. Principal Component Analysis (PCA)

The principal component analysis (PCA) was carried out on the auto-scaled training
set for MALDI, both positive and negative TOF-MSI datasets. A clear difference between the
pathological and healthy spectra is evident in the positive ion mode scores plot (Figure 1a).
The PC2 (explained variance 20.54%) and PC4 (explained variance 8.36%) spaces separated
almost perfectly the two types of tissues. The interpretation of the value of the loadings is
complicated due to the high density of the information.
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Figure 1. Principal component analysis (PCA) results of MALDI-positive and -negative TOF-MSI
data analysis. (a) PC2 vs. PC4 scores with loadings plots and (b) PC2 and PC4 score images for
patient 3 compared with the histological image for the positive ion mode MSI dataset. (c) PC3 vs.
PC4 scores with loadings plots and (d) PC3 and PC4 score images for patient 3 compared with the
histological image for the negative ion mode MSI dataset. PCA was performed using pre-processed
spectra from the training set. Loadings obtained from PCA were applied to the images of the training
set. Abbreviations: H&E, Hematoxylin and Eosin staining; P, pathological tissue; H, healthy tissue.

The obtained loadings were applied to the images of both training and test sets in
order to build score maps. The score maps obtained by the application of PC2 and PC4
loadings to the training set presented a clear difference between the pathological and
healthy sets (Figure S2). However, patient 4 and patient 5 tissues did not seem to follow
the general trend. The discrepancies may be due to the different tumor histology of patient
5 (pleomorphic adenoma). The scores patterns found on the test set are comparable with
those of the training set (Figure S3). The PC2 and PC4 score maps for patient 3 are reported
as an example in Figure 1b.

A clear difference between the pathological and healthy tissues is present for the
negative ion mode spectra and reported in the object-level score plot (Figure 1c). The
spaces of PC3 (explained variance 13.94%) and PC4 (explained variance 2.93%) show the
two clusters using the median spectra. The score maps resulting from the application of
loadings obtained by PCA are reported in Figures S4 and S5 for the training and test sets,
respectively. The training score images show intensity differences between healthy and
pathological tissues. This difference is less strong for the test set. However, this trend
may reflect the different tumor histological types of patients 2 and 11, part of the test set,
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diagnosed as chronic sialoadenitis. The score maps of both pathological and healthy tissues
for patient 3, showing a strong difference between the two types, are reported in Figure 1d.

2.3.2. Partial Least Squares-Discriminant Analysis (PLS-DA)

The partial least squares-discriminant analysis (PLS-DA) model was built using the
median spectra of the entire image for the training set in order to discriminate between
pathological and healthy tissues. Then, the optimal model was applied to the images of
both the training and test sets. The optimal number of latent variables (nLVs), and so
the optimal model, was selected in order to maximize the accuracy and minimize the
classification error in cross-validation. Both images, pathological and healthy, collected on
a specific patient were left out at each iteration.

Variable importance in projection (VIP) indices were calculated for each model. The
variables with VIP scores > 2 are displayed in Figure 2 for both positive and negative modes.
Then, a new model was calculated using only the VIP-based selected variables. The PLS-DA
performances for both positive and negative ion modes, respectively, for training, cross-
validation, and the test set, are reported in Table 1. Sensitivity and specificity are defined
with respect to the healthy class. The optimal model was found at 3 LVs for the positive ion
mode analysis, resulting in 100% accuracy, sensitivity, and specificity in cross-validation.
Selecting the variables based on the VIP scores—so reducing the number of predictors to
441—the accuracy, sensitivity, and specificity were 100% in cross-validation for 1 LV. For the
negative ion mode, the optimal model for the entire range was found using 3 LVs, leading
to accuracy, sensitivity, and specificity of 92.68%, 100.00%, and 85.71%, respectively, in
cross-validation. Reducing the variables to 245, the performances of the optimal model,
built using 3 LVs, improved to 100% for accuracy, sensitivity, and specificity. Accuracy,
sensitivity, and specificity for the test set were calculated over the entire image considering
the classification of each pixel. The heterogeneous nature of the pathological tissues makes
these values less reliable per se. So, it is important to consider the classifications maps
reported in Figures S6–S9 for the positive ion mode analysis and in Figures S10–S13 for
the negative ion mode analysis. The percentage of correctly classified pixels is reported
for each image. For the positive ion count analysis, comparing the classification maps
with the staining images, it is evident that reducing the number of variables improves the
localization of the pathological pixels (Figures S8 and S9). All tissues diagnosed as the
Warthin tumor were correctly classified for both training and test sets. However, some
pixels were misclassified for the healthy tissue of patient 2, but the classification improved,
reducing the number of variables. As previously mentioned, this may be connected to the
different tumor histologies of the tissues. In addition, the pathological tissue for patient
11 presented correctly classified pixels localized in specific regions.

For the negative ion mode analysis, the number of misclassified pixels increased
reducing the number of variables. However, all images of the training set were correctly
classified when all predictors were used. By observing the maps for the test set (Figure S11),
it is evident that the model cannot identify the pathology of patient 11.

2.4. Spatial Segmentation of MALDI-MSI Data and Specific m/z Values Colocalize with Healthy or
Tumor Parotid Region

To further obtain unsupervised clustering of the non-tumor and tumor regions, the
intra-tissue heterogeneity was visualized by the spatial segmentation approach. The
segmentation map represents the spatial molecular information of a sample without any
prior histological knowledge [26] and displays a molecular profile (different m/z values
corresponding to molecules) associated with each cluster [27]. MALDI-TOF MSI datasets
were used for the spatial segmentation analysis. The spatial segmentation algorithm was
applied to each tissue. All pixels with similar spectra were grouped into two and four
colored clusters. All pixels corresponding to the same cluster were represented by the
same color. The spatial segmentation was consistent with the histopathological stain and
annotation, which enabled distinguishing the tumor from healthy adjacent parotid regions,
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as well as the epithelial or connective tissues, as reported in Figures 3a–c and 4a–c, for
patient 3, as representative tissue.
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Table 1. Partial least squares-discriminant analysis (PLS-DA) of MALDI-positive and -negative
TOF-MSI data. Classification results in training, leave-one-patient-out cross-validation, and test
steps. The models were applied to the images. Sensitivity and specificity refer to the healthy classes.
Abbreviations: CV, cross-validation; nVar, number of variables; nLVs, number of latent variables.

MALDI-Positive TOF-MSI

Range nVar nLVs Accuracy (CC%) Sensitivity (%) Specificity (%)

Training and cross-validation (CV)

Training CV Training CV Training CV

Full 23,694 3 100.00 100.00 100.00 100.00 100.00 100.00
VIP 441 1 100.00 100.00 100.00 100.00 100.00 100.00

Test set

Full 69.00 76.31 64.44
VIP 69.00 76.31 64.44

MALDI-Negative TOF-MSI

nLVs nLVs nLVs Accuracy (CC%) Sensitivity (%) Specificity (%)

Training and cross-validation (CV)

Training CV Training CV Training CV

Full 30,327 3 100.00 92.68 100.00 100.00 100.00 85.71
VIP 245 3 100.00 100.00 100.00 100.00 100.00 100.00

Test set

Full 68.04 90.68 53.72
VIP 68.04 90.68 53.72
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Table 2. List of statistically relevant annotated metabolites derived from PLS-DA and/or a spatial seg-
mentation analysis. Detailed parameters for the tentative annotation are reported in Tables S2 and S3.
(↑, Up-regulation in Tumor; ↓, Down-regulation in Tumor).

Compound m/z Adduct Molecular
Formula VIP Score Pearson Correl.

Coeff. (r)
Modulation in

Tumor

CAR 16:0 400.3 [M+H]+ C23H45NO4 2.580 ↓
Cer 42:2;O 632.6 [M+H]+ C42H81NO2 2.188 ↑
DG O-36:4 603.5 [M+H]+ C39H70O4 2.001 ↓
LPC 15:0 480.3 [M-H]− C23H48NO7P 2.172 ↓
LPC 16:0 496.3 [M+H]+ C24H50NO7P 2.078 ↓
PC 30:0 744.4 [M+K]+ C38H76NO8P 0.563 ↑
PC 32:0 772.5 [M+K]+ C43H82NO8P 2.032 0.702 ↑
PC 32:1 770.5 [M+K]+ C40H78NO8P 2.007 ↑
PC 34:1 798.5 [M+K]+ C42H82NO8P 0.687 ↑
PC 34:3 756.5 [M+H]+ C42H78NO8P 0.622 ↑
PC 32:2 or PE 35:2 730.5 [M+H]+ C40H76NO8P 2.036 ↑
PC 33:2 or PE 36:2 744.5 [M+H]+ C41H78NO8P 0.563 ↑
PC 34:2 758.5 [M+K]+ C42H80NO8P 2.282 0.679 ↓
PC 38:3 812.6 [M+H]+ C46H86NO8P 0.563 ↑
PC 21:1 578.4 [M+H]+ C29H56NO8P 2.169 ↑
PC 25:1;O 650.4 [M+H]+ C33H64NO9P 0.503 ↓
PC O-32:2 551.5 [M+H]+ C35H66O4 3.525 ↓
PC O-42:6 870.6 [M+Na]+ C50H90NO7P 0.519 ↓
PC O-44:5 900.7 [M+Na]+ C52H96NO7P 2.086 ↓
PE 34:0 718.5 [M-H]− C39H78NO8P 0.592 ↑
PE 36:3 742.5 [M+H]+ C41H76NO8P 0.610 ↑
PE 40:2 800.5 [M+H]+ C45H86NO8P 0.742 ↑
PE 42:7 818.4 [M+H]+ C47H80NO8P 2.198 ↑
PE O-38:6 750.5 [M+H]+ C43H76NO7P 2.045 0.681 ↓
PS O-30:2 712.4 [M+Na]+ C36H68NO9P 0.633 ↓
PS 36:1 524.3 [M-H]− C24H48NO9P 0.552 ↑
SM 44:1;O2 881.6 [M+K]+ C49H99N2O6P 4.523 ↓
SM 41:2;O2 821.6 [M+Na]+ C46H91N2O6P 2.425 ↑
SM 43:2;O2 827.6 [M+H]+ C48H95N2O6P 2.079 ↓
SM 36:1;O2 731.6 [M+H]+ C41H83N2O6P 2.011 0.667 ↓
SM 38:1;O2 781.5 [M+Na]+ C43H87N2O6P 2.617 0.681 ↓
SM 34:2;O2 723.5 [M+Na]+ C39H77N2O6P 2.055 0.680 ↓
SM 38:0;O2 761.5 [M+H]+ C43H89N2O6P 2.001 ↓
TG 54:4 883.7 [M+H]+ C57H102O6 2.092 ↓
TG 53:2 895.7 [M+Na]+ C56H104O6 2.149 ↓
TG 52:2 881.7 [M+Na]+ C55H102O6 2.551 ↓
TG 54:3 907.7 [M+Na]+ C57H104O6 2.198 ↓
TG 56:5 909.7 [M+H]+ C59H104O6 2.001 ↓
TG 58:9 929.7 [M+H]+ C61H100O6 2.265 ↓
FA 18:2 279.2 [M-H]− C18H32O2 0.529 ↓
FA 20:4 303.2 [M-H]− C20H32O2 0.544 ↓
FA 22:6 327.2 [M-H]− C22H32O2 0.519 ↓
FA 18:0 283.2 [M-H]− C18H36O2 2.023 ↓
Glutamine 145.0 [M-H]− C5H10N2O3 0.662 ↑
Glutamate 146.0 [M-H]− C5H9NO4 0.521 ↑
ADP 426.0 [M-H]− C10H15N5O10P2 2.034 ↑
AMP 346.0 [M-H]− C10H14N5O7P 2.049 0.623 ↑
UMP 323.0 [M-H]− C9H13N2O9P 2.089 ↑
GMP 362.0 [M-H]− C10H14N5O8P 0.521 ↑
Xanthine 151.0 [M-H]− C5H4N4O2 2.013 ↑
Hypoxanthine 135.0 [M-H]− C5H4N4O 2.038 0.628 ↑
Cytidine 242.0 [M-H]− C9H13N3O5 0.553 ↑
Aspartate 132.0 [M-H]− C4H7NO4 2.002 0.563 ↑
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Figure 3. Molecular distribution of lipid species between the tumor and healthy regions of patient-
derived parotid sections. (a) Optical image and (b) Hematoxylin and Eosin (H&E) image of parotid
tissue with the pathologist’s annotation of the regions. (c) Bisecting the K-means segmentation
map generated from the MALDI-positive TOF-MSI dataset. (d) MALDI-MS images of relevant
lipids measured in positive ion mode, comparing the distribution between tumor and healthy re-
gions of the parotid tissue. [PC 30:0+K]+, m/z 744.49; [PC 32:0+K]+, m/z 772.59; [PC 32:1+K]+,
m/z 770.55; [PC 34:1+K]+, m/z 798.54; [PC 34:3+H]+, m/z 756.56; [PC 32:2 or PE 35:2+H]+, m/z
730.53; [PC 33:2 or PE 36.2+H]+, m/z 744.57; [PC 38:3+H]+, m/z 812.62; [PC 21:1+H]+, m/z 578.41;
[PE 36:3+H]+, m/z 742.53; [PE 40:2+H]+, m/z 800.55; [PE 42:7+H]+, m/z 818.47; [SM 41:2;O2+Na]+,
m/z 821.66; [LPC 16:0+H]+, m/z 496.43; [PC 34:2+K]+ m/z 758.57; [PC 25:1;O+H]+, m/z 650.46; [PC
O-32:2+H]+, m/z 551.51; [PC O-42:6+Na]+, m/z 870.65; [PC O-44:5+Na]+, m/z 900.74; [PE O-38:6+H]+,
m/z 750.54; [SM 44:1;O2+K]+, m/z 881.66; [SM 43:2;O2+H]+, m/z 827.68; [SM 36:1;O2+H]+, m/z
731.60; [SM 38:1;O2+Na]+, m/z 781.59; [SM 34:2;O2+Na]+, m/z 723.57; [SM 38:0;O2+H]+, m/z 761.60;
[TG 54:4+H]+, m/z 883.77; [TG 53:2+Na]+, m/z 895.77; [TG 52:2+Na]+, m/z 881.76; [TG 54:3+Na]+, m/z
907.79; [TG 56:5+H]+, m/z 909.79; [TG 58:9+H]+, m/z 929.76. Detailed parameters for tentative annota-
tion are reported in Table 2 and Table S2. Scale bar = 2 mm. Color scale bars are shown as percentages
of the maximum intensity and were adjusted for each ion image to show a clear distribution. Data
were normalized to the total ion count (TIC) of each individual spectrum. Lateral resolution, 50 µm.
Abbreviations: T, tumor region; NT, non-tumor region; OE: oncocytic epithelial cells.
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Figure 4. Molecular distribution of non-polar and polar metabolites between tumor and healthy
regions of patient-derived parotid sections. (a) Optical image and (b) Hematoxylin and Eosin (H&E)
image of parotid tissue with the pathologist’s annotation of the regions. (c) Bisecting the K-means
segmentation map generated from the MALDI-negative TOF-MSI dataset. (d) MALDI-MS images of
relevant lipids and metabolites measured in negative ion mode, comparing the distribution between
tumor and healthy regions of the parotid tissue. [LPC 15:0-H]−, m/z 480.32; [FA 18:2-H]−, m/z 279.24;
[PE 34:0-H]−, m/z 718.54; [PE 34:0-H]−, m/z 718.54; [PS 36:1-H]−, m/z 524.33; [PS 36:1-H]−, m/z 524.33;
[FA 20:4-H]−, m/z 303.22; [FA 22:6-H]−, m/z 327.20; [FA 18:0-H]−, m/z 283.27; [Glutamine-H]−, m/z
145.07; [Glutamate-H]−, m/z 146.05; [ADP-H]−, m/z 426.04; [AMP-H]−, m/z 346.06; [UMP-H]−, m/z
323.06; [GMP-H]−, m/z 362.06; [Xanthine-H]−, m/z 151.02; [Hypoxanthine-H]−, m/z 135.04; [Cytidine-
H]−, m/z 242.06; [Aspartate-H]−, m/z 132.04. Detailed parameters for the tentative annotation are
reported in Table 2, Tables S2 and S3. Scale bar = 2 mm. Color scale bars are shown as percentages
of maximum intensity and were adjusted for each ion image to show a clear distribution. Data
were normalized to the total ion count (TIC) of each individual spectrum. Lateral resolution, 50 µm.
Abbreviations: T, tumor region; NT, non-tumor region; OE: oncocytic epithelial cells.

Subsequently, colocalized m/z values were correlated to the specific ROI of the seg-
mentation map by applying Pearson’s correlation. Based on this approach, only m/z values
with high correlation coefficients (≥0.5) were selected (Table 2).

The segmentation pipeline was able to confirm nine m/z values that discriminated
between tumor and healthy groups in PLS-DA and revealed additional molecular distinc-
tions within the tumor and non-tumor regions. In the positive ion mode, the selected ion
images m/z 742.53, 744.49, 744.58, 756.56, 772.59, 798.54, 800.55, 812.62, and 870.65 were
correlated to the tumor tissue, while m/z 650.46, 712.46, 723.56, 731.60, 750.53, 758.57, and
781.58 were localized in the non-tumor adjacent region. Regarding the MALDI-negative
MSI analysis, m/z 132.03, 135.04, 145.06, 146.04, 242.06, 346.06, 362.05, 524.33, and 718.54
were distributed in the pathological region, and m/z 279.24, 303.22, and 327.20 in the healthy
region (Figures 3d and 4d).

2.5. Spatial Discrimination of Metabolome and Lipidome Profiles in Parotid Gland Tumor Tissues
by MALDI-MSI

This study aimed to highlight spatial-omics signatures able to discriminate between
the non-tumor and tumor regions of parotid biopsies by integrating MALDI-MSI and two
computational evaluation strategies, PLS-DA and spatial segmentation. Table 2 reports
the putative annotation of lipids and metabolites with a VIP score > 2 and/or Pearson’s
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correlation coefficients≥ 0.5, which were most influential for the separation between tumor
and healthy tissues. Detailed information for annotation is reported in Tables S2 and S3.
The representative images of peaks (m/z) with significantly different signal intensities in
the tumor and non-tumor areas are shown in Figures 3d and 4d.

2.5.1. Lipidome Differences between Tumor and Non-Tumor Areas of Parotid Biopsies

The radical modification of lipid metabolism is one of the most distinctive features of
cancer and plays a fundamental role in cell growth, cell signaling, and survival in chang-
ing environments [28]. Glycerophospholipids, such as phosphatidylcholines (PCs) and
phosphatidylethanolamine (PEs), were among the main contributors to region separation.
PC 21:1, PC 30:0, PC 32:0, PC 32:1, PC 32:2 or PE 35:2, PC 33:2, PC 34:1, PC 34:3, PC 38:3,
and the ether-linked PC O-42:6 increased in the tumor microenvironment compared with
the adjacent normal tissue. These findings are in good agreement with previous studies
that have proposed the spatial confinement of PCs to specific cancer models [29–31]. It
is well known that PCs are the most predominant components of phospholipids for bi-
ological membranes; PC metabolism is altered in the onset and development of many
tumors [32,33]. In particular, the elevated levels of PC 32:1 and PC 34:1 have been positively
correlated to the cancerous areas of colorectal, prostate, and breast cancer tissues [29–31].
Interestingly, PC 32:0 was previously found discriminatory in the Warthin tumor region of
benign salivary gland tumor tissues analyzed by MALDI-MSI [20]. In addition, PE 34:0,
PE 36:2, PE 36:3, PE 40:2, and PE 42:7 have presented increased expressions in the parotid
tumor tissues, consistent with the PE behavior observed in other cancer types, including
the trend of PE 36:2 observed in breast tumor xenografts analyzed by MALDI-MSI [34].

Conversely, the distribution patterns of PC 34:2, PC O-38:4, and PE O-38:6 were
reduced in the parotid tumor regions, in accordance with a previous MALDI-MSI lipidomic
analysis in the same cancerous model of two patient-derived biopsies [19].

Moreover, the levels of Lysophosphatidylcholines (LPC) 16:0 decreased in the tumor
in comparison to the adjacent healthy tissue. This result is consistent with previous
relevant findings in which LPC 16:0 significantly decreased in laryngeal cancer serum
samples and prostate cancer tissues, highlighting the early diagnostic potential of this lipid
biomarker [33,35]. This point can be supported by the mutual conversion of PCs and LPCs.
In fact, upregulating the PC level, which may come from LPC conversion, the LPC level for
the tumor decreases [33].

Interestingly, the dysregulations of several sphingomyelins (SMs) and triacylglycerols
(TGs) were observed, which have never (or poorly) been investigated for other forms of
oral and neck tumors [17,19,36].

All SMs statistically significant (SM 44:1;O2, SM 43:2;O2, SM 36:1;O2, SM 38:1;O2,
SM 34:2;O2, SM 38:0;O2) except SM 41:2;O2, were downregulated in the parotid tumor
regions. Sphingolipids are essential bioactive components of the cell membrane, and
their metabolisms, produce bioactive signaling molecules that modulate fundamental
functions within the signal transduction networks in cancer cells [37]. In this regard, the
decrease in the levels of SMs in cancer tissues may be associated with the activation of
sphingomyelinase by the metabolic products of arachidonic acid, as previously stated for
prostate and bladder cancers [38–40]. However, in other forms of cancer, such as breast
and colorectal cancers, the levels of SM in the tumor region were significantly higher
than in peritumor tissue and normal tissue, due to the reduced activity of the alkaline
sphingomyelinase, which converts SM to ceramide [41].

Remarkably, a higher level of arachidonic acid (FA 20:4), together with two other fatty
acids, FA 18:2 and FA 22:6, were observed in the non-tumor region compared with adjacent
cancerous parotid tissue.

Compared to normal tissue, parotid cancer tissues had a lower content of TGs, in
particular TG 54:4, TG 53:2, TG 52:2, TG 54:3, TG 56:5, and TG 58:9. These findings are in
line with the rapid degradation of TG for energy production and enhanced synthesis of
membrane lipids, necessary for the rapid proliferation of cancer cells [41].
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2.5.2. Metabolome Differences between Tumor and Non-Tumor Areas of Parotid Biopsies

As cancer is known to affect metabolic pathways and intermediate products, effective
monitoring of these changes can provide vital clues in cancer diagnostics. Salivary metabo-
lite profiling by the LC–MS and NMR platforms is emerging to diagnose or screen oral
cancer [16,22]. However, to the best of our knowledge, no prior study has evaluated spatial
metabolome modulation directly in relation to parotid neoplastic tissue sites. In the present
study, the comparison between tumor and healthy regions of the parotid tissues confirmed
the differential regulation of metabolic pathways involved in the biosynthetic substrate
production for increased cell proliferation; most of these metabolites were consistent with
previously reported salivary biomarkers. Among the amino acids, glutamine m/z 145.06 and
glutamate m/z 146.04, previously associated with oral cavity carcinoma [42,43], significantly
increased in the parotid tumor region. This is consistent with the recognized importance of
glutamine in the bioenergetics request of cancerous cells [9]. Moreover, upon its conver-
sion to glutamate, glutamine provides a key source of carbon for the TCA cycle [44]. An
increased level of aspartate m/z 132.03 suggested that the glutamate metabolism was also
affected in tumor tissue [16]. Among purine metabolism, a change in the abundance of
hypoxanthine m/z 135.03 and xanthine m/z 151.021 in cancerous tissue was confirmed [43].
Hypoxanthine is an upstream metabolite in the nucleotide biosynthetic pathway and, to-
gether with the upregulation of cytidine m/z 242.08, adenosine monophosphate (AMP)
m/z 346.06, adenosine diphosphate (ADP) m/z 426.043, guanosine monophosphate (GMP)
m/z 362.05, uridine monophosphate (UMP) m/z 323.05, indicate a possible increase in the
nucleotide metabolism [45]. Overall, the metabolomic profile carried out by MALDI-MSI
points out a significant modulation of key markers of parotid cancer and crosstalk with
multiple molecular pathways.

3. Materials and Methods
3.1. Participants and Sample Collection

The study population consisted of 11 patients subjected to surgical resection be-
tween November 2020 and January 2022 in the Department of Otolaryngology, DEA III
Liv. Nocera-Pagani, Salerno (SA), Italy, for parotid tumors. According to the diagnostic
protocols, participants had been previously diagnosed with Warthin tumor (7 subjects),
pleomorphic adenoma (1 subject), and salivary gland sites from chronic sialoadenitis
(3 subjects). None of the patients included in the study received pharmacological therapies
or radiotherapy prior to surgery. Immediately after surgical resection, the 22 biopsies
(n = 11 for tumor and n = 11 for healthy tissues) were quickly snap-frozen and stored
at −80 ◦C. Demographic characteristics and clinical data of the patients are reported in
Table 3:

Table 3. Demographic and clinical data of the patients.

Parotid Tumor Subjects

Age, median (range) 64 (43–78)
Sex (M/F) 3/8

Tumor histological type (patient classification
number):

Warthin Tumor (1, 3, 4, 7, 8, 9, 10)
Pleomorphic adenoma (5)
Chronic sialoadenitis (2, 6, 11)

3.2. Chemicals

Unless otherwise described, all solvents and additives were LCMS grade and pur-
chased by Merck (Darmstadt, Germany).

3.3. Tissue Sample Preparation for MALDI-MSI

The parotid samples were sectioned using a cryostat microtome (Leica CM1950, Leica
Microsystems, Wetzlar, Germany) at a thickness of 12 µm, at −20 ◦C. Tissue sections were
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thaw-mounted onto indium tin oxide (ITO)-coated glass slides (Bruker Daltonics, Bremen,
Germany) and stored at −80 ◦C until analysis.

3.4. Sample Preparation for MALDI-MSI Analysis of Lipids and Metabolites

ITO slides with mounted parotid sections were removed from−80 ◦C storage and were
immediately dried in a vacuum desiccator for 1 h before the MALDI matrix application.
Optical images were acquired before the matrix application using a reflecta® MF5000
scanner (reflecta® gmbh, Eutingen im Gäu, Germany) with HistoView Tissue Scanner II
software v1.00.90. Moreover, 2,5-dihydroxybenzoic acid (DHB) was used as the matrix
for the positive ionization mode MALDI-MS imaging at a concentration of 15 mg/mL
in a solution of 0.1% TFA in ACN/H2O 90:10 (v/v). It was applied using an automated
sprayer (TM-Sprayer, HTX Technologies, Chapel Hill, NC, USA). The nozzle temperature
was set at 60 ◦C, with a nitrogen gas pressure of 10 psi, a flow rate of 125 µL/min, a nozzle
velocity of 1200 mm/min with fourteen passes, 2 mm of track spacing, and a crisscross
(CC) spray pattern.

For the negative-mode MALDI-MSI analysis, the 9-aminoacridine (9-AA) matrix was
dissolved in 70% EtOH in H2O (concentration 10 mg/mL). An automated pneumatic
sprayer (TM-Sprayer, HTX Technologies, Chapel Hill, NC, USA) was used to spray the
solution over the tissue sections in four passes at 90 ◦C, with a nitrogen gas pressure of
6 psi, a flow rate of 120 µL/min, a nozzle velocity of 1200 mm/min, 2 mm of track spacing,
and a CC spray pattern.

3.5. MALDI-MSI Analysis

All MALDI-MSI experiments were performed on a rapifleX® Tissuetyper MALDI mass
spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a Smartbeam 3D laser
(under “Single”) and with a digitizer frequency of 1.25 GHz. The analyzer was operated
in the reflector mode, and the laser was fired with a repetition rate of 10 kHz. Lipidome
measurements were performed in a positive mode across the m/z range of 300–1000, while
the data for both lipids and metabolites in the negative ionization mode were acquired in
the m/z range of 100–850. A total of 200 laser shots were fired at each sampling position
and the laser power was optimized at the start of each run and then held constant during
the experiments. The external calibration was performed using red phosphorous dissolved
in 50% acetone, spotted beside the tissue section [46]. All analyses were performed at a
lateral resolution of 50 µm.

3.6. Metabolite and Lipid Annotation by MALDI-FT-ICR-MS

Additional MALDI imaging experiments were performed to aid in lipid and metabolite
annotation [34,47] using a SolariX XR 7T-ESI/MALDI-Fourier-transform ion cyclotron
resonance mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a
Smartbeam II 2 kHz laser. All imaging experiments were performed at a lateral resolution
of 100 µm, using a total of 100 laser shots per pixel with a small laser spot size. Data were
collected in positive ionization mode across the m/z range of 300–1000 using 2 million
data points, while negative MS spectra were collected over the m/z range of 100–850 using
1 million data points. Ion transmission voltage parameters were set as follows—funnel RF
amplitude 120.0 Vpp, RF amplitude TOF 350.0 Vpp, TOF 0.6 ms, and RF frequency transfer
optic 4 MHz. All the methods were externally calibrated through the electrospray ion source
and NaTFA clusters. Internal calibration was applied using different lock masses—the
[PC (16:0/18:1) + H]+ (m/z 760.58508), the [PC (16:0/18:1) + Na]+ (m/z 782.56702), and [PC
(16:0/18:1) + K]+ (m/z 798.54096) were used for the MALDI-positive FT-ICR MSI analysis,
and the 9-AA cluster ion (m/z 193.0771) for the MALDI-negative FT-ICR MSI experiments.

3.7. Imaging Data Analysis

Tissue sections were analyzed in a random order to prevent any possible bias due to
matrix degradation or variations in mass spectrometer sensitivity.
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All MSI data were first visualized using flexImaging (Version 6.0, Bruker Daltonics,
Bremen, Germany), and then reduced spectra were imported into SCiLS Lab software
(Version 2021a Pro, GmbH, Bremen, Germany) for baseline correction, normalization, peak
picking, and peak lists visualization. Measurements with the same matrix and ion mode
were merged into one dataset in SCiLS Lab.

For baseline removal, the top hat algorithm convolution was applied with sigma 20;
TOF spectra were normalized to the total ion count (TIC) of each individual spectrum,
while FT-ICR spectra were normalized against the root mean square (RMS) of all data
points. A weak denoising deterministic installation for both the polarities was applied.

A MALDI-FT-ICR MSI data analysis was performed with MetaboScape 2021 (Bruker
Daltonics, Bremen, Germany). The mean spectra of each region of interest (ROI) (both
tumor and healthy sections) were exported from SCiLS Lab and opened in the MetaboScape
2021. The bucket table was created using the T-ReX2 (MALDI Imaging) algorithm. A total
of 200 speckles per ROI were created by averaging the spectra within an area of the size of
the width-by-height (4:3 ratio), resulting in 85% covered pixels. The spectra were processed
in a positive mode using H+ as the primary ion, Na+ and K+ as potential adducts, while
in the negative mode, H− was set as the primary ion and Cl− as a potential adduct. For
the metabolite annotation, the assignment of the molecular formula was performed for
the detected features using Smart Formula™ (SF). The bucket table was annotated with a
list of metabolites and lipids obtained, respectively, from the HMDB (https://hmdb.ca/
(accessed on 5 June 2022)) and LIPIDMAPS databases (www.lipidmaps.org (accessed on
5 June 2022)). Annotation was performed with 0.2 ppm (narrow) or 5 ppm (wide) mass
tolerance and a mSigma value below 250; molecular formulae were manually inspected
considering the most probable adduct form.

3.8. Liquid Chromatography–Mass Spectrometry Analysis

Additional UHPLC–HRMS/MS methods were employed to enforce MALDI-MS
imaging results. Contiguous tissue slices were collected, lyophilized, and extracted [48].
Hydrophilic interaction liquid chromatography (HILIC)-HRMS was employed for polar
metabolite samples, while lipid analyses were performed by reversed-phase (RP)-trapped
ion mobility mass spectrometry (TIMS), as previously optimized [49]. Detailed information
about the sample preparation, LC–HRMS conditions, and data processing are reported in
Supplementary Material Section S1.

3.9. Hematoxylin and Eosin (H&E) Stains to MSI Co-Registration

Following MSI analysis, the MALDI matrix was removed by submerging the slide
in 95% ethanol for 30 s, then the sections were fixed in two successive 5 min washes in
100% ethanol and were stained by H&E. The slides were cover-slipped and scanned using
a reflecta® MF5000 scanner (reflecta® gmbh, Eutingen im Gäu, Germany). The whole slide
H&E images were imported to SCiLS and overlaid with the MSI data.

3.10. Statistical Analysis by SCiLS Lab Software

The standard segmentation pipeline of the SCiLS Lab software (Version 2021a Pro,
GmbH, Bremen, Germany) was applied for automatic peak picking, with a binning of
0.2 bandwidth [50]. The spatial segmentation algorithm (Bisecting k-means) was applied
to each tissue to display intratissue heterogeneity. For each resulting cluster, spatial m/z
colocalized values were searched by calculating Pearson’s correlations between the spa-
tial masks of the cluster and each m/z value and taking the m/z values with the highest
correlation values (r > 0.5).

3.11. Multivariate Data Analysis
3.11.1. Data Pre-Processing

MALDI imaging data files normalized to TIC were converted into the imzML format
using SCiLS Lab software (Version 2021a Pro, GmbH, Bremen, Germany) and imported in

https://hmdb.ca/
www.lipidmaps.org
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Matlab R2021a (The MathWorks Inc, Natick, MA, USA) using a modified version of the
imzMLConverter [51]. Data processing and analysis were performed with a combination
of in-house developed codes and the PLS toolbox 8.8 (R8.8.1: Eigenvector Research, Inc.,
Manson, WA, USA). The images were arranged in a 3D array (cube) in which the x- and
y-axes corresponded to the pixel coordinates while the m/z values registered in each pixel
were reported along z-axes. The cube was transformed into a 2D matrix (D), where the
x dimension is the number of pixels and y is the number of measured variables. All the
pre-processing and algorithms were applied to the unfolded matrix D containing the TIC
normalized spectra. Firstly, penalized asymmetric least squares (AsLS) smoothing was
applied to correct the baseline and remove the interference using the following parameters:
p = 0.005, λ = 108, with 20 iterations [52]. Then, the relevant peaks were discriminated
from the noise using the median absolute deviation (MAD). A signal-to-noise threshold
was set at 2.5MAD and only the intensities above the threshold were used for the analysis.
Variables that presented signals of less than 35% pixels were substituted with the minimum
values for those variables. This step reduced the positive ion mode variables to 23,694 and
the negative ion mode variables to 30,327. Ultimately, the logarithm was calculated. The
entire dataset was split into training and test sets. The images from patients 2, 3, 10, and
11 constitute the test set, the remaining data were used as a training set.

3.11.2. Exploratory Analysis

The multivariate analysis was carried out considering objects identifiable within the
image. In its simplest implementation, object classification relies on describing the tissue
by the median spectrum of the pixels associated with it. Then the models were applied to
the entire images for both training and test sets. Therefore, Principal component analysis
(PCA) was carried out on the auto-scaled training set. Then, the obtained loadings were
applied to the entire images of both training and test sets in order to build score maps.

3.11.3. Partial Least Squares-Discriminant Analysis (PLS-DA)

Partial least squares-discriminant analysis (PLS-DA) is a supervised classification
algorithm based on PLS regression [53]. Conversely to the regression approach, the Y
variable is a binary-coded categorical vector for classification purposes. The PLS calculates
a regression model relating the predictor matrix and Y. Then, classification is achieved by
thresholding the values of the predicted response; several approaches are reported in the
literature for such a purpose. In the present study, classification was achieved by applying
linear discriminant analysis (LDA) to the predicted values of the response [54]. In order
to select the optimal number of latent variables (nLVs) that maximized the accuracy and
minimized the classification error, cross-validation (CV) was performed. Both images,
pathological and healthy, collected from a specific patient were left out at each iteration. As
support for further metabolic interpretation of the observed differences between healthy
and pathological tissues, the values of the variable importance in projection (VIP) indices
were calculated based on the model [55]. To evaluate the PLS-DA performances, the
confusion matrix was calculated for each model in training, cross-validation, and external
prediction (test), allowing the estimation of the main classification figures of merit:

# Classification accuracy (or percent correct classification rate), which is defined as:

Accuracy (CC%) =
TP + TN

TP + FP + TN + FN

# Sensitivity, i.e., the percent true positive rate:

Sensitivity (%) =
TP

TP + FN
∗ 100

# Specificity, i.e., the true negative rate:
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Specificity (%) =
TN

TN + FP
∗ 100

where TP, TN, FP, and FN are true positive, true negative, false positive, and false Negative
values, respectively.

4. Conclusions

The present study allowed identifying the relevant metabolites of salivary gland tis-
sues significantly associated with the presence of parotid neoplasms, taking advantage
of MALDI-MSI technology combined with statistical approaches. The statistical model
was able to correctly classify the Warthin tumor cases for both training and test sets, with
sufficient accuracy (95%) considering the size of the pilot cohort (11 patients). The satisfying
alignment between the multivariate analysis and the spatial segmentation highlighted the
metabo-lipidomics signature of the tumor parotid tissues, which appears to be mainly cor-
related with the metabolism of membrane lipids as well as polar and non-polar metabolites
involved in the signaling pathway and energy production of neoplastic cells. In particular,
glycerophospholipids, glutamate metabolism, and nucleotides were sensibly increased in
tumor regions, while the opposite was observed for sphingomyelins and triacylglycerols.
These results need to be verified on a larger cohort of patients; however, they show the
possibility of using MALDI-MSI-based metabolomics as a complementary diagnostic tool
in routine fine-needle aspiration (FNA) and cytopathology in the diagnosis of salivary
gland neoplasms [56].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060530/s1, Section S1: Polar and non-polar metabolites
extraction, UHPLC–HRMS/MS conditions, and data processing; Figure S1: Histopathology of parotid
gland tumor tissues at low and high magnification; Figure S2: Score images for the MALDI-positive
TOF-MSI dataset. Loadings obtained from PCA were applied to the images of the training set. PC2
and PC4 score images have been reported and compared with the histological images; Figure S3:
Score images for the MALDI-positive TOF-MSI dataset. Loadings obtained from PCA were applied
to the images of the test set. PC2 and PC4 score images have been reported and compared with the
histological images; Figure S4: Score images for the MALDI-negative TOF-MSI dataset. Loadings
obtained from object-level PCA were applied to the images of the training set. PC3 and PC4 score
images have been reported and compared with the histological images; Figure S5: Score images for
the MALDI-negative TOF-MSI dataset. Loadings obtained from object-level PCA were applied to
the images of the test set. PC3 and PC4 score images have been reported and compared with the
histological images; Figure S6: Prediction map of the training set of PLS-DA analysis for the MALDI-
positive TOF-MSI analysis using the entire variable range. The percentage of correctly classified pixels
is reported for each image; Figure S7: Prediction map of test set of PLS-DA analysis for the MALDI-
positive TOF-MSI analysis using the entire variable range. The percentage of correctly classified
pixels is reported for each image; Figure S8: Prediction map of training set of PLS-DA analysis for the
MALDI-positive TOF-MSI analysis using the variable with VIP scores greater than 2. The percentage
of correctly classified pixels is reported for each image; Figure S9: Prediction map of test set of PLS-DA
analysis for the MALDI-positive TOF-MSI analysis using the variable with VIP scores greater than 2.
The percentage of correctly classified pixels is reported for each image; Figure S10: Prediction map of
training set of PLS-DA analysis for the MALDI-negative TOF-MSI analysis using the entire variable
range. The percentage of correctly classified pixels is reported for each image; Figure S11: Prediction
map of test set of PLS-DA analysis for the MALDI-negative TOF-MSI analysis using the entire
variable range. The percentage of correctly classified pixels is reported for each image; Figure S12:
Prediction map of training set of PLS-DA analysis for the MALDI-negative TOF-MSI analysis using
the variable with VIP scores greater than 2. The percentage of correctly classified pixels is reported
for each image; Figure S13: Prediction map of test set of PLS-DA analysis for the MALDI-negative
TOF-MSI analysis using the variable with VIP scores greater than 2. The percentage of correctly
classified pixels is reported for each image; Table S1: List of lipids and polar metabolites detected
in MALDI-MSI experiments and tentatively identified by MALDI-FTICR and/or LC-HRMS/MS;
Table S2: Additional RP-UHPLC-TIMS-MS to enforce the annotation of the statistical relevant lipids
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derived from PLS-DA and/or spatial segmentation analysis. Lipids were reported with long name
nomenclature if MS/MS spectra contained information about fatty acyl composition, otherwise a
short name nomenclature was adopted; Table S3: Additional UHPLC–HRMS/MS to enforce the
annotation of the statistical relevant non-polar and polar metabolites derived from PLS-DA and/or
spatial segmentation analysis.
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