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Abstract: Research and advancing understanding of the tumor immune microenvironment (TIME)
is vital to optimize and direct more effective cancer immune therapy. Pre-clinical bench research is
vital to better understand the genomic interplay of the TIME and immune therapy responsiveness.
However, a vital key to effective translational cancer research is having a bridge of translation to
bring that understanding from the bench to the bedside. Without that bridge, research into the TIME
will lack an efficient and effective translation into the clinic and cancer treatment decision making. As
a clinical oncologist, the purpose of this commentary is to emphasize the importance of researching
and improving clinical utility of the bridge, as well as the TIME research itself.
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Tumor cell genomics closely intertwine with and direct the TIME compartment’s
infiltration and balance of stimulatory and inhibitor immune cells, as well as non-immune
stromal components. This sets up an immune ‘hot’ TIME responsive to immune therapy or
an immune ‘cold’ TIME not responsive to immune therapy. The TIME is also not a static
state. It is a dynamic process changing over time and can be different at different metastatic
sites due to progressing metastatic clonal evolution [1].

Tissue biopsies are the standard to assess and understand the TIME. However, as-
sessing the TIME in the clinic can be a far more difficult proposition. Repeat invasive
tumor tissue biopsies carry a high procedural cost for tissue acquisition, are fraught with
potential complications, cause delays in treatment, and are often not logistically practical to
integrate into clinical cancer treatment decision making [2]. Unless evolving knowledge
of the TIME can be translated into the clinic, that knowledge will have limited impact
identifying effective (and avoiding ineffective) cancer immune treatment as well as missing
potential modulation of the TIME to enhance immune therapy benefit.

1. Molecular Tumor Biology Can Reflect the TIME

Cancer is a disease of genomic derangements and instability driving the cancer tu-
mor biology. The underlying molecular tumor biology with targetable driver mutations
and fusions as well as actionable tumor co-mutations can reflect differing TIME and im-
mune therapy effectiveness [3,4]. The TIME of EGFR mutation and ALK fusion NSCLC
notably lacks CD8 infiltration limiting immune checkpoint blockade benefit [5]. STK11
mutations have strikingly different TIME effects based upon what co-mutations are present.
STK11 mutant NSCLC with KRAS co-mutations are associated with increased IL-6, IL-
1β, and CXCL7 levels along with neutrophil infiltration, yet decreased T-cell infiltration
and function, decreased PD-L1 expression, and decreased stimulator of interferon genes
(STING) pathway activation. Studies also point towards associated low intratumoral pH,
metabolic restriction, and altered angiogenesis, all leading towards a poor immune therapy
benefit [6]. However, the same STK11 mutations with associated TP53 co-mutations but
without KRAS mutations, demonstrate increased STING activation and better immune
therapy benefit [7]. KRAS mutant NSCLC with TP53 co-mutations also have a completely
different TIME with increased IFNγ, PD-L1 expression, and increased T-cell infiltration,
supporting an immune therapy benefit [6]. PD-L1 protein, mRNA, and gene amplification
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are all predictive of ICI responsiveness [8–10]. Other mutations such as POLE/POLD1 are
associated with a hypermutated state reflecting a favorable immune responsive TIME as
do BRCA, SMARCA4, ARID1A, BAP1, and SETD2 mutations [11–16]. Whereas STK11,
KEAP1, PTEN, β-2 microglobulin mutations, MDM2 amplification, β-catenin pathway
alterations, JAK1/2 loss, and oncogenic fusions are often immune therapy resistant [16,17].
Immune therapy hyperprogression in advanced NSCLC has also been associated with
STK11 mutations [18]. Even differing EGFR and ERBB2 exon mutations can demonstrate
differing immune therapy benefit [19].

Certain other genomic tumor biologies impact the TIME. Microsatellite instability high
(MSI-H) has a unique tumor biology and TIME with increased immune cell infiltration,
increased neoantigens, increased immune checkpoint expression, increased VEGFR secre-
tion, enhanced STING activation, interferon secretion, and T cell priming, all leading to
remarkable immune checkpoint inhibitor (ICI) responsiveness across tissue-site agnostic
solid tumors [20–22]. A high neoantigen tumor mutational burden (TMB) is also associated
with increased ICI responsiveness, albeit to a lesser degree [23].

2. Liquid Biopsy Reflects the Molecular Tumor Biology

Liquid biopsy with plasma next generation sequencing (NGS) is an evolving technol-
ogy that can identify targetable and actionable molecular tumor biology from circulating
tumor DNA (ctDNA) for somatic mutations and RNA (ctRNA) fusions shed from the tumor
into the blood [24]. That approach has been highly effective in implementing precision
oncology into the clinic and cancer treatment decision making. Although tissue and plasma
molecular profiling remain complementary, cancer medicine has entered into a ‘liquid
biopsy’ era where simple blood tests are beginning to efficiently identify the underlying
tumor molecular biology that can effectively guide treatment.

Tissue molecular testing is fraught with tissue acquisition and spatial heterogene-
ity limitations. Tissue quantity is insufficient for full molecular testing in nearly half of
metastatic non-small lung cancer (NSCLC) cases [25]. Even when available, tissue molecu-
lar testing only provides a tumor biology assessment limited to the site sampled and just
at that one static point in time. Studies characterizing the clinical utility of liquid biopsy
testing, paradoxically show that plasma NGS testing is better than tissue NGS testing
for molecular testing. In separate studies with parallel plasma and tissue NGS testing in
advanced NSCLC, tissue missed 33–43% of the mutations identified with the complemen-
tary testing whereas plasma identified 80–87% of those mutations [26,27]. Plasma NGS
testing can also overcome the limiting tissue heterogeneity identifying resistant clones
and providing a broader assessment of the evolving tumor biology than a single biopsy
site [28]. Most importantly, treatment guided by plasma NGS molecular results have better
survival outcomes than treatment based upon tissue molecular testing [29]. This has led
the International Association for the Study of Lung Cancer to advocate a ‘plasma first’
molecular testing approach in NSCLC [30]. Liquid biopsies with plasma NGS testing have
been highly effective in assessing and reflecting the molecular tumor biology.

However, liquid biopsies are also fraught with limitations. Shedding of ctDNA/RNA
from the tumor microenvironment by apoptosis and tumor necrosis is tumor burden, tumor
compartment, and tumor genomic microenvironment dependent. The greater the tumor
burden and stage, the greater the ctDNA/RNA shedding. In stage I NSCLC 45% will have
detectable ctDNA shedding, increasing to 72–75% in lymph node positive stages II/III, and
83% in stage IV [31]. This is typical distribution across a variety of cancers. Non-shedders
of ctDNA/RNA have a less aggressive tumor biology with a more favorable prognosis
irrespective of stage compared to shedders [32]. In a study of advanced NSCLC patients,
multivariate analysis identified visceral metastases, tumor burden, EGFR mutations, and
TP53 mutations as independent predictors of increased ctDNA shedding [33]. Higher
pathologic stage, nodal metastases, solid adenocarcinoma histology, tumor necrosis, and
frequent mitosis were associated with higher ctDNA shedding in resectable NSCLC [34].
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Plasma NGS testing can identify ctDNA/RNA alterations, MSI, and TMB associated
with ICI sensitive and resistant molecular tumor biologies. Serial ctDNA can also be used
to monitor ICI responsiveness with decreasing variant allele fractions and/or clearance
predicting durable cancer survival and conversely, progressing disease with increasing
ctDNA/RNA [35,36].

3. A Composite Assay Liquid Biopsy Is Needed to Fully Reflect the TIME

However, the TIME is a far more complex entity and is more than mutational tumor bi-
ology. ICI responsive immune hot tumors are infiltrated with leukocytes and tumor specific
CD8 T-cells. Intratumoral chemokines, IFN-gamma, PD-L1 and, indole 2,3-dioxygenase
(IDO) are part of the immune hot TIME responding to ICI therapies. Conversely ICI re-
sistant immune cold tumors express TGF-beta and tumor associated macrophages [37].
Other immune checkpoints such as LAG-3 and TIGIT, and others, may need to be tar-
geted [38,39]. Additionally, the gut microbiome, spatial TIME CD8 T-cell infiltration and
tumor cell contact, myeloid inhibition of CD8 T-cells, immunosuppressive myeloid derived
suppressor cells, inhibitory T-Reg cells, activated dendritic cells, intratumoral hypoxia,
B-cells, cancer associated fibroblasts, all play an important aspect of the TIME [40]. Tumor
infiltrating lymphocytes genomic signatures have been shown to be pan-cancer prognostic
and predictive of immune therapy benefit [41]. Host inflammatory markers, as simple as a
neutrophil-lymphocyte ratio, C-reactive protein levels, and albumin levels, as well as more
complex proteomic signatures impact ICI therapy outcomes [42,43]. A composite liquid
biopsy of PD-L1with other immune checkpoints, MSI, TMB, ICI sensitive and resistance
ctDNA/RNA alterations, immune cellular levels, and incorporating these other TIME,
as well as host parameters, is well likely needed to best reflect the TIME and predict ICI
treatment benefit.

4. Improving Liquid Biopsy to Better Assess the TIME

The optimal make-up and balance of a composite TIME/ICI predictive liquid biopsy
assay is one important research focus. Another aspect of clinically impactful liquid biopsy
research is increasing the release of tumor DNA/RNA and other TIME markers to better
reflect the TIME. Lack of DNA/RNA shedding, and potential undetectable sub-clones, can
limit liquid biopsy assessment of the TIME. However, it is known that certain types of
tumor site tissue disruption can increase ctDNA/RNA release. This would further enhance
the clinical utility of liquid biopsies in assessing the tumor biology and guiding more
effective cancer treatment.

Therapeutic TIME disruption has been shown to enhance ICI effectiveness. Oncolytic
virus directly disrupts the TIME [44]. Nanosecond pulsed electric field (PEF) energy
delivery has been shown to inhibit tumor growth locally and alter the intratumoral immune
cell infiltration and response [45]. Stereotactic radiosurgery (SRS) will disrupt the TIME
inducing tumor-specific CD8 T-cells and other TIME changes [46,47].

SRS has been shown to increase release of ctDNA even from early-stage cancers. SRS
causes a marked rise in ctDNA at the 24 h mark after the first fraction. In a study of
fifteen patients with stage I NSCLC treated by SRS, only 47% had identified ctDNA prior
to treatment. However, repeat testing within 24 h of the first SRS fraction showed a median
4.5-fold increase in ctDNA [48]. ctDNA was also increased from baseline upon completion
of SRS. Higher levels of ctDNA were noted at 24 h after irradiation than in pre-irradiation
samples with a peak at 7 days [49]. There was also a notable increase in targetable ctDNA
EGFR mutant allele fractions [50]. One of these therapeutic TIME disruption technologies
could certainly be used to enhance ctDNA/RNA and other TIME parameters release into
the circulation for liquid biopsy detection.

Whether a lesser physical disruption of the TIME with a simple tissue biopsy achieve
this same increase ctDNA/RNA release is not well studied. Nor is there a known optimal
time of drawing blood for plasma NGS testing relative to a tissue biopsy to obtain a maximal
ctDNA/RNA yield for diagnostic and therapeutic information.
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Multiple prostate tissue biopsies have been shown to increase ctDNA release at
60–120 min post-biopsy. In a cohort of thirty-eight patients undergoing and cfDNA testing
pre-biopsy and 10, 30, 60, and 120 min post-biopsy, cfDNA peaked at 60–120 min. At 60 min,
pre-biopsy median 2.76 ng/mL to 3.62 ng/mL (p = 0.0023) and at 120 min, pre-biopsy
5.1 ng/mL to 7.05 ng/mL (p = 0.0023). Patient-specific somatic mutations were compared
pre-biopsy and post-biopsy. The number of reads at the patient-specific mutations increased
from 3.9 to 164 times the ratio amounts present circulating before the biopsy. This supports
the post-biopsy plasma was enriched with specific ctDNA. The increase was felt to be due
to direct physical damage and disruption with cellular breaks and necrosis [51].

Tumor tissue disruption does increase the shedding of ctDNA/RNA from baseline pre-
tissue disruption levels. Incorporating these therapeutic tumor disruption modalities could
have a dual role of local cancer treatment and enhancing the liquid biopsy identification of
the TIME and immune therapy benefit.

5. Improving the Bridge to Translate the TIME into Effective Therapy

Translating the TIME advances from the laboratory bench into the clinic bedside is
vital to improving cancer outcomes for patients. The purpose of this commentary was to
emphasize the perspective and importance of researching into improving the translational
bridge itself and not just focusing on research of the TIME. The quick turn-around times,
broadening molecular tumor biology findings, and the extending clinical utility of plasma
NGS testing has ushered in the ‘liquid biopsy’ era of cancer medicine. A research focus
of this translational bridge is important to improve the translation of the advances and
understanding of the TIME into the clinic. Expanded correlation of the genomic tumor
biology of the TIME with plasma NGS findings is important. Additional research into
expanding the clinical utility development of a composite TIME/ICI responsive liquid
biopsy by incorporating other TIME as well as host parameters is needed. Something as
simple as research into maximizing the release of ctDNA/RNA and other TIME biomarkers
could be important to improve the clinically needed translational bridge. Determining an
optimal timing of a liquid biopsy blood draw relative to tissue disruption could also have a
significant impact in achieving improved TIME yields.

Research to improve the bridge can be as important as the knowledge transported
on it. Without a strong bridge from the bench to the bedside, translating cancer research
will not achieve what we all strive for . . . advancing and optimizing effective cancer
immune therapies.
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