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Abstract

Mammals have evolved remarkably different sensory, reproductive, metabolic, and skeletal systems. To explore the
genetic basis for these differences, we developed a comparative genomics approach to scan whole-genome multiple
sequence alignments to identify regions that evolved rapidly in an ancestral lineage but are conserved within extant
species. This pattern suggests that ancestral changes in function were maintained in descendants. After applying this test
to therian mammals, we identified 4,797 accelerated regions, many of which are noncoding and located near develop-
mental transcription factors. We then used mouse transgenic reporter assays to test if noncoding accelerated regions are
enhancers and to determine how therian-specific substitutions affect their activity in vivo. We discovered enhancers with
expression specific to the therian version in brain regions involved in the hormonal control of milk ejection, uterine
contractions, blood pressure, temperature, and visual processing. This work underscores the idea that changes in de-
velopmental gene expression are important for mammalian evolution, and it pinpoints candidate genes for unique
aspects of mammalian biology.
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Introduction
Understanding the molecular underpinnings that produce
physiological, cognitive, and morphological differences be-
tween organisms is a major challenge for biologists. Using
forward genetics approaches, scientists have begun to estab-
lish direct connections between lineage-specific traits and
molecular evolution. For example, to achieve complete ven-
tricular septation, which allows for separation of oxygenated
and deoxygenated blood, developing mammalian hearts ex-
press the transcription factor Tbx5 in a pattern distinct from
their ancestors (Koshiba-Takeuchi et al. 2009). Furthermore,
in stickleback fish, loss of a single tissue-specific enhancer of
the Pitx1 gene causes loss of pelvic spines (Chan et al. 2010). In
flies, nucleotide changes in multiple enhancers for shaven-
baby lead to species-specific trichome patterns (McGregor
et al. 2007; Frankel et al. 2011). However, an approach that
surveys large portions of the genome is required to gain a
more comprehensive view of how molecular evolution relates
to lineage-specific traits. One such approach is comparative
genomics, which allows for scanning of entire genomes for
DNA sequences that have a key evolutionary signature:
Differences in nucleotides suggesting that these sequences
are responsible for making one species different from another.
A scanning technique to identify conserved genome se-
quences with many changes in one extant lineage was first

developed to discover human accelerated regions (HARs)
(Pollard et al. 2006; Prabhakar et al. 2006; Koshiba-Takeuchi
et al. 2009) and has been used to identify genomic regions
with elevated substitution rates in many other lineages (Chan
et al. 2010; Lindblad-Toh et al. 2011). Others have identified
lineage-specific conserved noncoding elements within a
group that are either deposited by mobile elements
(Bejerano et al. 2006; Lowe et al. 2007; Sasaki et al. 2008) or
are otherwise absent in other groups (Mikkelsen et al. 2007).
We extend this framework for testing conservation and ac-
celeration on terminal branches to enable identification of
changes in the rate of molecular evolution on an ancestral
lineage. Specifically, we identify both coding and noncoding
sequences over the entire genome that are present in verte-
brates, evolved rapidly in the ancestral lineage of therian
mammals but are then conserved in its descendants. Such
a pattern suggests that the ancestors experienced a change in
function, and the change in sequence was then constrained in
descendants to maintain this new function.

We tested the branch leading to therian mammals to un-
derstand the genetic basis for differences in morphology and
physiology from other vertebrates (fig. 1A). Therian mammals
consist of marsupials (e.g., wallaby, opossum) and eutherians
(e.g., human, dog) to the exclusion of the third group of
extant mammals—the monotremes (e.g., platypus, echidna).
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Therians diverged from monotremes ~190 Ma (Luo et al.
2011). Therians are diverse and widespread, and they share
several unique traits that distinguish them from other verte-
brates, such as having live young, a regular heartbeat, a higher
and possibly more constant body temperature, a higher met-
abolic rate, erect limb posture, and true nipples. Conversely,
monotremes retained many traits present in the earliest
mammals, some of which are shared with extant reptiles,
including the cloaca (a single opening for urinary, defecatory,
and reproductive functions), a sprawling gait, an uncoiled
cochlea in the inner ear, lack of or reduced sweat glands,
and egg laying (Rich 2005; Widelitz et al. 2007; Wakefield
et al. 2008; Warren et al. 2008; Bickelmann et al. 2012;
Ashwell 2013). Thus, therians are distinct from monotremes
and other vertebrates in their morphology and physiology.
We set out to discover the genetic basis for therian-specific
traits.

Results and Discussion

Comparative Genomics Identifies Hundreds of
Sequences That Distinguish Therian Mammals from
Other Vertebrates

We used phyloP combined with the phastCons program in
PHAST (Pollard et al. 2010; Hubisz et al. 2011) to scan whole-
genome alignments in vertebrates for sequences that are
present in therian and nontherian vertebrates but changed
significantly in the therian mammal ancestor and remained
highly conserved during therian diversification. We identified
177,346 vertebrate genomic regions that are conserved
among therians (therian conserved regions; TCRs), of which
4,797 have a strong signature for accelerated evolution in the
therian ancestor (false discovery rate <1%; supplementary
table S1, Supplementary Material online). We call these
4,797 sequences Therian-Specific Accelerated Regions
(TSARs). Using simulations (see Materials and Methods), we
established that the power of this method is sufficient to
identify TSARs and that specificity is high for elements over
150 bp. For longer elements, power and specificity are

remarkably high (supplementary fig. S1C, Supplementary
Material online).

The distribution of TSARs with respect to human gene
features is similar to that of TCRs (fig. 1B). TSARs are largely
within genic regions (supplementary table S2, Supplementary
Material online), in contrast to HARs and the mammalian-
conserved elements from which HARs were identified, both
of which occur most frequently in intergenic DNA (Pollard
et al. 2006; Lindblad-Toh et al. 2011). This distribution differ-
ence may be because intergenic sequences typically evolve
more rapidly and are therefore more difficult to align in the
TSAR analysis, which adds a requirement of syntenic alignment
to nonmammalian vertebrates (see Materials and Methods).

To explore the hypothesis that TSARs are uncharacterized
regulatory elements, we used functional genomics data from
the ENCODE project (Dunham et al. 2012) and other sources
(Griffith et al. 2008; Visel et al. 2009; Blow et al. 2010; Rada-
Iglesias et al. 2011; Shen et al. 2012) to investigate how many
TSARs overlap features indicative of enhancer or promoter
activity in various human and mouse cell types (supplemen-
tary table S1, Supplementary Material online). We found
widespread evidence that TSARs are active regulatory se-
quences. First, from human ENCODE data, 89% of TSARs
overlap with DNaseI hypersensitive sites, H3K27 acetylation
marks, or P300 peaks, all of which indicate regulatory activity.
Furthermore, the chromHMM analysis of human ENCODE
data (Ernst and Kellis 2012) predicts that 14% of TSARs are
promoters and 35% are enhancers, and only 12.7% of TSARs
are in intergenic regions without any predicted regulatory
function. Furthermore, 98% of TSARs that overlap
chromHMM-predicted enhancer sequences are supported
by at least one additional experiment showing evidence of
enhancer activity, and 89% are supported by multiple addi-
tional experiments. These include 366 TSARs that overlap
elements from experiments designed to identify cis-regulatory
regions in murine tissues (Shen et al. 2012), and 129 in puta-
tive regulatory regions in the Open Regulatory Annotation
database (Griffith et al. 2008).
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Fig. 1. (A) Phylogenetic tree of vertebrates used to identify TSARs; internal test for acceleration was conducted on the red branch, which unites
therians. (B) TSARs and TCRs are distributed among genomic features in similar proportions with slightly more exonic and less intronic sequence in
TSARs.
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A small number of TSARs have been characterized exper-
imentally in previous studies. TSARs overlap 17 early devel-
opmental enhancers in humans (Rada-Iglesias et al. 2011) and
105 putative heart enhancers in mouse (Blow et al. 2010).
Transgenic enhancer assays from the VISTA Enhancer
Browser (Visel et al. 2007) show that 51 TSARs have enhancer
activity in e11.5 mouse. These enhancers are primarily active
in the brain, eye, nose, and limbs (Visel et al. 2007). Overall,
4,285 of the 4,797 TSARs display evidence of regulatory func-
tion, yet they are largely uncharacterized. Future studies of
these loci may offer clues about therian-specific biology.

Mutations in TSARs Alter Protein Sequences

More than half of the TSAR sequences overlap exonic regions
of the human genome. Therefore, we explored mechanisms
of evolution and the putative functional consequences of
substitutions in the protein-coding regions of TSARs. Rapid
evolution in protein-coding regions could be due to selection
on protein function, rates of protein synthesis, or DNA- or
RNA-binding elements. Using only the coding portions, we
estimated rates of nonsynonymous (dN; amino acid altering)
and synonymous (dS; non–amino acid altering) substitutions
using Phylogenetic Analysis by Maximum Likelihood (Yang
2007) on the mammal ancestor and on the therian ancestor
branches. Our analysis is conservative in that we required
sequence to be present in both marsupials, the monotreme
and at least one eutherian and one nonmammalian verte-
brate. Median estimates of these substitution rates indicate
that protein-coding TSARs evolved rapidly at synonymous
sites and only slightly higher at nonsynonymous sites in the
therian ancestor compared with the mammal ancestor (sup-
plementary table S3, Supplementary Material online).
However, some TSAR-containing genes have high rates of
nonsynonymous substitution compared with synonymous
substitution on the therian ancestor branch, which may in-
dicate adaptive protein evolution (fig. 2A). These genes are
involved in diverse yet vital functions that include spermato-
genesis and neural development and many are either secreted
or transmembrane proteins. Mutations in these genes are
associated with cardiovascular disease, anhidrosis, skeletal
abnormalities, hearing loss, and neurological diseases.
Nonsynonymous substitutions in these genes had the poten-
tial to alter therian-specific traits.

TSARs Cluster in Loci Associated with Disease and
Development

In the genome, TSARs are significantly closer to one another
than are TCRs (supplementary fig. S2, Supplemental Material
online). We defined a “cluster” of TSARs as any set of three or
more TSARs where the neighboring TSARs are�50 kb apart.
We then associated these clusters with nearby genes. We
speculated that TSAR clusters might pinpoint genes whose
functions were hotspots of modification in the therian ances-
tor, either via regulatory divergence or through structural
changes to the encoded protein. Genes harboring clusters
of TSARs were more often associated with urogenital defects
and to a lesser extent brain development than genes near or

containing a single TSAR. The largest cluster (n = 36) centers
on the developmental transcription factor, Pax2, which is
active in the development of the mid-hindbrain boundary,
the retina, the renal system, and the inner ear.

Previous studies have suggested that distinct sets of genes
undergo either protein-coding or regulatory evolution (Wray
2007). Consistent with this idea, we found that many TSAR
clusters were either predominantly coding (475% coding
sequence) or noncoding (<25% coding sequence), with less
than 30% of clusters having equal proportions of coding and
noncoding sequence (fig. 2B and supplementary table S4,
Supplementary Material online). Interestingly, we found fur-
ther distinguishing characteristics within coding clusters—
specifically that many protein-coding TSAR clusters (e.g.,
those in genes that encode UBE4A, DNAH2, HEATR1,
SUPT16H, and WDFY3) are evolving rapidly at synonymous
sites, which might indicate changes in translational efficiency
and expression (Warnecke and Hurst 2007; Mitarai et al.
2008) or regulatory elements overlapping exons (Birnbaum
et al. 2012). Very few protein-coding TSAR clusters have high
rates of nonsynonymous substitution (fig. 2A) (supplemen-
tary fig. S3A, Supplementary Material online). Taken together,
the protein-coding TSAR clusters were not enriched for any
particular biological processes. In comparison, as with clusters
of TSARs in general, genes near or containing hotspots of
noncoding TSARs are enriched for involvement in develop-
ment of many brain regions and regulation of transcription.
Because many TSARs that are clustered in these loci likely
function as developmental enhancers or other modulators of
expression, our results suggest that regulatory changes in the
therian ancestor may have influenced neurodevelopment.

Multiple TSARs in the Lhx1 Locus Function as
Developmental Enhancers

One large cluster of TSARs (n = 20) resides primarily in the
intergenic region between Lhx1, a LIM-homeodomain tran-
scription factor, and Mrm1, a mitochondrial rRNA methyl
transferase (supplementary fig. S3B, Supplementary Material
online). These TSARs are largely uncharacterized—only three
overlap validated enhancers: TSAR.0067:OREG0042899
(Wederell et al. 2008), human ESC expression (Rada-Iglesias
et al. 2011); TSAR.1565, expression in embryonic day 11.5
(e11.5) mouse limb (Visel et al. 2007); and TSAR.1586, expres-
sion in e14.5 brain (Shen et al. 2012). Using ENCODE data,
chromHMM (Ernst and Kellis 2012) predicted that eight
others are also enhancers. Although both Lhx1 and Mrm1
are widely expressed, the LIM-homeodomain transcription
factors are important for mammal-specific forebrain develop-
ment and many of them are expressed together in specific
subregions (Abellan et al. 2010). To investigate if uncharacter-
ized noncoding TSARs are novel enhancers of Lhx1, we used a
transient transgenic reporter assay (Noonan 2009). In this
assay, we determined if the mouse sequences of TSAR.0067
and TSAR.1586 show enhancer activity in e11.5 mouse em-
bryos. We found that both TSARs drove reporter gene ex-
pression. TSAR.1586 produced a reproducible pattern of
expression in the majority of embryos (fig. 3 and
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supplementary fig. S4 and table S5, Supplementary Material
online), but TSAR.0067 was expressed in many embryos, yet
showed a variable expression pattern between embryos (sup-
plementary fig. S4 and table S5, Supplementary Material
online). This may be the result of testing at e11.5, because
this enhancer is known to be active at earlier stages (e.g.,
human embryonic stem cells; Rada-Iglesias et al. 2011).
TSAR.1586 was active in a small domain spanning the hypo-
thalamus and telencephalon (fig. 3 and supplementary fig. S4,
Supplementary Material online). Hypothalamic expression
was probably in the anlage of the paraventricular nucleus
and with expression continuing into the telencephalic stalk
and extending into the anlage of the amygdala, resembling
the pattern of Otp expression (Bardet et al. 2008; Garc�ıa-
Moreno et al. 2010). We repeated the transient transgenic
experiment after replacing the mouse TSAR.1586 sequence
with the orthologous chicken sequence (nontherian). This
allowed us to test if changing this sequence in the therian
ancestor altered the function of the Lhx1 enhancer. The con-
struct with the chicken TSAR.1586 sequence did not show
reporter gene expression in the hypothalamus and telenceph-
alon. Interestingly, therian-specific hypothalamic expression
occurred in the paraventricular neurons, which project into
the pituitary gland where they release oxytocin or vasopressin
into circulation (Vandesande and Dierickx 1975).
Interestingly, oxytocin is involved in uterine contractions
and milk ejection (Cross 1955), whereas vasopressin regulates
blood pressure (Rocha E Silva and Rosenberg 1969) and tem-
perature (Okuno et al. 1965), all of which are critical features
of therian-specific evolution. Further experimentation would
be required to substantiate connection between this en-
hancer and regulation of hormones.

Evolution of Gata2 Enhancers May Be Important for
Processing Visual Information

Gata2, a well-characterized developmental transcription
factor, functions during hematopoietic, central nervous

system (CNS), and urogenital development in the mouse
and chicken, all of which are highlighted in the ontology
overrepresentation analysis. A group of eight TSARs is located
within the known regulatory boundaries of the developmen-
tal transcription factor Gata2 (seven shown in supplementary
fig. S3C, Supplementary Material online) (Zhou et al. 1998;
Brandt et al. 2008). Of the eight, six are predicted to be en-
hancers (chromHMM) or are validated Gata2 enhancers
(TSAR.0153:OREG0002950 and TSAR.3936:OREG0002949)
(Wang et al. 2006). TSAR.3936 also has enhancer activity in
e11.5 heart (Visel et al. 2009). Using our transient transgenic
reporter assay (Noonan 2009), we tested whether three
uncharacterized noncoding TSARs—TSAR.1137, TSAR.1622,
and TSAR.2014—are novel enhancers of Gata2. At e11.5, all
three sequences drove expression in one or more tissues (fig. 4
and supplementary fig. S5 and table S5, Supplementary
Material online). As a positive control, we also tested
TSAR.0153 and confirmed activity in embryonic vasculature
(Wang et al. 2006).

The mouse version of TSAR.1622 showed strong enhancer
activity in the CNS that recapitulated endogenous Gata2
expression (fig. 4 and supplementary fig. S5 and table S5,
Supplementary Material online). Specifically, this enhancer
was active at the midbrain/hindbrain patterning center (isth-
mus) and extended rostrally in the mantle zone along a lon-
gitudinal band in an intermediate dorsal/ventral position of
the midbrain and caudal forebrain, terminating in the region
of the pretectum (the latter regions also had extensive alar
plate [dorsal] expression). In addition, activity in the hind-
brain and spinal cord was robust along a ventral longitudinal
domain that may include regions that produce motor neu-
rons. Upon testing expression of the orthologous chicken
TSAR.1622 sequence, we observed reporter gene expression
in the spinal cord, similar to observations with the mouse
version. Strikingly, the orthologous chicken sequence lacked
reporter gene expression in the pretectum of the midbrain
(fig. 4), which is involved in processing visual information and

A B

Fig. 2. (A) Thirteen human genes containing TSARs with nonsynonymous substitution rates (dN) at least 5� higher than the median and synonymous
substitution rates (dS) less than half the median rate. This pattern may indicate adaptive protein evolution resulting in altered functions. (B) Clusters of
three or more TSARs, where neighboring TSARs �50 kb apart are found in 383 genomic loci. For the densest clusters, the nearest genes are labeled.
Clusters primarily composed of coding sequence are in blue (475% dark blue; 450% blue); predominantly noncoding sequence clusters are in red
(<50% coding sequence, red; <25% coding sequence, dark red).
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mediating subconscious responses to light, the perception of
pain, and REM (rapid eye movement) sleep. Thus, our discov-
ery of a therian-specific enhancer of Gata2 in the pretectum is
particularly interesting because, early in their evolution, mam-
mals exploited nocturnal niches, and this TSAR may be asso-
ciated with vision (Heesy and Hall 2010).

Gata2 also has an important role in regulating expression
in the superior colliculus (SC), which mediates responses to
visual inputs and is the primary integrating center for eye
movements (Willett and Greene 2011). Two known en-
hancers of Gata2 drive expression in the SC, OREG0002948,
which is highly conserved in amniotes, and OREG0002951,
which has no similar sequence in nonmammalian vertebrates.
In the SC of mice, OREG0002948 alone can regulate Gata2
(Nozawa et al. 2009). The orthologous OREG002948

sequences in the human and chicken have only 10% sequence
divergence, which may indicate that the chicken sequence is
also an enhancer of Gata2 in the SC. The pretectum and SC
are both critical for processing visual information, so the evo-
lution of enhancers that modulate Gata2 expression may in-
dicate that this gene is important in therian-specific visual
evolution.

TSARs Enhance Nearby Candidate Genes for Therian
Traits

Beyond TSARs within clusters, we also tested three other
TSARs for enhancer activity based on their association with
genes whose functions might be important in therian evolu-
tion. For all three, we confirmed enhancer function and

Fig. 3. Enhancer activity of TSAR.1586. (A and D) LacZ-stained and (B, C, E, F) reconstructed three-dimensional image from optical projection
tomography (OPT) of e11.5 mouse embryos show the enhancer activity of TSAR.1622 for (A–C, E, F) the mouse sequence and (D) the orthologous
chicken sequence. (C) Rostral view of reconstructed OPT shows expression in the hypothalamus and telencephalon for the mouse construct. (E and F)
Coronal sections from the mouse construct show specific expression along the telencephalic stalk into (E) the anlage of the amygdala and (F) the anlage
of the paraventricular nucleus. pvn: paraventricular nucleus; a: amygdala.
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observed significant differences in enhancer activity between
the mouse and chicken sequences.

We chose to study TSAR.4350 (Griffith et al. 2008) because
therians differ in skeletal morphology from monotremes and
TSAR.4350 has been shown to have enhancer activity in the
developing limb (Blow et al. 2010). The expression patterns of
reporter constructs with mouse and chicken TSAR.4350 se-
quences are extremely reproducible within each species, yet
show dramatically different patterns between species (fig. 5
and supplementary fig. S6 and table S5, Supplementary
Material online). Both mouse and chicken TSAR.4350 se-
quences show expression in developing limbs, but the
major differences are in the brain and CNS. Only the mouse
enhancer produces reporter gene expression in the rhombic
lip, rhombomeres 3–6, the tela chorioidea, and the medial
pallium. Expression is also present in the roof plate epithelium
in regions that are BMP+ and WNT+, yet it is absent in
regions that would be FGF repressed (Sur and Rubenstein
2005). Expression picks up in the roof plate epithelium of
the midbrain and pretectum, stopping at the pineal gland.
Conversely, the chicken version of the enhancer is repressed
anteriorly with expression in the roof plate epithelium starting
at the cervical/thoracic junction. TSAR.4350 is in an intergenic

region on chromosome 5 between Npr3 and Tars. Although it
is difficult to predict which gene TSAR.4350 is enhancing,
expression patterns fit with those of NPR3 (or NPR-C),
which is responsible for clearing natriuretic peptides, which
regulate blood volume and pressure, in cerebrospinal fluid
and other fluids (Potter et al. 2006). Also, the medial pallium,
where TSAR.4350 is expressed, gives rise to the choroid plexus,
which produces cerebrospinal fluid. Future experiments
could test whether this sequence might have induced
mammal-specific changes in how sodium levels are regulated
in cerebrospinal fluid with respect to cerebral blood flow or
pressure.

Finally, we investigated two TSARs located in a gene-dense
region on human chromosome 10. In the previous work,
TSAR.3328 had enhancer activity in the developing forebrain
(Blow et al. 2010), which is consistent with the complex pat-
tern of activity we saw in the forebrain (fig. 6 and supplemen-
tary fig. S7 and table S5, Supplementary Material online): In
the telencephalon, a longitudinal domain mapped to the
progenitor zone of the ventrolateral pallium. Mantle zone
activity was also found in the caudomedial pallium; this
domain showed activity in continuity with the eminentia
thalami, prethalamus, and possibly the paraventricular

Fig. 4. Enhancer activity of TSAR.1622. (A and E) Endogenous Gata2 expression by in situ hybridization in (A) e11.5 mouse and (E) stage HH25 chicken.
(B and F) LacZ-stained e11.5 mouse embryos show enhancer activity of TSAR.1622 for (B) the mouse sequence construct and (F) the orthologous
chicken sequence construct. Both overlap expression of Gata2. (C–D, G–H) Lateral and dorsal views of OPT in transgenic mice. (B–D) The mouse
TSAR.1622 sequence shows strong expression in the spinal cord and mantle zone along a longitudinal band in an intermediate dorsal/ventral position of
the midbrain, terminating in the pretectum, whereas (F–H) the chicken sequence does not show expression in the pretectum with (G) autofluorescence
of the blood in the heart. pt: pretectum; cn: facial nerve; mb: midbrain; hb: hindbrain; sc: spinal cord.
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hypothalamus. The spinal cord had a longitudinal domain in
an intermediate dorsoventral position. A separate domain
was present as highly localized expression to a small region
of the pretectum; this domain was specific to the mouse
construct and completely absent in embryos with the chicken
ortholog of the enhancer. For TSAR.0862, which has been
identified as a putative liver enhancer in mouse
(OREG0036240, Griffith et al. 2008), the mouse construct
caused consistent expression of the reporter gene in the epi-
dermis and inconsistent activity in the brain, while the
chicken construct produced variable patterns of expression
in many embryos (supplementary fig. S7 and table S5,
Supplementary Material online). Both TSAR.3328 and
TSAR.0862 enhancers lie within different introns of Adk

(adenosine kinase) but are closer to the transcription start
site of Kat6b, a histone acetyltransferase expressed during
brain development (Campeau et al. 2012). These TSARs are
also within 500 kb of the Ap3m1, Dupd1, Dusp13, and Samd8
transcription start sites. Further characterization of these
TSARs would be necessary to determine which genes are
targeted.

Conclusions
Comparative genomics provides and approach to pinpoint
the changes in coding and noncoding elements that result in
the morphological and physiological differences that make us
mammals. Our analysis of TSARs identified clusters of unchar-
acterized enhancers and proteins that are likely critical for the

Fig. 5. Enhancer activity of TSAR.3328. (A and D) LacZ-stained e11.5 mouse embryo expression of enhancer TSAR.3328 for (A) the mouse sequence
construct and (D) the orthologous chicken sequence construct. (B and C) Lateral and rostral view of reconstructed OPT shows expression patterns for
the mouse construct. Both (A–C) mouse and (D) chicken versions are expressed in the ventrolateral pallium, prethalamus, hindbrain, and spinal cord.
(A–C) Mouse-specific expression is in the pretectum and caudomedial pallium. (E and F) Coronal sections from the mouse construct show specific
expression in (E) the caudomedial pallium and (F) pretectum. pt: pretectum; pTh: prethalamus; vlp: ventrolateral pallium; cmp: caudomedial pallium.
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evolution of therian-specific traits. Of the TSARs, ~90% show
some evidence of regulatory function. These findings support
the hypothesis that TSARs are signposts for shifts in function
in the therian ancestor. Although we anticipated identifying
elements that may have helped maintain a higher metabolic
rate, a more constant body temperature, and an erect limb
posture, our set of TSARs may target some of these physio-
logical and morphological features, but predominately indi-
cate alterations in the development of the CNS and the
sensory and urogenital systems. Thus, comparative genomics
approaches (such as the internal branch test) are extremely
useful for discovering both expected and unexpected loci.
This work brings us a step closer to unraveling the molecular
mechanisms that underlie unique aspects of our biology.
Now, the key is to develop high-throughput methods for

ascertaining the functional impact of elements like HARs
and TSARs and to discover how they relate to our unique
biology.

Materials and Methods

Comparative Genomics Methods
Genomic Sequence Data
The comparative genomic data we used were derived from
the University of California–San Cruz (UCSC) 46-way multiple
alignment files (Blanchette 2004) that use hg19 as the refer-
ence genome. We used five high-quality genomes as repre-
sentatives of eutherian mammals. Those species include
human (hg19), mouse (mm9), cow (bosTau4), dog
(canFam2), and elephant (loxAfr3). We also included

Fig. 6. Enhancer activity of TSAR.4350. (A–F) LacZ-stained e11.5 mouse embryos show enhancer activity for (A–C) the mouse construct and (D–F) the
chicken construct. (B and E) Caudal view showing mouse-specific expression in (B) the tela chorioidea, rhombic lip, and dorsal roof plate for the mouse
version and (E) the roof plate posterior to the cervical/thoracic junction in the orthologous chicken version. (C and F) Rostral view showing expression in
the medial pallium and dorsal roof plate to the pineal gland are specific to the (C) mouse construct and, showing expression in the posterior roof plate
for both (F) chicken and (C) mouse constructs. mp: medial pallium; rp: roof plate; tc: tela chorioidea; rl: rhombic lip.
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sequences from two marsupials—opossum (monDom5) and
wallaby (macEug1)—and a monotreme—the duck-billed
platypus (ornAna1)—which all have complete genome se-
quences. The data set includes three members of the reptilian
lineage—chicken (galGal3), zebrafinch (taeGut1), and anole
(anoCar1)—a single amphibian (Xenopus tropicalis, xenTro2),
and several fish. The fish include zebrafish (danRer6), Fugu
rubripes (fr2), stickleback (gasAcu1), medaka (oryLat2), and
Tetraodon nigripes (tetNig2). The PHAST program called
tree_doctor was used to prune other taxa from the 46 species
trees (Hubisz et al. 2011).

Evolutionary Rates and Relationships
Rate matrices and branch lengths were obtained from http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/
(last accessed January 3, 2016) and http://genomewiki.ucsc.
edu/index.php/Human/hg19/GRCh37_46-way_multiple_
alignment (last accessed January 3, 2016), respectively. Given
their different rates of substitution, autosomes were analyzed
separately from the X chromosome.

Data Filters
We implemented several filters on the data to obtain ortho-
logous elements that were well represented in the relevant
taxa. First, we filtered out genomic regions overlapping human
segmental duplications (genomicSuperDups) and repeat
masked regions (rmsk) (Fujita et al. 2010). Second, we required
synteny between human and the chicken, fish (F. rubripes,
Danio rerio), and/or frog (X. tropicalis). We used the
netSynteny tracks from hg18 and then converted to hg19
coordinates using liftOver from the Kent library (Hinrichs
2006). Third, we required that each element have sequence
covering at least 50% of bases from a marsupial, the mono-
treme, and at least one nonmammalian outgroup. This re-
quirement focused our investigation on older elements that
had a burst of change in the therian ancestor rather than on
sequences that are found only in therians. We focused on
elements that were important throughout vertebrate evolu-
tion but changed significantly in the therian ancestor.
Furthermore, these older elements may have better functional
annotation. We also required a minimum length of 45 nt and
30% coverage of nucleotides within the therian mammals.

Identification of TCRs and TSARs
We used the PHAST program phastCons to identify elements
that are conserved only among therian mammals (Hubisz
et al. 2011). For running phastCons, we set rho at 0.5 for
the therian subtree, which enforces a maximum rate of evo-
lution of half the rate derived from 4-fold degenerate sites in
coding regions. Stringent filtering followed by identifying con-
served elements with phastCons resulted in 177,346 TCRs.

New code was developed in the PHAST program phyloP
(Pollard et al. 2010; Hubisz et al. 2011) to implement the
internal branch test (--branch option). Previously, it was pos-
sible to test a single terminal branch or an entire subtree. The
null model is the same: It is a continuous time Markov model
of nucleotide substitutions derived from neutral sequences.
Here we used the REV model fit to 4-fold degenerate sites
(separately for chromosome X and the autosomes). Each

genomic region may be evolving faster or slower in all verte-
brates; therefore all branch lengths of the phylogenetic tree
from this model are then rescaled by a parameter to reflect
the local expected substitution rate. This results in all
branches of the tree being stretched or contracted by a
single factor for each genomic region. The alternative model
for the internal branch test is the null model with the therian
ancestral branch scaled by a second parameter, which is con-
strained to be greater than 1 to reflect accelerated evolution
in the ancestor of all therian mammals. Both models are fit to
the multiple sequence alignment of each TCR by maximum
likelihood. Thus, the internal branch test is a one-sided like-
lihood ratio test that compares the likelihood of data given
the null model to the likelihood under a model that allows for
acceleration along the therian ancestor branch. The P values
from the internal branch test were adjusted for multiple com-
parisons using the false discovery rate (Benjamini and
Hochberg 1995).

Simulations to Test Power and Specificity
Data simulated with acceleration on the therian ancestor
branch can be used to test power and specificity of the in-
ternal branch test (supplementary fig. S1, Supplementary
Material online). The median rate that TCRs underwent sub-
stitution in our analysis was one-third the rate of 4-fold de-
generate sites in protein-coding regions. Therefore, to
simulate data with similar power to reject the null hypothesis
(as in our empirical data), we rescaled all branch lengths in
our null model tree using tree_doctor (–scale 0.33; supple-
mentary fig. S1A, Supplementary Material online). We simu-
lated data using phyloBoot (Pollard et al. 2010) with three
different rates of substitution on the therian ancestor branch
(supplementary fig. S1B, Supplementary Material online,
branch in red). We used the null rescaled rate, 2� and 5�
higher than the null rescaled rate. For each rate, we simulated
1,000 data sets at 3 sequence lengths: 150, 300, and 1500 bp.
Median lengths of TCRs and TSARs are 177 and 359 bp, re-
spectively. We used phyloP to test the simulated data sets for
acceleration along the therian ancestor branch (Pollard et al.
2010; Hubisz et al. 2011). The false positive rate was obtained
from data simulated under the null model.

Gene Annotation
Each phastCons element was annotated with genic informa-
tion from the hg19 knownGene track in the UCSC database
(Hsu et al. 2006; Fujita et al. 2011). Genic regions included
UTRs, coding and noncoding exons, and introns.

TSAR Distribution and Clusters
We tested whether TSARs occur closer or farther apart from
each other compared with the TCRs from which they are
drawn (supplementary fig. S2, Supplementary Material
online). In 1,000 data sets, we randomly chose 4,797 elements
without replacement from the full set of TCRs. The median
distance between TSARs (34,208 bp) is considerably shorter
than the distance between the shuffled data sets (87,600 bp).
We then defined TSAR clusters as any set of three or more
TSARs where two neighboring TSARs are �50 kb apart. We
used a binomial test conditioned on at least one TSAR being
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present in a cluster to test whether cluster regions are en-
riched for TSARs; the expected proportion of TSARs is based
on the overall proportion of TSARs relative to phastCons
elements. All clusters are enriched for TSARs at FDR < 0.2
and the vast majority are highly enriched (FDR < 0.05).

Laboratory Methods

In situ hybridizations were conducted using standard meth-
ods. In situ hybridization probes were obtained from Drs
Stuart Orkin (Harvard University) and Marjo Salminen
(University of Helsinki). Transgenic reporter constructs were
made using a modified hsp68-LacZ construct engineered to
harbor Gateway recombination sites. Either polymerase chain
reaction–amplified fragments (primers in supplementary
table S6, Supplementary Material online) or synthesized
DNA fragments (Integrated DNA Technologies, Inc.,
Coralville, IA) from the mouse or chicken genome were
cloned into pENTR1A and then shuttled into the modified
lacZ reporter plasmid (Invivogen, San Diego, CA). Linearized
DNA samples were sent to Cyagen Biosciences, Inc. (Santa
Clara, CA) for pronuclear injection into the mouse embryo.
We examined multiple independent transgenic embryos,
each with a unique integration site. Only constructs with
reproducible activity were considered. Some embryos were
visualized by optical projection tomography using a
Bioptonics, Inc. (Edinburgh, UK) device and analyzed with
Volocity three-dimensional image analysis software (Perkin
Elmer, Waltham, MA).

Supplementary Material
Supplementary figures S1–S7 and tables S1–S6 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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