
INTRODUCTION

Diabetes mellitus (DM) is one of the main threats to hu-
man health in the 21st century: it is regarded as the fifth lead-
ing cause of death worldwide. Environmental and lifestyle 
changes are the main reasons for an increase in this disease, 
and the number of studies to better understand DM is grow-
ing (Zimmet et al., 2001; Roglic et al., 2005). There are two 
types of DM: type 1 DM (T1DM) and type 2 DM (T2DM). T1DM 
patients do not secret insulin, which is the hormone that de-
creases blood sugar, because of autoimmune destruction of 
beta cells in the pancreas (Di Lorenzo et al., 2007). In con-
trast, T2DM patients are insulin resistant; although they se-

crete insulin, its function is diminished in the body. Patients of 
both DM types are hyperglycemic. Hyperglycemia, the major 
characteristic of DM, leads to complications, including stroke, 
cardiovascular disease, and neuropathy. Cardiovascular dis-
ease accounts for the largest proportion of deaths in diabetic 
patients (Bell, 2003; Davidson and Parkin, 2009). Neverthe-
less, studies on diabetic cardiomyopathy have only recently 
been undertaken, and the relationship between diabetic car-
diomyopathy and hyperglycemia is still not well understood. 

Human cardiac progenitor cells (hCPCs) have the ability to 
regenerate damaged cardiac tissue. These cells self-renew 
and differentiate into endothelial cells, alpha-smooth muscle 
actin, and cardiomyocytes (Leri et al., 2005). Therefore, there 
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is potential for the use of hCPCs in cell therapies. In a pre-
vious study, a population of hCPCs was shown to decrease 
with hyperglycemia, indicating chronic dysfunction of the cells 
(Molgat et al., 2014). Although the effects of hyperglycemia 
on hCPCs have been studied, the mechanism underlying the 
association has not been fully established.

 The heart requires more energy than other organs; thus, 
studies on mitochondria, which are the critical intracellular 
organelles for energy metabolism, have been a focus of re-
search. In their normal state, mitochondria establish an active 
network within cells. They continuously join by the process 
of fusion and divide by the process of fission (Archer, 2013). 
However, in abnormal states, such as those associated with 
hyperglycemia, hyperinsulinemia, and hypertension, mito-
chondrial dynamics are out of balance (Lowell and Shulman, 
2005; Yu et al., 2008). This imbalance leads to cellular dys-
function (van der Bliek et al., 2013). In recent studies, the as-
sociation between mitochondrial dynamics and cardiovascular 
disease has been explored (Knowlton and Liu, 2015), and mi-
tochondrial dysfunction as a major cause of various diseases 
has been postulated (Archer, 2013).

In this study, we established an in vitro model of hyper-
glycemia. To mimic hyperglycemic conditions, we treated 
hCPCs with glucose above the physiological concentration. 
We hypothesized that high glucose affects hCPCs and alters 
mitochondrial dynamics. Furthermore, we examined whether 
blocking glucose uptake could rescue hCPC function.

MATERIALS AND METHODS

Isolation of c-kit positive human cardiac progenitor cells 
(hCPCc-kit +)

We used protocols modified from a previously described 
method (Choi et al., 2013) to isolate hCPCc-kit + from human 
infant-derived heart tissue. The Ethical Review Board of the 
Pusan National University Yang San Hospital, Gyengsang-
nam-do, Republic of Korea, approved the protocols (IRB 
05-2015-133). First, biopsy specimens from the atria of hu-
man hearts were digested to obtain a suspension of single 
cardiac cells, and then these cells were incubated in cardiac 
expansion media. The expanded cells were conjugated with 
c-kit primary antibody (Santa Cruz, Santa Cruz, CA, USA) and 
sorted by magnetic activated cell sorting (MACS). In the cur-
rent study, all experiments were conducted with hCPCs from 
passage numbers 7 and 8.

Drugs and CPC culture
hCPCs were maintained in Ham’s F12 medium (Hyclone, 

Logan, UT, USA) containing 10% fetal bovine serum (FBS, 
Gibco, CA, USA), 1× penicillin/streptomycin (PS, Welgene, 
Daegu, Republic of Korea), 2.5 U of human erythropoietin 
(hEPO, R&D Systems, Minneapolis, MN, USA), 10 ng/mL of 
basic human recombinant fibroblast growth factor (bFGF, Pe-
protech, Rocky Hill, NJ, USA), and 0.2 mM/L glutathione (Sig-
ma-Aldrich, St. Louis, CA, USA). hCPCs cultured in growth 
medium containing D-glucose (Sigma-Aldrich) and Fasentin 
(Sigma-Aldrich) was used as a GLUT1 blocker (Wood et al., 
2008), and dapagliflozin (Selleckchem, Houston, TX, USA) 
was used as an SGLT2 blocker. Both blockers were used to 
co-treat hCPCs cultured in medium supplemented with 25 mM 
D-glucose.

Cell viability assay
A cell viability assay (WST kit, Ez-Cytox, Daillab, Seoul, Re-

public of Korea) was performed to compare the viability of the 
control and high glucose-exposed hCPCs. hCPCs were seed-
ed on 96-well plates, and then the maintenance medium was 
changed to hCPC culture medium containing 5 mM, 15 mM, 
or 25 mM D-glucose. Culture plates were incubated for 24 h or 
72 h. Following incubation, the D-glucose-containing culture 
medium was removed and replaced with WST solution. The 
plates were incubated for another 2 h, and the absorbance of 
each sample was measured at a wavelength of 450 nm using 
an absorbance reader (Tecan, Grodig, Austria). 

Annexin V/Propidium Iodide (PI) staining
For apoptosis analysis, hCPCs were cultured in hCPC me-

dium containing 5 mM, 10 mM, 15 mM, or 25 mM D-glucose. 
Cells were stained using an Annexin V/PI staining Kit (Bec-
ton Dickinson, San Jose, CA, USA) according to the manu-
facturer’s protocol. After staining, data were analyzed by flow 
cytometry (BD Accuri, Becton Dickinson). 

Western blot analysis
Antibodies against CDK2 (Santa Cruz), cyclin E (Santa 

Cruz), Fis1 (Abcam, Cambridge, UK), Drp1 (BD Biosciences, 
Franklin Lakes, NJ, USA), Mfn1 (Santa Cruz), Mfn2 (Abcam), 
and OPA1 (Abcam) were used. In general, 10-25 μg of total 
protein was loaded, and the blots were visualized by chemi-
luminescence (ECL solution, Bionote, Hwaseong, Republic of 
Korea) using an LAS-3000 Imaging System (Fuji Film, Tokyo, 
Japan). A quantitative analysis was performed using Statview 
software® (Version 5.0.1, SAS Institute Inc, Cary, NC, USA), 
and the respective protein expression levels were normalized 
to that of β-actin (Santa Cruz).

Tube formation assay
hCPCs were cultured with high glucose (5 mM, 15 mM, or 

25 mM) for 72 h. The 96-well plates were coated with 60 μL of 
Matrigel (BD Biosciences), and then the plates were incubat-
ed for 30 min. hCPCs were harvested, seeded on the 96-well 
plates coated with Matrigel, and incubated for another 8 h. 
After incubation, the lengths of mitochondria were determined 
using ImageJ software (NIH, Bethesda, MD, USA). 

Immunofluorescence
Mitochondrial morphology was determined by staining 

hCPCs with 200 nM MitoTracker Red CMXRos (Molecular 
Probes, Eugene, OR, USA) and visualizing cells under a fluo-
rescence microscope (Olympus, Tokyo, Japan). To determine 
changes in mitochondrial morphology, we measured the total 
length of mitochondria using ImageJ software. 

Statistical analysis
All values are reported as the mean ± standard deviation 

(SD). Results were compared by unpaired Student’s t-test and 
considered statistically significant at p-values <0.05.

RESULTS

High-dose D-glucose decreased viability and progression 
of the cell cycle in hCPCs

hCPCs were treated with doses of D-glucose (5 mM, 15 mM, 
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or 25 mM) above that of the normal culture medium (D-glu-
cose, 5 mM). To examine whether treatment with high doses 
of D-glucose could affect hCPCs, a WST assay was conducted 
(Fig. 1A). Treatment of hCPCs with high doses of D-glucose 
for 24 h did not show any effect. However, hCPCs exposed 
to high doses of D-glucose for 72 h showed significant dose-
dependent decreases. Western blot analysis demonstrated 
that expression of cell cycle-related proteins decreased when 
hCPCs were treated with high doses of D-glucose for 72 h (Fig. 
1B). These data suggest that high doses of D-glucose lead to a 
decrease in hCPC viability and cell cycle progression.

High-dose D-glucose decreased the tube-forming  
capacity of hCPCs

To determine whether high doses of D-glucose are asso-
ciated with hCPC dysfunction, we treated cells with different 
doses of D-glucose (5 mM, 15 mM, or 25 mM) for 72 h, and 
then the tube-forming capacity of hCPCs was assessed by 
viewing the formation of capillary networks on Matrigel (Fig. 
2A, 2B). Tube formation decreased significantly relative to that 
of the control, when hCPCs were treated with high doses of 

D-glucose. These data indicate that the differentiation capac-
ity of hCPCs was impaired by prolonged exposure to high D-
glucose. 

High-dose D-glucose altered mitochondrial morphology
Alterations in the extracellular environment, including the 

initiation of hyperglycemia, hyperinsulinemia, or hyperlipid-
emia, cause mitochondrial dysfunction in T2DM (Guilherme et 
al., 2008; Muoio and Newgard, 2008). To investigate whether 
hyperglycemia is involved in modifying mitochondrial dynam-
ics, we treated hCPCs with a high dose of D-glucose for 24 h 
and 72 h, and used MitoTracker Red CMXRos to stain mito-
chondria and obtained images under an fluorescence micro-
scope. Mitochondria appeared as fragmented, discontinuous 
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networks after hCPCs were treated with 25 mM D-glucose for 
24 h or with 15 mM or 25 mM D-glucose for 72 h (Fig. 3A, 3C). 
Determination of the total lengths of mitochondria revealed 
that treatment with high doses of D-glucose shifted mitochon-
drial morphology toward a fission type in a time- and dose-
dependent manner (Fig. 3B, 3D). 

High-dose D-glucose increased mitochondrial fission-
associated Drp1 and Fis1

To examine which molecules, those associated with mito-
chondrial fusion or mitochondrial fission, mediated mitochon-
drial fragmentation in a high D-glucose environment, we treat-
ed hCPCs with a high dose of D-glucose for 24 h and 72 h 
and performed a western blot analysis. While no significant 
difference in the levels of mitochondrial fusion-related proteins 
Mfn1, Mfn2, and OPA1 was detected between D-glucose- and 
vehicle-treated hCPCs (Fig. 4B), the mitochondrial fission-
related proteins Drp1 and Fis1 were greatly increased in the 

high-dose D-glucose treatment groups (Fig. 4A). These results 
indicate that the molecules that regulate mitochondrial fission 
increase with high doses of D-glucose, contributing to an im-
balance in mitochondrial dynamics that favors fission.

Inhibition of D-glucose uptake recovered hCPC dysfunc-
tion caused by high dose of D-glucose

We next asked whether inhibition of D-glucose uptake by 
blocking the glucose transporter could rescue high-dose D-
glucose-induced decreases in hCPC viability and cell cycling. 
We co-treated hCPCs with 25 mM D-glucose and 1 μM Fasen-
tin or dapagliflozin, which block GLUT1 and SGLT2, respec-
tively. Following co-treatment for 72 h, we performed WST and 
tube formation assays. First, we observed that co-treatment 
with 1 μM Fasentin and 25 mM D-glucose for 72 h significantly 
increased hCPC viability relative to that of the high-dose D-
glucose treatment group (Fig. 5A). However, cells co-treated 
with 1 μM dapagliflozin and 25 mM D-glucose for 72 h did not 
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differ from control cells (Fig. 5B). Thus, our data indicated that 
blocking glucose uptake through GLUT1-specific inhibition 
recovered hCPC viability that decreased with high doses of 
D-glucose. Amelioration of 25 mM D-glucose-induced dysfunc-
tion of hCPCs by co-treatment with 1 μM Fasentin was also 
associated with recovery of hCPC tube-forming ability (Fig. 
5C). Therefore, the inhibition of glucose uptake by a specific 
inhibitor of GLUT1 improved the differentiation capacity of 
hCPCs. 

Inhibition of D-glucose uptake decreased mitochondrial 
fission caused by high doses of D-glucose 

We further examined whether the GLUT1 inhibitor Fasentin 
rescued hCPC dysfunction and regulated mitochondria dy-
namics, and found that 1 μM Fasentin inhibited mitochondrial 
fission caused by high doses of D-glucose. As shown in Fig. 
6A, treatment with 1 μM Fasentin mitigated the fragmented 
and discontinuous network. The total lengths of mitochondria 
were significantly greater in hCPCs treated with 1 μM Fasentin 

for 72 h than in untreated hCPCs. We next demonstrated that 
the levels of mitochondrial fission-related proteins Fis1 and 
Drp1 decreased when glucose uptake was blocked in hCPCs. 
Thus, excessive mitochondrial fission resulting from high dos-
es of D-glucose was moderated by blockage of glucose uptake 
through specific inhibition of GLUT1 in hCPCs (Fig. 6B).

DISCUSSION

The idea that an imbalance in mitochondrial dynamics un-
derlies the pathogenesis of cardiovascular disease is gaining 
support. For example, a previous study showed that mito-
chondrial fragmentation in HL-1 cardiac cells favoring Drp-
1-dependent processes plays a critical role in myocardial 
ischemia (Ong et al., 2010). Another study revealed changes 
in mitochondrial dynamics during simulated ischemia and re-
perfusion in H9c2 cells (Liu and Hajnoczky, 2011). In addition, 
there have been several studies on diabetic conditions using 
cardiac progenitor cells (Rota et al., 2006; Molgat et al., 2014). 
These studies all support the notion that DM is a clear cause 
of hCPC dysfunction. However, it is not clear which specific 
factors in DM are related to hCPC dysfunction and mitochon-
drial dynamics. 

Our results suggest that the mitochondrial fission process is 
likely to be a main regulating process involved in the alteration 
of mitochondrial dynamics. In agreement with our hypothesis, 
high doses of D-glucose resulted in hCPC dysfunction, and fis-
sion-related proteins Drp1 and Fis1 were increased in hCPCs 
treated with high doses of D-glucose. Treatment of hCPCs 
with doses of D-glucose above that of normal culture medium 
decreased cell viability, as shown by the MTS assay. Inter-
estingly, we found that reduced cell viability seems to be not 
related cell apoptosis, demonstrated by Annexin V/PI staining 
(Supplemental figure). Cell cycle-related proteins CDK2 and 
cyclin E, involved in progression from the late G1 phase to 
the early S phase, were evaluated by western blot analysis, 
and the results indicated an interruption in cell cycle progres-
sion. Thus, high doses of D-glucose correlate with decreased 
viability and function of hCPCs. We next investigated whether 
high doses of D-glucose impaired the tube-forming capacity 
of hCPCs, because hCPCs differentiate into endothelial cells, 
as well as smooth muscle actin and cardiomyocytes following 
cardiac injury. 

Mitochondrial dynamics in hCPCs are imbalanced by high 
doses of D-glucose. This was demonstrated by images of mito-
chondrial morphologies, showing a change from a continuous 
network to a fragmented and discontinuous network. Western 
blot analysis revealed increases in mitochondrial fission-relat-
ed proteins Drp1 and Fis1 mediated by high doses of D-glu-
cose. Interestingly, we found that the levels of mitochondrial 
fusion-related proteins (Mfn1, Mfn2, and OPA1) did not differ 
from those of the vehicle control. These data indicate that high 
doses of D-glucose in hCPCs induce excessive fission, or frag-
mentation, in mitochondria, but it still remains to be resolved 
how high D-glucose upregulates mitochondrial fission-related 
proteins Drp-1 and Fis-1 and causes mitochondrial fragmenta-
tion.

In high D-glucose conditions, increases in intracellular glu-
cose follow increases in glucose uptake. Fasentin, a GLUT1 
blocker, was used in the co-treatment of hCPCs with 25 mM 
D-glucose for 72 h. In agreement with our hypothesis, specifi-
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cally blocking glucose uptake rescued hCPC viability and tube 
formation. We suggest that GLUT1 is the major protein for 
glucose uptake in hCPCs. Furthermore, Fasentin attenuated 
mitochondrial fragmentation by selectively inhibiting glucose 
uptake. We demonstrated the recovery of mitochondrial length 
and mitochondrial fission-related proteins by co-treatment of 
hCPCs with Fasentin and 25 mM D-glucose for 72 h. Thus, 
our results provide evidence that specific inhibition of glucose 
uptake in hCPCs can prevent mitochondrial fragmentation in 
hCPCs.

In conclusion, we established hyperglycemic conditions in 
vitro by adding D-glucose to normal culture medium. We pro-
vide evidence that high-dose D-glucose leads to hCPC dys-
function and the promotion of mitochondrial fission. These ef-
fects were ameliorated by specifically blocking GLUT1. When 
hCPCs are exposed to hyperglycemic conditions, the intracel-

lular glucose concentration in hCPCs increases with glucose 
uptake. High doses of glucose within hCPCs causes abnormal 
metabolism in mitochondria, leading to imbalanced mitochon-
drial dynamics and dysfunction in hCPCs. For this reason, it 
is important that the glucose concentration in hCPCs is de-
creased when glucose uptake is blocked. Therefore, blocking 
glucose uptake might provide a novel therapeutic strategy for 
DM. 
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ing treatment with dapagliflozin and 25 mM D-glucose for 72 h. Viability was not significant different in hCPCs exposed to 1 μM dapagliflozin 
and 25 mM D-glucose for 72 h and in the control. Results are presented as means ± SD. *p<0.05 vs. control. **p<0.01 vs. control. (C) The 
tube formation ability of hCPCs treated with 1 μM Fasentin. Total tube length is presented in the lower panel. Results are presented as 
means ± SD. **p<0.01 vs. + 25 mM D-glucose.
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glucose. Value were normalized with those of β-actin.
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