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Abstract

Identification of functional sets of genes associated with conditions of interest from omics data was first reported in 1999,
and since, a plethora of enrichment methods were published for systematic analysis of gene sets collections including Gene
Ontology and biological pathways. Despite their widespread usage in reducing the complexity of omics experiment results,
their performance is poorly understood. Leveraging the existence of disease specific gene sets in KEGG and MetacoreH
databases, we compared the performance of sixteen methods under relaxed assumptions while using 42 real datasets (over
1,400 samples). Most of the methods ranked high the gene sets designed for specific diseases whenever samples from
affected individuals were compared against controls via microarrays. The top methods for gene set prioritization were
different from the top ones in terms of sensitivity, and four of the sixteen methods had large false positives rates assessed
by permuting the phenotype of the samples. The best overall methods among those that generated reasonably low false
positive rates, when permuting phenotypes, were PLAGE, GLOBALTEST, and PADOG. The best method in the category that
generated higher than expected false positives was MRGSE.

Citation: Tarca AL, Bhatti G, Romero R (2013) A Comparison of Gene Set Analysis Methods in Terms of Sensitivity, Prioritization and Specificity. PLoS ONE 8(11):
e79217. doi:10.1371/journal.pone.0079217

Editor: Lin Chen, The University of Chicago, United States of America

Received August 4, 2013; Accepted September 26, 2013; Published November 15, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. AT, GB, and RR were
supported, in part, by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National
Institutes of Health, U.S. Department of Health and Human Services.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: atarca@med.wayne.edu

Introduction

As soon as microarrays became available [1], scientists faced the

challenge of interpreting the high volume of data generated from

these technologies, as a typical experiment comparing two groups

of samples can result easily in hundreds or thousands of genes

being identified as differentially expressed between groups. One of

the few options available to researchers to extracting meaning

from such long lists of differentially expressed genes is to

characterize the phenotype under the study by identifying over-

represented/enriched categories of genes that share a similar

function within the list of differentially expressed genes [2]. Even

when a high-throughput experiment fails to demonstrate signifi-

cant changes at gene level, due for instance to a modest effect or

small sample size which are common in the field, gene set analysis

is still relevant. This is because certain gene set analysis methods

can use modest but coordinated changes in expression to establish

a link between the phenotype and a predefined group of

functionally related genes. As an example, Mootha et al. [3]

showed that a set of genes involved in oxidative phosphorylation

are coordinately decreased in the human diabetic muscle. A third

application of gene set analysis methods is to compare gene

expression changes across laboratories or even species. For

instance, in the Species Translation Challenge (https://www.

sbvimprover.com), a large international effort for systems biology

verification, the effect of various stimuli on the transcriptome was

expected to be translatable in a certain proportion between rat and

human organisms, at gene set level rather than at the individual

gene level.

The earliest approach [2] used to identify a common thread

through the observed gene expression changes by finding over-

represented/enriched categories of molecules that shared a

similar function is the Over-Representation Analysis (ORA).

This method became popular once software tools were designed

to mine existing gene annotation databases including Gene

Ontology [4], biological pathways databases (e.g. KEGG [5],

Reactome [6]) and other gene set collections (e.g. MSigDB [7]).

Over-representation approaches rely on a basic contingency table

analysis testing for the association between the Differential

Expression (DE) status of a gene (DE or not) and its membership

in a given gene category (e.g. the set of genes related to

apoptosis). Typical distributions used to perform ORA include

hypergeometric, chi-square (x2), etc. and they are implemented

in publically available tools such as Onto-Tools [8,9], GOstat

[10], GOstats [11], and DAVID [12], just to mention a few. The

drawbacks of ORA approaches include the fact that they cannot

be applied if no DE genes are found in a given study, for

instance due to lack of statistical power, and that the analysis

result depends on the threshold used to select the DE genes.

Also, the common assumption behind the models used for ORA,

such as independence between genes, is likely violated, poten-

tially resulting in an inflated rate of false positive findings [13].
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A second generation of methods, called Functional Class

Scoring (FCS) methods, alleviates the need to select significant

genes as a first step and provide a unique result for a given dataset.

Typically, these approaches derive a score from all genes that

belong to a given gene set regardless of whether or not they are

differentially expressed. Such methods include Gene Set Enrich-

ment Analysis (GSEA) [7], GLOBALTEST [14], SIGPATHWAY

[15] with two alternative null hypotheses (Q1 and Q2), Gene Set

Analysis (GSA) [16], Generally Applicable Gene set Enrichment

(GAGE) [17], Significance Analysis of Functional categories in

gene Expression studies (SAFE) [18], Mean-Rank Gene Set

Enrichment tests (MRGSE) [19], Pathway Analysis with Down-

weighting of Overlapping Genes (PADOG) [20] that we have

proposed previously, and Correlation Adjusted Mean Rank gene

set test (CAMERA) [21].

A distinct type of gene set analysis methods compute a gene set

score in each individual sample from the observed gene expression

levels, and hence are deemed Single-Sample (SS) methods. The

association between the phenotype and the sample-level gene set

scores can be conducted with classical statistical models. This is an

important advantage over FCS methods, because very complex

designs (e.g. time series, longitudinal designs, etc.) can be easily

analyzed in this way, while adjusting for relevant covariates in the

analysis. The methods in this category that we considered in this

work were: Pathway Level Analysis of Gene Expression (PLAGE)

[22], Z-score [23], Single Sample GSEA (SSGSEA) [24] and Gene

Set Variation Analysis (GSVA) [25]. See the Methods section for a

very brief description of these approaches.

Among all methods described above there is a fundamental

dichotomy with regard to their definition of the null hypothesis:

competitive methods (ORA, MRGSE, GAGE, GSEAP, SIGPATH-

WAY-Q1), and self-contained methods [13] (all remaining methods

mentioned above). From a practical standpoint, the competitive

methods can be applied even with one sample per group as they

rely on genes as sampling unit, yet they cannot work if no genes

outside the gene set are measured. On the other hand, the self-

contained methods use the subjects as the sampling unit and hence

require several samples per group to infer significance of the gene

sets. Unlike the competitive methods, some of the self-contained

methods can be applied even when only the genes in the gene set

are profiled. For a more detailed classification of gene set analysis

methods see [26].

A separate class of analysis methods that exploit prior

knowledge regarding the topology and gene-gene interactions

available in biological pathways have also been proposed in the

past [27,28], and reviewed elsewhere [29]. Such methods are not

within the scope of the current study for several reasons. Firstly,

such methods were either designed for non-metabolic pathways

only or for metabolic pathways only, while here we considered all

KEGG metabolic and non-metabolic pathways. Secondly, for the

Metacore Disease Biomarker Networks, the pathway information

was not available in the format that these tools can use. Thirdly,

our study is focused on gene set analysis methods which from a

computational perspective have broader applicability than spe-

cialized pathway analysis methods, as they can be applied to the

analysis of genes that form biological pathways as well as to any

collection of custom defined gene sets.

Although the methods introduced above, and described in more

detail in the Methods section, rely sometimes on a different null

hypothesis and statistics, they basically assume that when a gene

set is indeed relevant to a given phenotype, a sizeable proportion

of the genes will show some amount of differential expression

between groups in either one or both directions, depending on the

method.

For the life scientist in need to occasionally perform a gene set

analysis of his/her favorite dataset, as well as for the professional

bioinformatician facing this task every day, it is difficult to know

which approach works best because whenever these approaches

were introduced, they were assessed in various ways using different

gene sets collections, on few or no real datasets. Although methods

for gene set analysis were recently reviewed [29] together with

challenges in how to assess their performance, there is currently no

large scale study that compares the performance of the existing

approaches, and hence provide the community with a guide in

selecting the best analysis method for this rather ubiquitous task.

The aim of this paper is therefore to provide a meaningful

comparison of established gene set analysis methods in terms of

their ability to i) rank close to the top gene sets that are indeed

relevant to a given condition (prioritization), ii) produce small p-

values for these relevant gene sets (sensitivity) while iii) not

generating more false positives than expected (specificity). We relied

on a scheme that uses particular KEGG and Metacore disease

gene sets (e.g. Colorectal Cancer gene set in KEGG) and

minimally assumed these to be relevant whenever a microarray

datasets studying the corresponding phenotype (e.g. colorectal

cancer vs normal) is used as input. A number of 42 such

microarray datasets were selected from GEO for this goal totaling

over 1,400 samples (see Table S1). The rank and p-value of one

target gene set for each of the 42 datasets was the basis for

assessing the prioritization ability and sensitivity of methods, while

using permuted versions of these real datasets we determined their

specificity with respect to the studied phenotype.

To make the comparison between the different methods fair, all

methods used the data processed and filtered in the same way, and

relied on identical gene set definitions. Moreover, to make the

comparison between the sixteen different methods feasible when

analyzing the large number of datasets we considered only

methods that had software implementations suitable for batch

operation implemented by the original authors or by others at a

later point in time.

Results

Overall, the 42 Datasets Considered were a Good Match
for the Diseases Studied; so were the KEGG/Metacore
Gene Sets Specifically Designed for Those Diseases
We applied sixteen different gene set analysis methods to

analyze 259 KEGG gene sets and separately 88 MetacoreH
Disease Biomarker Networks. In each analysis, the input was one

of the 42 independent public datasets that we selected and one of

the two collections of gene sets (KEGG or Metacore). Each dataset

studied one of 19 unique conditions/diseases shown in Figure 1,

for which KEGG or Metacore has designed a specific gene set. We

expected that in the output of each analysis method for a given

dataset (sorting gene sets by p-value) the target gene set (having the

same name as the condition under the study) will be ranked close

to the top and have a small significance p-value.

Indeed, the median p-value of the target gene sets was

significantly below 0.5 (Wilcoxon p,0.05) for all 16 methods

studied (see Figure 2 left panel). Sorting the gene sets by their p-

values within the output of each method and each dataset, we

computed the rank of the target gene set as a percentage ranging

from ,0 to 100%. Small rank values (below 50%) would indicate

that the target gene set was prioritized as relevant to the respective

condition in a given dataset. Indeed, for 12 of the 16 methods the

median rank was significantly lower than 50% (see Figure 2 right

panel). These results suggest that overall a) the gene sets designed

by KEGG and Metacore were relevant to those conditions, and b)

A Comparison of Gene Set Analysis Methods
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that the datasets we selected captured the nature of those

phenotypes, on average. An analysis of gene set analysis

performance metrics in each of the 42 datasets separately revealed

that 36 of the 42 datasets showed significant enrichment for the

target gene set according to at least one method (false discovery

rate ,0.05 and rank ,0.5) as shown in Figure S1.

Most Sensitive Methods are not also the Best to Prioritize
the Relevant Gene Sets
As a surrogate for the sensitivity of the methods, we used the

median target gene set p-value over the 42 different datasets. The

16 methods were then ranked according to this metric (the smaller

the median p-value the better the method). GLOBALTEST,

PLAGE, GAGE and MRGSE were the top four methods (Figure 2

left panel). If instead of this surrogate for sensitivity, the classical

definition of sensitivity is used with a=0.05 for instance, the

resulting ranking of the methods would be similar (see Table S2).

We preferred though the median of p-values since it is threshold

free and did not lead to ties in the ranking of the methods, unlike

the classical definition of sensitivity (see Table S2). Since in this

analysis we are only interested in the p-value of the target gene set

in the output of a given method (one test per dataset), and since we

are mainly interested in comparing the methods among them

based on these p-values, no adjustment for multiple testing was

necessary.

When the methods were sorted on the basis of the median rank

of the target gene sets (a measure of prioritization ability of the

methods), the top four methods were different, namely: PADOG,

ORA, MRGSE and SAFE (Figure 2 right panel).

Some Methods Find Significant Pathways Too Often Even
in the Absence of Real Differential Expression
Differences in the perceived sensitivity of the methods, as

captured by the median p-values of the target gene sets in Figure 2

(left panel), can be due not only to an intrinsically higher

sensitivity, but also to a higher than expected false positive rate. To

determine the false positive rates in the absence of real differential

expression, but presence of gene-gene correlations, we run the

different methods on 50 phenotype permuted versions of each of

the 42 datasets. We counted the number of gene sets with a p-

value less than 0.01 and 0.05 under this null hypothesis and

expressed this number as a percentage of the total number of tests.

Figure 3 shows that four methods (all of the competitive type)

namely GAGE, SIGPATHWAYQ1, MRGSE and GSEAP

generated false positive rates that are much larger than the

expected levels, unlike the remaining 12 methods. These four

methods produced between 4.8 (MRGSE) and 37.9 (GAGE) times

more false positives than expected at a=1%. In contrast, all the

other methods produced between 0.47% (CAMERA) and 2.5%

(ORA) false positives.

Figure 1. Procedure used to compare 16 gene set analysis methods. 42 microarray datasets were used, each studying a phenotype that has
a corresponding KEGG or Metacore disease pathway, that we call target pathway. Each method was applied on each datasets and the p-value and
rank of the target pathway in each dataset was used to compare the methods.
doi:10.1371/journal.pone.0079217.g001
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Plage, Globaltest and PADOG are the Best Overall Self-
contained Methods; MRGSE the Best Competitive
Method
To provide a meaningful overall ranking of the 16 methods

considering their prioritization ability, sensitivity, and specificity,

we produced two rankings, one for the methods that generated the

expected (or close to expected) number of false positives under the

permutation of the phenotype (category I), and one for the second

category having much larger false positives rates under this null

hypothesis (category II). Note that this dichotomization follows

basically the competitive vs self-contained dichotomization except

for ORA, which although is a competitive method produced a

relatively low false positive rate. Overall, the mean false positive

rate of methods in category I is 1.45% (SD=0.68) while the best

method in category II has significantly worse performance

(p,0.0001) having a 4.9% false positive rate at a=1%. After

transforming the prioritization score and sensitivity surrogate

(median target gene set p-values and median ranks respectively)

into Z-scores (subtracting the median and dividing to the median

of absolute deviations across the different methods in a given

category) we have ranked the 12 methods in category I by the sum

of their Z-scores. The best three methods that provide a good

compromise between prioritization ability and sensitivity were

PLAGE followed by GLOBALTEST and PADOG in category I.

Using a similar approach we ranked the four methods in category

II that have higher than expected false positive rates by also

considering the amount of false positives that they generate in the

ranking (see Table 1). The best of the four methods in this category

was MRGSE as it was best in terms of prioritization ability and

also in terms of false positive rates.

Discussion

The value of gene set analysis is to reduce a potentially large list

of differentially expressed genes (hundreds or a few thousands) into

a smaller list of over-represented biological processes, molecular

functions, biological pathways, etc. that can give a system’s level

picture of the phenotype under the study. Also, even when

differential expression cannot be claimed using usual stringency

criteria, gene set analysis may still identify gene sets that are

associated with a given phenotype by exploiting the fact that many

genes in a gene set change with the condition under the study. The

changes accumulated at gene set level can be either heterogeneous

(both up- and down-regulation) or coordinated (same direction).

Since infancy, the research in the field of gene set analysis was

plagued with the lack of a gold standard. To measure sensitivity of

gene set analysis, researchers have used either simulated data or, at

Figure 2. A comparison of sensitivity and prioritization ability of 16 gene set analysis methods. Each box contains 42 data points
representing the p-value (left) and the rank (%) (right) that the target pathway received from a given method when using as input an independent
dataset and a collection of gene sets (either KEGG or Metacore). Since the target pathways were designed by KEGG and Metacore for those diseases
we expected that, in average, they will be found relevant by the different methods. Methods are ranked from best to worst according to the median
p-value (left) and median rank (right).
doi:10.1371/journal.pone.0079217.g002
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most, a handful of real datasets in which prior knowledge was

available regarding the relevance of some of the gene set to the

considered phenotypes. In this work, we assumed only that some

of the disease gene sets curated by KEGG and Metacore are

relevant whenever the respective disease phenotype is studied

using microarrays in an appropriate tissue/milieu. Since each

dataset gives us just one performance measure data point we relied

on an unprecedented number of GEO datasets (N= 42) for

comparing gene sets analysis methods totaling over 1,400 samples.

The assumption we relied on is not affected by the fact that there

may be other gene sets at least as or more relevant to a given

phenotype than the gene set that bears the same name as the

condition under the study (that we call the target gene set). The

main strength of this study is that we compared 16 methods on the

same gene expression data and used the same collection of gene

sets under the same conditions. The methods we considered were

published in renowned peer reviewed international journals and

have attracted a considerable number of citations (median of 25

citations per year) while spanning a period of 14 years.

The main findings of this study are:

a) The use of multiple KEGG and Metacore curated disease

gene sets together with a large number of datasets studying

those respective diseases can be used as a benchmark for gene

set analysis. This is because almost all of the 16 different

methods showed evidence that the different gene sets were

relevant to their respective conditions as captured by the

median p-value and median rank of the target gene sets. In

the absence of real differential expression (simulated by

permuting the phenotype labels) the same gene sets appear as

significant no more than expected by chance for 12 of the 16

methods. Although the KEGG and Metacore pathway

databases were used to compare gene set analysis methods

in this study, we acknowledge the fact that for identification of

particular types of biological pathways (e.g. non-metabolic)

other approaches that consider the pathway topology and

gene interactions can be more suitable.

b) The 42 datasets benchmark was made available to the

community as the KEGGdzPathwaysGEO and KEGGandMeta-

coreDzPathwaysGEO R packages. The infrastructure required

to run all 16 methods on these or any other dataset will be

added to the development version of the Bioconductor

PADOG package allowing therefore for reproducible research

and easy comparison of new gene set analysis methods

against existing ones.

c) The best methods for gene set prioritization are different

from the best methods in terms of sensitivity with PLAGE

followed by GLOBALTEST and PADOG giving the best

compromise between gene set prioritization and sensitivity

while producing the expected rate of false positives whenever

there are no real expression differences between groups. The

most widely used gene set analysis method, GSEA (over 4500

citations according to Google Scholar), was ranked only 10th

Figure 3. False positive rates produced by 16 gene sets analysis methods. The null hypothesis is simulated by analyzing phenotype
permuted versions of the original datasets. The percentage of all pathways found significant at different significance levels (a) is reported for each
method with a vertical bar. The horizontal lines denote the expected levels of false positives at each a level. Note the logarithmic scale.
doi:10.1371/journal.pone.0079217.g003
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of the 12th methods that produce a rate of false positives close

to the expected levels.

d) As a point of interest, the three best overall methods are

different in nature. GLOBALTEST tests if the variance of

member gene coefficients in a logistic model is different from

0. PADOG combines differential expression moderated t-

scores of the gene set members and weights them inversely to

their frequency across gene sets. PLAGE computes one gene

set score for each sample (the first principal component), and

then scores can be tested for differences between groups using

a moderated t-test.

The ranking of the methods that we propose in this work based

on 42 datasets was consistent with the ranking based on only half

of the datasets (Spearman rank correlation between 0.78 and 0.98,

p,0.0001), with the dichotomy being established based on the

total number of samples in each dataset, the target gene set size

and the magnitude of changes between the conditions. When only

the datasets with a paired design were considered, the ranking of

the category II methods was identical with the one based on the

overall data, yet, the ranking of category I methods was not

correlated with the initial ranking based on all datasets. This is

likely due to the rather small number of datasets with a paired

design (n= 11). The discrepancy in the ranking stability between

the two categories of methods can be understood at least in part by

the fact that there are large differences between the category II

methods according to the false positive criterion which induce

stability in the ranking.

The results of this study confirm several previous findings, but

contradict others. For instance, using analytic calculations and

simulations Efron and Tibshirani [16] predicted that the GSA

statistic (the maxmean) is generally more powerful than GSEA.

Figure 2 shows that both in terms of sensitivity and ranking ability

GSA performs better than GSEA, while both generate the same

expected rate of false positives. Tarca et al. [20] have shown using

24 of the 42 datasets we used in this study that PADOG performs

better than GSA and GSEA in analyzing KEGG gene sets, which

is confirmed herein. Wu et al. [21] have shown that in the absence

of real differential expression but small inter-gene correlation, the

MRGSE method (a.k.a. geneSetTest in the limma package) will

produce more false positives than expected, while their new

method CAMERA does not show this drawback. Both these

findings are replicated in Figure 3. Tomfohr et al. [22] suggest that

their method PLAGE identifies gene sets that are more plausible

than GSEA, a finding that is confirmed in Figure 2 (right panel)

since PLAGE was ranked 6th for gene set ranking ability while

GSEA was ranked 8th.

In contrast, previous findings that suggest GSVA is superior to

its single-sample enrichment counterparts ZSCORE, PLAGE and

SSGSEA could not be replicated. Actually the opposite was true,

as GSVA was the second to last ranked method. Luo et al. [17]

claimed that their method, GAGE, outperforms GSEA in terms of

the biological plausibility of the findings, which could not be

replicated since GSEA produced better gene set ranking than

GAGE. The perceived superiority of GAGE in terms of sensitivity

is due to a very high false positive rate when there is no differential

expression but gene correlations are present. The reason for this

drawback of GAGE is that the method relies on gene sampling

which, as for all gene sampling methods, results in smaller than

expected p-values. In addition, by combining the p-values from

multiple 1-on-group comparisons, yet assuming independence, the

intrinsic lack of specificity of the method is amplified.

The goal of the gene set analysis benchmark presented in this

study is to provide the reader with a guide to navigating the

current landscape of existing methods and understand their

strengths and limitations based on sensitivity, gene set prioritiza-

tion, and specificity. Although a universally best gene set analysis

method may still remain elusive, as is the case in other sub-fields of

systems biology [30], in this work we provided a methods ranking

considering one criterion at a time as well as a ranking considering

combined criteria. If the user is mostly interested in defining a

hypothesis regarding the involvement of certain functional groups

of genes in a given condition, which can be later tested in a larger

sample size, then choosing a method that gives best prioritization

could be used, since such method is more likely to rank close to the

top the meaningful gene sets. In this case the choice to be made

will be between PADOG (if at least a handful of samples per group

are available) or MRGSE and ORA if only 2–3 samples are

available per group, or the experimental design is more complex

(e.g. longitudinal design). If however, one is more interested in

claiming significance of certain gene sets based on the available

data, then GLOBALTEST would most likely give the best

sensitivity for the test, although the significance p-values will not be

ideal in establishing a ranking of the gene sets in relation with the

phenotype. The best compromise method considering these two

criteria is PLAGE, which also has slightly better specificity than

GLOBALTEST and PADOG.

Some exceptions to this rather stable ranking based on all 42

datasets may be observed in Table 2, in which results obtained

from half of the datasets would suggest that: i) GLOBALTEST is a

better overall choice than PLAGE when the sample size is larger

(over 22 samples in total) and that ii) ORA is the best overall

method if the truly relevant gene sets are larger rather than

smaller.

In addition to the above described factors that could influence

one’s choice of the method to use, we mention here that the

context in which the methods are compared is one in which the

gene sets considered are pathways instead of experimentally

derived gene sets. In pathways, genes may be heterogeneously

regulated in either direction whereas in experimentally derived

gene sets, genes change in a coordinated fashion (mostly up- or

down-regulated). The extent to which this aspect of the analysis

has the potential to influence the ranking of the methods, some of

which are specifically designed to detect coordinated changes,

should be investigated further as gold standards are established for

this purpose.

Methods

Sixteen Gene Set Analysis Methods
A brief introduction of the methods used in this study is given

next: Gene Set Enrichment Analysis (GSEA) [7,31] tests if the

distribution of the ranks of genes in the gene set (ranking by p-

values of association with the phenotype) differs from a uniform

distribution using a weighted Kolmogorov-Smirnov test. An

alternative version of GSEA that allows the user to define its

own gene list ranking, and hence accommodate paired designs, is

called GSEA Pre-Ranked (GSEAP), and is available from the

same authors as GSEA. GSEAP does not rely on samples

permutation as GSEA does, but it relies on gene sampling.

GLOBALTEST [14] uses a logistic regression model to

determine if samples with similar profiles have similar phenotype

by testing if the variance of the coefficients of genes in the gene set

is different from 0. SIGPATHWAY of Tian et al. [15] tests two

related yet distinct questions: i) the genes in a gene set show the

same pattern of association with the phenotype compared to the

rest of the genes (Q1) and ii) the gene set contains no DE genes

(Q2). To detect moderate but coordinated associations for genes in
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a gene set (e.g. most genes are over expressed in disease than in

control samples) a t-test is used to assess the shift in location of the

gene correlations in the gene set of interest with respect to the

background list of genes. In the same vein, Gene Set Analysis

(GSA) [16] uses the maxmean statistic to determine if either up- or

down-regulation of genes is the trend for which the evidence is the

strongest for a particular gene set. While GSA is optimized to find

gene sets with coordinated changes in one particular direction,

Luo et al. [17] with their Generally Applicable Gene set

Enrichment (GAGE) treat differently biological pathways from

experimentally derived gene sets, since in pathways, genes may be

heterogeneously regulated in either direction whereas in custom

gene sets changes are usually coordinated. GAGE testes whether

or not the mean fold changes of a target gene set is different from

the one of the background list of genes profiled in the experiment.

The method can therefore be applied even when only one sample

per groups is available. When replicate samples exist, the resulting

p-values from 1-on-1 comparisons are combined, assuming

independence. Similar to GSEA and GSA, the Significance

Analysis of Functional categories in Gene Expression studies

(SAFE) [18] computes first a local gene level statistic (e.g. t-score)

and then computes a gene set level statistic (i.e. Wilcoxon sum

rank) to see if the distribution of local statistics in the gene set is

different from the one of the background list of genes. Mean-Rank

Gene Set Enrichment tests (MRGSE) [19] uses as null hypothesis

that the given gene set is randomly chosen and tests if the ranks of

genes in the genes et (sorted by a moderated t-test p-value) is

different from the one of the background list. Pathway Analysis

with Down-weighting of Overlapping Genes (PADOG) [20] was

developed to account for the specificity of genes to certain gene

sets and downplay the importance of the ubiquitous genes. The

gene set score with PADOG is the mean of absolute moderated t-

scores weighed inversely with the gene frequency across all gene

sets analyzed. Correlation Adjusted Mean Rank gene set test

(CAMERA) [21] method estimates the inter-gene correlation from

data and uses it to adjust the gene set test statistic. To compute the

significance p-value for the gene set summary statistics, FCS

approaches described above rely either on sample (GSEA, GSA,

SIGPATHWAY-Q2, SAFE, and PADOG) or gene (SIGPATH-

WAY-Q1, MRGSE) permutations. GLOBALTEST and GAGE

rely on distributional assumptions. Pathway Level Analysis of

Gene Expression (PLAGE) [22] works by decomposing the gene

expression variance in each gene set by computing a meta-gene

using singular value decomposition (SVD). This method is very

much like using principal component analysis (PCA) to reduce

gene expression dimensionality [32], by projecting the samples on

the first principal component and discarding all remaining

components. Lee et al. [23] summarized the gene set activity in

a given sample using a Z-score (ZSCORE) after standardizing the

gene expression levels across samples. Single Sample GSEA

(SSGSEA) [24] calculates a sample level gene set score by

comparing the distribution of gene expression ranks inside and

outside the gene set. The Gene Set Variation Analysis (GSVA)

[25] uses a non-parametric kernel to estimate the distribution of

the gene expression level across all samples in order to bring the

expression profiles to a common scale and then computes the

Kolmogorov-Smirnov statistic similar to GSEA.

Data Analysis
A total of 24 of the 42 microarray datasets used in this study,

available from the Bioconductor’s KEGGdzPathwaysGEO package,

were preprocessed using RMA as we previously described [20],

while the additional 18 datasets were also either RMA normalized

Table 2. Ranking of gene set analysis methods under several scenarios.

Method Category
Overall
Rank Sample size Gene set size Design Effect

Small
n,22

Large
n$22

Small
N,66

Large
N$66 Paired Unpaired

Small
g,24.6%

Large
g$24.6%

PLAGE I 1 1 4 2 3 12 2 3 3

GLOBALTEST I 2 2 1 3 5 6 1 2 4

PADOG I 3 3 2 1 2 1 3 1 1

ORA I 4 4 3 5 1 2 4 5 2

SAFE I 5 7 5 4 8 8 5 4 6

SIGPATH.Q2 I 6 5 8 8 4 5 7 8 8

GSA I 7 9 6 7 6 11 6 6 11

SSGSEA I 8 8 7 6 12 4 8 9 5

ZSCORE I 9 6 10 10 7 9 10 7 9

GSEA I 10 10 9 9 11 10 9 10 7

GSVA I 11 11 11 11 9 3 11 11 10

CAMERA I 12 12 12 12 10 7 12 12 12

MRGSE II 1 1 1 1 2 1 1 1 1

GSEAP II 2 2 2 2 1 2 2 2 2

GAGE II 3 3 3 3 4 3 3 3 3

SIGPATH.Q1 II 4 4 4 4 3 4 4 4 4

Datasets were divided into small sample size and large sample size using the median of sample sizes, 22, as cut-off. Similarly, the datasets were divided according to the
number of genes in the target gene set using the median of gene set sizes, 66, as cut-off. Of the 42 experiments 11 were paired and 31 were not paired designs. To
quantify the effect size, datasets were divided into a small effect group and a large effect group based on the % of genes with p,0.05, with the cut-of point being
24.6%.
doi:10.1371/journal.pone.0079217.t002
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or obtained already normalized. The additional 18 datasets were

made available as a new data package called KEGGandMetacor-

eDzPathwaysGEO. The datasets were produced using two different

Affymetrix platforms that include multiple probesets for a given

gene. Duplicate probesets per ENTREZ gene ID were removed

by keeping the probeset with the highest average expression across

all samples. KEGG pathways gene lists were obtained via the

KEGGREST package (date stamp 4/22/2013) while the gene sets

for the MetacoreH Disease Biomarker Networks gene sets were

downloaded from https://portal.genego.com (date stamp 4/19/

2013).

The R packages globaltest, gage, safe, sigPathway, GSVA, GSA, and

PADOG, were used to run the respective methods on every real or

perturbed dataset. Implementations of ZSCORE, PLAGE and

SSGSEA methods were available from the GSVA package. For

the four methods that compute a gene set score per sample

(ZSCORE, PLAGE, SSGSEA and GSVA), significance for the

association with the disease was inferred using a paired or

unpaired moderated t-test depending on the experimental design

of each dataset. GSEA was run using GSEA.1.0.R function, while

GSEAP analysis was performed using the java implementation

(gsea2-2.0.12), both available from the Broad Institute website

(http://www.broadinstitute.org/gsea). GSEAP was applied by

ranking genes using a moderated [33] paired or unpaired t-test

depending the study design of each dataset. For ORA analysis we

implemented a one tailed hypergeometric test in R. The selection

of DE genes for ORA was based on a moderated t-test p-value.

The following strategy was used for gene selection for ORA: 1) use

all genes with FDR [34] adjusted p-values,0.1 if more than 200;

else go to next option; 2) use all genes with nominal p-values

,0.05 and fold change.1.5 if more than 200; else go to next

option; 3) Use top 1% of genes ranked by p-values. R version 3.0.1

was used for all analyses. A number of 1000 permutations were

used in all analyses for the methods relying on sample or gene

permutations including (GSA, GSEA, GSEAP, MRGSE, PA-

DOG, SAFE, SIGPATHWAYQ1, SIGPATHWAYQ2).

The calculation of surrogate sensitivity, prioritization and

specificity scores is illustrated in detail in Note S1.
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