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Abstract: Introduction: Tobacco smoke contains many potentially harmful compounds that may
act differently and at different stages in breast cancer development. The focus of this work
was to assess the possible role of cigarette smoking (status, dose, duration or age at initiation)
and polymorphisms in genes coding for enzymes involved in tobacco carcinogen metabolism
(CYP1A1, CYP2A6) or in DNA repair (XRCC1, APEX1, XRCC3 and XPD) in breast cancer development.
Methods: We designed a case control study with 297 patients, 217 histologically verified breast
cancers (141 smokers and 76 non-smokers) and 80 healthy smokers in a cohort of Spanish women.
Results: We found an association between smoking status and early age at diagnosis of breast cancer.
Among smokers, invasive carcinoma subtype incidence increased with intensity and duration of
smoking (all Ptrend < 0.05). When smokers were stratified by smoking duration, we only observed
differences in long-term smokers, and the CYP1A1 Ile462Ile genotype was associated with increased
risk of breast cancer (OR = 7.12 (1.98–25.59)). Conclusions: Our results support the main effect
of CYP1A1 in estrogenic metabolism rather than in tobacco carcinogen activation in breast cancer
patients and also confirmed the hypothesis that CYP1A1 Ile462Val, in association with long periods of
active smoking, could be a breast cancer risk factor.
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1. Introduction

Tobacco smoking is among the leading preventable risk factors for variety of diseases [1]. Evidence
regarding active cigarette smoking and breast cancer risk remains inconclusive. Several compounds in
tobacco smoke, such as polycyclic hydrocarbons, aromatic amines and N-nitrosamines may induce
breast tumours [2,3].

In Europe, breast cancer is the third most common oncological disease cause of death. In addition,
breast cancer is the most frequent type of cancer in women younger than 50 years old [4]. Many studies
have shown a link between smoking and increased risk of developing a breast carcinoma [5–7]. It has
been proposed that tobacco smoke carcinogens pass through the alveolar membrane in the lungs and
into the blood stream where they may be transported to the breast by plasma lipoproteins [8]. In vitro
studies have proposed that cigarette smoke induces the epithelial to mesenchymal transition, producing
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a more aggressive phenotype [9]. A higher prevalence of tobacco metabolites and smoking-specific
DNA adducts have been detected in the breast tissue of women who smoke than non-smokers [10,11].
Some studies have examined the risk of breast cancer according to genotypes that metabolize tobacco
compounds in the human body or in genes related to DNA repair, with different results [3,12].
Genes such as NAT1, NAT2, CYP1A1, COMT, BRCA1, BRCA2 or DNA repair genes have been reported
to alter the relationship between smoking and breast cancer risk [7,13–15].

This case-control study was conducted to examine the association between active cigarette
smoking (status, intensity, duration or age at initiation) and breast cancer risk among pre- and
postmenopausal women and evaluate possible gene-environment interactions for selected SNPs
in a cohort of Spanish women. Comparison of the associations of different smoking phenotypes with
breast cancer risk may help not only to clarify the most relevant measures with regard to risk but also
to determine the possible influence of smoking in various stages of breast cancer development.

2. Results

The study included 297 women, all of Caucasian (Spanish) descent for ≥3 generations, and the
mean age was 54 years (SD = 13). Women were divided into three groups:

1. Seventy-six patients who had never smoked with histologically verified breast carcinoma,
non-smoker group.

2. One hundred forty-one smoker patients with histologically verified breast carcinoma.
3. Eighty healthy smoker women, with negative family or personal history and with negative

breast findings.

Table 1 provides a summary of demographic information, clinical parameters and active smoking
variables (smoking status, age at initiation, PYS) and their average values in each group.

Table 1. Summary for demographic, clinical and tobacco consumption variables among the population.

Variables
Breast Carcinoma Group Healthy Group

Non-Smokers Smokers Smokers

Age (years) 64 ± 10 56 ± 9 42 ± 11
Age at diagnosis (years) 56 ± 11 48 ± 9 -

Breast cancer before age 45 years (%) 19.7% 41.3% -
Smoking duration (years) - 25.5 ± 11.4 22.9 ± 11.8
Age at initiation (years) - 18 ± 5 18 ± 5

CPD - 14.0 ± 8.7 19.3 ± 13.1
PYS - 17.2 ± 13.8 25.5 ± 27.4

Heavy smokers 15 ≥ PYS (%) - 47.9% 55.0%

Breast cancer histology In situ carcinoma (%) 22.9% 14.6% -
Invasive (infiltrating carcinoma) (%) 77.1% 85.4% -

The values are given as mean ± SD. Abbreviations: CPD, cigarettes per day; PYS, pack years smoked.

2.1. Smoking’s Impact on Clinical Variables and Breast Cancer

In the breast cancer group, dividing by smoking status, we observed statistically significant
associations between smoking and diagnosis age (p < 0.001). In the non-smoker breast cancer group
19.7% were under 45 years old, while in the active smoker group it was 41.3% (p = 0.001). Moreover,
among the smoker breast cancer group we also found a statically significant positive correlation
between age at smoking initiation and diagnosis age of breast cancer (R = 0.294, p < 0.001).

Comparing breast cancer smokers versus healthy smokers, we observed statistically significant
differences in age between two groups, but no statistically significant differences were observed in
the age at smoking initiation or years smoking (p = 0.926; p = 0.154, respectively). On the other hand,
the healthy smokers group smoked more CPD or presented higher PYS (p = 0.001; p = 0.002, respectively).

Among breast cancer patients, dividing by smoking status, we observed a non-significant different
distribution of breast cancer subtypes (Table 1). Stratifying by YS (<20, ≥20), smoking duration
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(<20 years) was associated with significant increase in risk of in situ carcinoma (OR = 1.328,
CI: 1.023–1.72). In addition, we found statistically significant associations between PYS (≤5, 5–15,
≥15) and different subtypes of breast cancer (p = 0.033). We observed a higher prevalence of invasive
carcinoma in groups with more PYS (76.2%, 81.8% and 92.2%, respectively).

2.2. Analysis of Genetic Polymorphisms

We analysed the prevalence of the following genetic polymorphisms XRCC1 (Arg399Gln) [rs25487],
APEX1 (Asp148Glu) [rs1130409], XRCC3 (Thr241Met) [rs861539], XPD (Asp312Asn) [rs1799793]
and (Lys751Gln) [rs13181], CYP1A1 (Ile462Val) [rs1048943], CYP2A6*2 (Lys160His) [rs1801272],
and CYP2A6*9 (−48T > G) [rs28399433] in breast cancer patients and healthy smokers.

No departure from the Hardy–Weinberg equilibrium was detected for the majority of genes,
with the exception of XRCC1 (Arg399Gln) (p = 0.002) and XPD (Asp312Asn) (p = 0.02).

Analyses focused on associations with genotype categorized using a recessive model (i.e., homozygotes
of the most common allele plus heterozygotes were the referent group, compared to homozygotes of
the minor allele).

2.3. Relationship between Smoking Habits, Clinical Variables and Genetic Polymorphisms

Among all smokers, no statistically relationship was observed between smoking habits or the
clinical variables and genetic polymorphisms analysed. Only a moderately significant interaction was
found between XRCC3 Thr241allele and more PYS (p = 0.039). This association was in agreement with
previous reports [16]. In addition, we observed a marginal relationship between CYP2A6*2 and age of
diagnosis in the group of smoker patients (p = 0.037).

2.4. Genetic Differences between Non-Smoker and Smoker Breast Cancer Patients

The frequencies of genetic polymorphisms studied were similar in both the smoker and
non-smoker groups of patients (Table 2). We did not observe any interaction between the studied
genetic polymorphisms and smoking in breast cancer distribution.

Table 2. Genotypes between breast cancer groups stratified by smoking.

Genotype
Breast Cancer Patients

Non-Smokers Smokers p OR (95% CI)

XRCC1 Arg399Gln
Arg/Arg, Arg/Gln a 78.3 75.7 0.413 1.15 (0.57–2.31)

Gln/Gln 21.7 24.3

APEX1 Asp148Glu
Asp/Asp, Asp/Glu a 75.0 67.9 0.192 0.78 (0.48–1.26)

Glu/Glu 25.0 32.1

XRCC3 Thr241Met
Thr/Thr, Thr/Mer a 70.4 71.0 0.528 1.02 (0.65–1.59)

Met/Met 29.6 29.0

ERCC2 Asp312Asn
Asp/Asp, Asp/Asn a 85.9 85.6 0.565 0.97 (0.48–1.99)

Asn/Asn 14.1 14.4

KLC3 Lys751Gln
Lys/Lys, Lys/Gln a 83.6 81.7 0.452 0.89 (0.47–1.72)

Gln/Gln 16.4 18.3

CYP1A1 Ile462Val
Ile/Ile a 95.9 94.9 0.511 0.79 (0.21–2.98)
Ile/Val 4.1 5.1

CYP2A6 Lys160His
Lys/Lys 100 93 0.039 1.07 (1.02–1.13)

Lys/His a 0 7

CYP2A6 –48T > G
TT/TG a 87 85.5 0.494 0.89 (0.39–2.03)

GG 13 14.3
a Reference genotype; OR: overall risk for non-smokers; CI: confidence interval.
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2.5. Genetic Differences between Smoker Controls and Smoker Breast Cancer Patients

Comparing only smoker groups, the frequencies of XRCC1, APEX1, XPD, CYP2A6*2 and
CYP2A6*9 genetic polymorphisms were similar in both controls and breast cancer patients (Table 3).
However, the XRCC3 Met241Met genotype was associated with the risk of cancer development in
smokers (p = 0.003, OR = 2.89 (1.35–6.21)). In contrast, the CYP1A1 Ile462Ile genotype (most common
genotype) was significantly associated with higher risk of breast cancer in smokers (p = 0.001,
OR = 5.09 (1.94–13.36)).

Table 3. Association between genotype and risk of breast cancer among smokers.

Genotype
Smokers Group

Breast Cancer Group Healthy Group p OR (95% CI)

XRCC1 Arg399Gln
Arg/Arg, Arg/Gln a 75.7 82.3 0.172 1.37 (0.78–2.40)

Gln/Gln 24.3 17.7

APEX1 Asp148Glu
Asp/Asp, Asp/Glu a 67.9 66.7 0.483 0.96 (0.64–1.44)

Glu/Glu 32.1 33.3

XRCC3 Thr241Met
Thr/Thr, Thr/Mer a 71.0 87.7 0.003 2.89 (1.35–6.21)

Met/Met 29.0 12.3

ERCC2 Asp312Asn
Asp/Asp, Asp/Asn a 85.6 87.5 0.432 1.15 (0.56–2.35)

Asn/Asn 14.4 12.5

KLC3 Lys751Gln
Lys/Lys, Lys/Gln a 81.7 86.2 0.283 1.32 (0.65–2.68)

Gln/Gln 18.3 13.8

CYP1A1 Ile462Val
Ile/Ile 94.9 78.5 0.001 5.09 (1.94–13.36)

Ile/Val a 5.1 21.5

CYP2A6 Lys160His
Lys/Lys a 93 91.4 0.460 0.81 (0.28–2.37)
Lys/His 7 8.6

CYP2A6 –48T>G
TT/TG a 85.5 83.3 0.437 0.87 (0.42–1.80)

GG 14.3 16.7
a Reference genotype; OR: overall risk for breast cancer; CI: confidence interval. The bold numbers in the table
show statistically significant (p < 0.006).

The frequency of CYP1A1 Ile462Val was around 5% in breast cancer patients and 21% in healthy
smokers, while the frequency of XRCC3 Met241Met was around 29% in breast cancer patients
and 12% in healthy smokers, suggesting a possible interaction effect between CYP1A1 Ile462Val,
XRCC3 Thr241Met and risk of breast cancer in smokers, with regard to the risk for not developing
breast cancer in smokers carrying the CYP1A1 Ile462Val genotype after interaction logistic regression
analysis (p < 0.001, OR = 7.57 (2.48–23.25)).

Some studies have reported that duration of smoking is a much stronger risk factor than amount
smoked [17–20]. Table 4 presents data of genetic frequencies for smokers stratified by smoking duration
as a categorical variable (<20 YS/≥20 YS). Among smokers ≥20 YS, only CYP1A1 Ile462Ile was
associated with the greater risk of breast cancer (OR = 7.12 (1.98–25.59)).
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Table 4. Genotypes among smoker groups stratified by smoking duration.

Genotype Years Smoking < 20 Years Smoking ≥ 20

Breast Cancer Group Healthy Group p OR (95% CI) Breast Cancer Group Healthy Group p OR (95% CI)

XRCC1 Arg399Gln
Arg/Arg, Arg/Gln a 65.0 87.9 0.022 2.88 (1.05–7.93) 80.4 77.8 0.440 0.88 (0.44–1.74)

Gln/Gln 35.0 12.1 19.6 22.2

APEX1 Asp148Glu
Asp/Asp, Asp/Glu a 74.4 78.1 0.466 1.17 (0.50–2.73) 62.5 57.8 0.258 0.82 (0.53–1.29)

Glu/Glu 25.6 21.9 34.8 42.2

XRCC3 Thr241Met
Thr/Thr, Thr/Mer a 69.2 87.9 0.052 2.5 (0.90–7.13) 73.0 89.4 0.020 2.53 (1.03–6.21)

Met/Met 30.8 12.1 27.0 10.6

ERCC2 Asp312Asn
Asp/Asp, Asp/Asn a 86.8 84.8 0.538 0.87 (0.27–2.74) 85.6 89.1 0.385 1.32 (0.50–3.50)

Asn/Asn 13.2 15.2 14.4 10.9

KLC3 Lys751Gln
Lys/Lys, Lys/Gln a 82.1 78.6 0.479 0.83 (0.31–2.22) 81.8 91.7 0.132 2.18 (0.67–7.03)

Gln/Gln 17.9 21.4 18.2 8.3

CYP1A1 Ile462Val
Ile/Ile 92.5 83.9 0.222 1.10 (0.92–1.32) 95.7 75.8 0.002 7.12 (1.98–25.59)

Ile/Val a 7.5 16.1 4.3 24.2

CYP2A6 Lys160His
Lys/Lys a 96.9 90.0 0.282 0.31 (0.03–2.84) 92.4 92.6 0.670 1.02 (0.22–4.78)
Lys/His 3.1 10.0 7.6 7.4

CYP2A6−48T > G
TT/TG a 84.4 87.5 0.500 1.25 (0.37–4.23) 86.7 77.8 0.214 0.60 (0.24–1.49)

GG 15.6 12.5 13.3 22.2
a Reference genotype; OR: overall risk for breast cancer; CI: confidence interval. The bold number in the table shows statistically significant (p < 0.006).
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3. Discussion

Smoking represents a potential risk for breast cancer development. Tobacco smoke contains
thousands of chemical compounds, many of which are known to be mammary carcinogens [21].
Cellular proliferation during the years of pre-puberty to age at first pregnancy is the highest and it may
decrease the ability of DNA repair mechanisms to correct damage before cell division happens [22],
as mammary tissue is more susceptible to carcinogenic exposures during this period [23]. We found
that the association between smoking status and early age at diagnosis of breast cancer was significant.
Moreover, our data suggested a younger age at smoking initiation is related to younger age at
diagnosis. Smokers were diagnosed a mean of ten years before non-smokers. Smoking may accelerate
the development of breast cancer and epidemiological findings suggest that smoking is associated
with increased breast cancer incidence [6].

Among smokers, invasive carcinoma subtype incidence increased with the intensity and duration
of smoking (all Ptrend < 0.05). Such findings suggest that smoking can affect the incidence as well
as the course of cancer. Di Cello and cols. have suggested that cigarette smoke promotes the
epithelial to mesenchymal transition, producing a more aggressive breast cancer phenotype in vitro [9].
Susceptibility to breast cancer is a multifactorial trait (genetic components or environmental factors)
that may differ between populations [24]. Certain genotypes of several genetic polymorphisms in
enzymes involved in the metabolism of xenobiotics (such as CYP1A1) or in DNA repair genes have
been suggested to alter the risk of breast cancer [25,26].

Among breast cancer group, we found the same genetic polymorphism prevalence to be
independent of being a smoker or non-smoker. On the other hand, of the polymorphisms investigated
comparing breast cancer smokers and healthy smokers, statistically significant associations between
two genetic variants and risk of breast cancer in smokers were observed (XRCC3 Met241,
CYP1A1 Ile462). However, the differences were the same independent of tobacco exposure.
CYP1A1 metabolizes endogenous molecules and xenobiotics [27]. CYP1A1 catalyzes the first step in the
metabolism of tobacco polycyclic aromatic hydrocarbons, leading to their carcinogenic activation [28].
CYP1A1 is also involved in the metabolism of estrogens, as one of the enzymes responsible for
the 2-hydroxylation of 17h-estradiol and estrone in breast tissue [29,30]. Therefore, the activity of
CYP1A1 may influence breast carcinogenesis via at least two distinct pathways, tobacco metabolites
and estrogens.

These results may support the main effect of CYP1A1 in estrogenic metabolism rather than in
tobacco carcinogen activation in breast cancer.

Our data also showed an interaction between XRCC3 Thr241Met, CYP1A1 Ile462Val. In addition,
it has been suggested that lifetime smoking exposure, not just current situation, should be used to assess
risk among smokers [31]. When smokers were stratified by smoking duration (YS), we only observed
differences in the ≥20 YS group, and the CYP1A1 Ile462Ile genotype was associated with increased risk
of breast cancer. Smoking induces CYP1A1, and the effect of polymorphisms in estrogenic metabolism
is upregulated in a dose-dependent manner [32].

Kisselev and cols. suggested that the effects of polymorphisms on the function of CYP1A1 may
be dependent on the substrate, and CYP1A1 variants might differ from the wild type in terms of
their activity and regioselectivity towards estrogens. From a biochemical point of view, the high
estrogen-2-hydroxylase activity of the CYP1A1 Ile562Val variant may either increase or reduce the
susceptibility to cancer depending on its combination with other genetic and environmental risk
factors. The results of epidemiologic studies are controversial and obviously dependent on the
ethnicity, gender, and lifestyle of the study group [33–35]. For example, an increased breast cancer risk
associated with the CYP1A1*2 (Ile462Val) allele and smoking was observed in Caucasian women [35,36],
whereas Chinese and Japanese women carrying the CYP1A1*2 (Ile462Val) allele have a significantly
reduced risk of breast cancer as compared with carriers of the wild-type allele [37]. In addition,
numerous studies have investigated the expression of CYP1A1 in extra hepatic tissues which are largely
exposed to environmental carcinogens. Expressional variation of CYP1A1 has shown down-regulation
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of CYP1A1 in breast cancer [38,39]. CYP1A1 Ile462Val substitution situated in the heme-binding region
of the enzyme is accompanied by a twofold increase in microsomal enzyme activity [40]. Our results
showed higher prevalence of CYP1A1 562Val in controls, and it is tempting to speculate that the
CYP1A1*2 (Ile462Val) allele could even play a protective role in smokers.

In the literature, declared cigarette consumption often serves as a proxy measure for level of toxin
exposure or disease risk. However, for different reasons, consumption may not be a good predictor.
The differences in how tobacco is smoked affect real exposure, and it is difficult discern if consumption
reported as cigarettes per day correlates with other markers of exposure, the effect of compensation
(changes in smoking behaviour to adjust for changes in nicotine levels or in volume of cigarettes
smoked), the complex relationship between dose and disease risk for some diseases or whether people
maintain the same levels of smoking over time [41]. This is why at the beginning we decided to divide
the breast cancer groups into smokers and never-smokers in order to clarify exposure levels.

In addition, based on more recent assessments with the assumption that the effect of the genotype
might be amplified at high doses, we studied the effects of long exposure on breast cancer risk in heavy
smokers (≥20 YS) [42]. We compared breast cancer smokers and healthy smokers stratified by YS and
we replicated results found in all sample analysis.

The goal of our research was to combine environment (smoking history) with genetic
polymorphisms to improve assessment risk of breast cancer. Moreover, we have included a group
of patients who were never smokers to evaluate differences. Most previous studies of CYP1A1
polymorphisms and breast cancer divided smokers into ever or never groups, and did not analyse the
effects of intensity, years of smoking or age at initiation. Among the strengths of our study are the
prospective design and selection of well-defined groups in terms of smoking. However, our study is
subject to certain limitations such as low statistical power (because of low sample size) and passive
smoking data not being included. There could be a “partial dose effect” from second hand smoke.
We know that a weakness of our study is the low sample size, yet we believe this can be partly
overcome by the fact that our population is homogeneous, not stratified and well defined in terms
of phenotype assessment. These results suggest that cigarette smoking might play an important role
in the development of breast cancer, particularly when women start smoking relatively early in life
or when they are exposed for a long time. Our results confirm the hypothesis that CYP1A1 Ile462Val,
in association with a long period of active smoking, could be a possible breast cancer risk factor and
also support the main effect of CYP1A1 in estrogenic metabolism rather than in tobacco carcinogen
activation in breast cancer patients.

On the other hand, breast cancer is a complex disease that is mainly grouped based on its hormone
receptor subtype (estrogen receptor or progesterone receptor positivity) and amplification of the ERBB2
gene [43]. Evidence for smoking-related breast cancer risk in relation to hormone receptor status has
been limited in Japan and Western countries [44,45]. Some studies have reported a positive association
between ever smoking and the risk of estrogen receptor positive cancer [6,46,47], whereas others
have reported a positive association for estrogen receptor negative cancer, or no association [47–49].
Further studies including bigger, well-phenotyped cohorts or hormone receptor subtype status would
be useful to clarify the association of smoking with breast cancer risk.

4. Materials and Methods

4.1. Subject Enrolment and Data Collection

We designed a control-based study with 297 female patients in order to detect the possible
association between smoking, polymorphisms in carcinogen metabolism and/or DNA repair genes,
and risk of breast carcinoma development. Women were randomly recruited from Centro de Patología
de la Mama (Fundación Tejerina), Madrid (Spain), from 2010 to 2013. The first group consisted of
patients with histologically confirmed breast cancer (smokers and never smokers) and the second group
consisted of healthy patients without a previous positive history of breast carcinoma or other
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malignancies and smokers with more than 1 pack years smoked (PYS). Approval was obtained
on 4 November 2010 from the local Ethics Committee (2010/UEM19) and all patients provided written
informed consent. The study was in accordance with the Helsinki Declaration.

All women completed a questionnaire regarding demographic characteristics, smoking habits,
self-reported cigarettes per day (CPD), duration and intensity (PYS). CO expired and cotinine levels
in urine samples were analyzed in 27% of smokers to check cigarette consumption. In addition,
body mass index, tumour histology, type of treatment or concomitant medication data were collected
for each participant.

4.2. Genotyping

Venous blood samples were collected by venepuncture and processed for leukocyte DNA
extraction using a standard phenol chloroform protocol. DNA extraction and genotype analyses
were carried out in the Biomedicine laboratory at the Universidad Europea, Madrid (Spain). The study
followed recommendations for replicating genotype-phenotype association studies, genotyping was
performed specifically for research purposes, and researchers in charge of genotyping were totally
blinded to the participants’ identities (blood and DNA samples were tracked solely with bar-coding
and personal identities were only made available to the main study researcher who was not involved
in actual genotyping) [50]. The DNA samples were stored at −20 ◦C until analysis.

Genotyping was performed by real-time PCR and Taqman probes with a Step One Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA).

4.3. Statistical Analysis

Power analysis retrieved a sample size of 94 cases and 94 healthy patients necessary to detect
an OR of 4 with a double-tale significant level of a = 0.05 and c2 = 0.80, assuming a prevalence of
CYP1A1*2C allele of 6.4% in Caucasians [51].

We compared smoking phenotypes and clinical characteristics between the different groups with
the unpaired Student’s t-test. We used the χ2 test to assess deviations of genotype distributions from
the Hardy-Weinberg equilibrium (HWE). We also used logistic regression to determine associations
between smoking habits, breast cancer risk and genotypes. All statistical analyses were corrected for
multiple comparisons using the Bonferroni method, in which the threshold p-value is obtained by
dividing 0.05 by the number of tests. The data were stratified for smoking status, smoking duration or
smoking intensity to determine several associations. All analyses were performed with the PASW/SPSS
Statistics 20.0 (SPSS Inc., Chicago, IL, USA) program.

5. Conclusions

Cigarette smoking might play an important role in the development of breast cancer, particularly
when women start smoking relatively early in life or when they are exposed for a long time.
Larger studies are needed to confirm our initial findings, however, our results provide evidence
that the main effect of CYP1A1 in estrogenic metabolism rather than in tobacco carcinogen activation
in breast cancer patients and also confirmed the hypothesis that CYP1A1 Ile462Val, in association with
long periods of active smoking, could be a breast cancer risk factor.
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