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ABSTRACT Metagenomics provides a powerful new tool set for investigating evolutionary interactions with the environment.
However, an absence of model-based statistical methods means that researchers are often not able to make full use of this complex
information. We present a Bayesian method for inferring the phylogenetic relationship among related organisms found within
metagenomic samples. Our approach exploits variation in the frequency of taxa among samples to simultaneously infer each lineage
haplotype, the phylogenetic tree connecting them, and their frequency within each sample. Applications of the algorithm to simulated
data show that our method can recover a substantial fraction of the phylogenetic structure even in the presence of high rates of
migration among sample sites. We provide examples of the method applied to data from green sulfur bacteria recovered from an
Antarctic lake, plastids from mixed Plasmodium falciparum infections, and virulent Neisseria meningitidis samples.

METAGENOMICS—purifying and sequencing DNA
from environmental samples without any culturing

step—represents an important new tool for investigating
how microbes interact with, mold, and adapt to their environ-
ments (Tyson et al. 2004; Allen and Banfield 2005; Gill et al.
2006; Preidis and Versalovic 2009). Metagenomics can also
be applied to any situation where genetic variability exists
within a sample, such as microbiomes, mixed infections,
and cancer. Many metagenomic analyses relate the overall
DNA content of samples to environmental phenotypes (Tringe
et al. 2005; Kurokawa et al. 2007). We take up a different
problem: the reconstruction of organismal composition for
each sample. Overall DNA content provides useful informa-
tion on overall community function, but many physiological
and evolutionary processes may be understood only at the

organismal level (Partida-Martinez and Hertweck 2005;
Martinez et al. 2009).

Recent improvements in sequencing technology allow the
collection of large numbers (.106) of short reads of DNA
sequence (40–100 bp) from within a sample (Schmeisser
et al. 2007; Bentley et al. 2008). For notational clarity we
refer to each sample as a pool. The simplest approach to
inferring composition is in terms of the frequency of known
sequences within each sample (von Mering et al. 2007;
Chaffron et al. 2010). This approach typically works well
for assessing variation at broad scales when individual reads
can be mapped onto the nearest reference genome within
the tree of life (Matsen et al. 2010; Berger et al. 2011;
Berger and Stamatakis 2011; Löytynoja et al. 2012). How-
ever, at finer scales, and in particular if one is interested in
the evolution taking place within the samples themselves,
the structure of relationships among organisms will gener-
ally not be known in advance and so must be inferred from
data.

Figure 1, left, illustrates the evolutionary scenario that
we assume underlies the data. The phylogeny’s tips corre-
spond to individual cells, and color indicates the pool of
origin. Since individual reads are typically short and will
thus contain limited phylogenetic information, it is not
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feasible to reconstruct a resolved tree where each read cor-
responds to a single taxon. We therefore attempt to infer
a simplified phylogeny in which the terminal nodes repre-
sent groups of related organisms or lineages (Figure 1,
right). Each lineage defines a haplotype of allele states for
the single-nucleotide polymorphisms (SNPs) within the data
and makes up a proportion of the organisms within a pool
shown by the colored bar. As indicated by the shaded cones,
the SNP pattern of organisms within a lineage may vary, due
to recent, low-frequency variation or sequencing errors.

One similar—but easier—problem is phasing in diploid
organisms. In this case, the goal is to reconstruct haplotypes
(i.e., the sequences of the two copies of each chromosome)
given the genotypes at each diploid locus. Statistical algo-
rithms often estimate phase using the property that particular
combinations of variants are present in the population at
a higher frequency than expected if the variants segregated
independently (Excoffier and Slatkin 1995; Stephens et al.
2001). In our case, we seek to estimate the underlying line-
ages and the phylogeny connecting them by using the differ-
ing frequencies of SNP allele proportions within each pool.

We focus on extracting the phylogenetic information
provided by this SNP read count variation. We assume that
recombination is not occurring. Our model neglects the
spatial information about the co-occurrence of neighboring
SNPs observed on a single read or paired-end reads. This
means that we discard potentially valuable linkage data that
provide strong information about haplotype structure. Other
algorithms have been developed that specifically seek to
utilize these data (Greenspan and Geiger 2004), and we
briefly detail the prospects for improvements that exploit
both variation between pools and the information from
linked SNPs in the Discussion.

Data and Methods

Model

Our model is primarily a phylogenetic one and so borrows
a lot of its structure from established methods (Mau et al.
1999; Felsenstein 2004; Drummond et al. 2005). However,

our data are distinct from standard phylogenetic contexts
since individual metagenomic reads cannot be identified with
an observable taxon. To deal with this absence, we assume that
the reads arise from unobserved haplotypes—the lineages—
with variation appearing either from mutations along a phylo-
genetic tree or from errors in sequencing, informatics, or SNP
calling. We take each pool to be a mixture of K lineages and
employ a Bayesian approach to jointly estimate the lineages,
mixture proportions, and phylogeny from the SNP read count
data. Since the number of lineages is not known a priori, we
employ an empirical Bayes factor analysis to infer K (Newton
and Raftery 1994; Kass and Raftery 1995).

We assume that short-read sequence data are collected
from N pools, indexed by i = 1, . . . , N. Pools may be the
result of differing collection times, spatial locations, or other
experimental distinctions. From the full set of sequence
reads, we infer a set of M SNPs, indexed by j = 1, . . . ,M.
This may be done by using mapping reads to a reference
genome (Li and Durbin 2009) or by employing de novo
approaches (Zerbino and Birney 2008; Iqbal et al. 2012).
We suppose that SNPs are biallelic and that counts, d, are
made for each SNP in each allele state within each pool. The
full data set comprises D = [dijs], where i = 1, . . . ,N, j =
1, . . . ,M, and s 2 {0,1}. Arbitrarily, we assign s = 0 to be the
reference allele state. Finally, we assume that the pools con-
stitute independent samples from each other and that the
mutations are independent for each site conditional upon
the tree. The independence assumptions are computation-
ally expedient but may neglect some useful information.
Types of nonindependence that can be expected from real
data are described further in the Discussion.

Our model links two components to provide a likelihood
for the SNP count data. The first component specifies the
structure of SNP variation leading to a set of lineages. The
second one details the proportions of lineages found in each
pool, as in Figure 1. We now lay out both components and
show how to combine them. We conclude by detailing the
full posterior decomposition based on these components and
corresponding priors. Our model has a large number of
parameters, so we provide a listing of their definitions in
Table 1.

Figure 1 A diagram of the line-
age model. On the left, a coales-
cent process leads to a complete
genealogy, with the tips marked
by pool as colors. The right dia-
grams the lineage model approx-
imation, showing deep
branching events together with
cones shading the SNP variation
indistinguishable from noise.
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SNP variation: We fix the number of lineages to be K and
number them k = 1, . . . , K. We assume that there is a rooted
coalescent tree, T , specified by a topology, t, and set of
branch lengths, {tb}. By assumption, T has K external taxa,
and each corresponds to a lineage, Lk, that defines a haplo-
type for the SNPs at that tip. We write out lineages as Lk =
[lkj], where j = 1, . . . ,M and lkj 2 {0, 1} specifies the state of
SNP j. The collection of lineages we write as L.

As we assume sites are independent, we can specify the
model for a single SNP without a loss of generality. We
suppose that variation in SNP state arises in one of two
ways: through mutation along the genealogy or through
some form of observational error. Errors may arise from
a variety of sources, including sequencing errors, a poor-
quality reference genome, or alignment errors. The model
consequently loses some power by treating real variation
present at a low frequency in the population as an error.

The model categorizes SNP positions into two classes that
we label as phylogenetic and null sites. Phylogenetic SNPs
arise from mutations on the reduced phylogeny. Null SNPs
usually occur toward the tips of the full phylogeny from
recent, low-frequency variants. Null SNPs may also appear
from informatic errors. These SNPs are not included in the
phylogenetic likelihood. Of course, phylogenetic SNPs can
also be subject to errors, but they are not the sole cause of
their appearance in the data. We assume that the type of
SNP variation at a site occurs as a Bernoulli trial with
a parameter l setting the probability of being a phylogenetic
SNP. This naturally partitions the count data, D, into a phy-
logenetic component, D; and a null component, ~D: We refer
to this partition by P. We assume the prior for l does not
depend on the other parameters, although this ignores some
dependence on K and the error rate that is likely in practice.

For each phylogenetic SNP j the allele state for each of
the K tips is given by Lj = [lj1, . . . , ljK]. In a typical phylo-
genetic context, Lj would correspond to the observed se-
quence pattern at a single site in an alignment. Given
a mutation rate, j, we calculate ℙ(Lj|T , j), using a two-state
analog of Jukes and Cantor’s mutational model together
with Felsenstein’s tree-pruning algorithm (Jukes and Cantor
1969; Felsenstein 1981). Each null SNP exhibits an absent
pattern across the lineages, with either Lj = [0, . . . , 0] or
Lj = [1, . . . , 1]. We assume the probability of either null
pattern is 1

2:

Pool proportions: We label the specification of proportions
for each lineage in each pool by S. As each pool is an exclu-
sive mixture of different lineages, it is natural to capture this
structure by an N 3 K matrix with each entry sik giving the
proportion of lineage k that is found in pool i, enforcing thatPK

k¼1sik ¼ 1 for all i = 1, . . . ,N.

Likelihood: Supposing that the data are error free, we can
relate L and S to the data D in the following way. Summing
over the lineages at each position combines the pool propor-
tions and the SNP state to give the expected reference allele
frequency for pool i and SNP j:

pij ¼
XK
k¼1

sik �
�
12 lkj

�
: (1)

We assume that sequencing errors afflict all read counts
homogeneously with probability h. Consequently, we expect
only (1 2 h) of the reference counts to come from reference
states while h of the nonreference counts reflect genuine
reference states. To account for these errors, we correct
the reference allele frequency in Equation 1 by

~pij ¼ ð12hÞ � pij þ h �
�
12 pij

�
¼ pij2 2 � h � pij þ h:

(2)

As SNPs and pools are assumed to be independent, the
counts within each pool for each SNP follow a binomial
distribution with proportion ~pij: This gives the likelihood for
the data D as

ℙðDjL;S;hÞ ¼
YN
i¼1

YM
j¼1

�
dij0 þ dij1

dij0

�
�
�
~pij
�dij0 � �12~pij

�dij1
: (3)

Bayesian inference: We can now examine the full posterior
decomposition to complete our model specification. Bayes’
theorem provides

ℙðL;S;P; T ; j;h; ljDÞ} ℙðDjL;S;P; T ; j;h; lÞ
� ℙðL;S;P; T ; j;h; lÞ
} ℙðDjL;S;hÞ�ℙðL;S;P; T ; j;h; lÞ:

Noting that S is independent of all of the other variables
and that, conditional upon the partition, l does not affect

Table 1 Symbols used in the model description

Parameter Description

D = [dijs] Data composed of counts for each SNP j within
pool i of type s 2 {0, 1}

i = 1, . . . ,N Index and no. pools
j = 1, . . . ,M Index and no. SNPs
k = 1, . . . , K Index and no. lineages
L = [lkj] Lineages composed by state of SNP j in lineage k
T Phylogeny
t, {tb} Topology and branch lengths for T
T The total branch length of T
l Probability of a phylogenetic SNP
D; ~D Phylogenetic and null SNP sets defined by P
P Partition of SNPs into phylogenetic and null

components
S = [sik] Pool composition specified by pool proportion

for pool i and lineage k
pij The uncorrected reference allele frequency for

SNP j in pool i
h SNP error rate
~pij The corrected reference allele frequency for

SNP j in pool i
j Mutation rate
c Mixing rate in the island coalescent simulations
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the lineages, we may then collapse the right-hand side
above to be

ℙðL;S;P; T ; j;h; lÞ ¼ ℙðLjP; T ; jÞ� ℙðP; T ; j;h; lÞ� ℙðSÞ:
(4)

We first consider the conditional probability for L in
Equation 4.

Since sites are independent, we can decompose via P
whether a SNP follows the phylogenetic model or the null
model,

ℙðLjP; T ; jÞ¼

0
@Y

j2D
ℙ
�
Lj
��T ; j

�1A�
�
1
2

�j~Dj
; (5)

where
��~D�� denotes the number of SNPs contained in ~D:

We now examine the joint probability in the middle of
the right-hand side of Equation 4. Except the partition P and
the parameter l, we note that all of the components are
independent, leading to the relatively simple expression

ℙðP; T ; j;h; lÞ ¼ ℙðPjlÞ� ℙðT Þ� ℙðjÞ� ℙðhÞ� ℙðlÞ:

Since a series of Bernoulli trials with parameter l creates the
partition, its probability is given by

ℙðPjlÞ ¼ ðlÞj~Dj �ð12lÞj~Dj:

With these components specified, we have to detail only the
prior distributions, ℙ(T ), ℙ(C), ℙ(S), ℙ(j), ℙ(h), and ℙ(l).

Prior specifications: S: We assume the genetic composition
of each of the pools is sampled independently from the
same prior distribution. As we have the constraint thatPK

k¼1sik ¼ 1; a natural prior for each pool is a uniform
Dirichlet distribution of length K, following Balding and
Nichols (1995). The prior distribution for S is then

ℙðSÞ ¼
YN
i¼1

DIRICHLETðsi1;  ::: ; siK j1KÞ;

where 1K is a vector of ones of length K (Pritchard et al.
2000).

T : We assume a coalescent prior for T . If {ui: i = 2, . . . , K}
are the time intervals between coalescent events ordered
to reflect the number of individuals present at that time,
then the tree has total branch length T ¼

PK
i¼2i�ui and

ℙðT Þ ¼
YK
i¼2

e2ði=2Þ�ui :

The distribution for the total branch length T can be found
in Tavare (1984).

j: This is distributed as Exp(1).

h, l: We assume these are uniform on the open unit interval,
(0, 1).

Inference

We use a Metropolis–Hastings Markov chain (MCMC) ap-
proach to inference. To infer the parameters S, T , L, and P,
we employ approaches previously applied to phylogenetics
(Huelsenbeck et al. 2001). To infer K we use an empirical
Bayes factor procedure that integrates information across
a set of MCMC runs. Conditional upon a fixed K, we now
describe the parameter updates.

The Metropolis–Hastings ratio gives the probability that
a proposed parameter update x9 will be accepted from a cur-
rent state x with probability a such that

a ¼ min

 
ℙ
�
x9
�

ℙðxÞ �
ℙ
�
x9/x

�
ℙðx/x9Þ; 1

!
¼minða1 � a2; 1Þ:

The first fraction is the ratio of the posterior probability of x
and x9; and we denote this a1. The second fraction is the
ratio of the probability of choosing the current state from the
proposed state over the reverse move. We label this a2.
Since a1 constitutes assessment of the likelihood and the
prior functions that can be calculated as shown above, we
subsequently consider only a2.

T : For each iteration, we propose a subtree prune and
regraft (SPR) move (Felsenstein 2004). As the tree is rooted,
a node is chosen uniformly among all nodes within the tree
not connecting above to the root. Removing this node
divides the topology t into tp, the pruned segment, and tr,
the remaining segment. We reattach tp to tr along a uni-
formly chosen edge within tr, with the precise location
taken uniformly across the chosen edge. This generates
a new tree t9 and corresponding branch lengths ft*bg We
then recalculate the branch lengths to ensure a coalescent
tree. Since the starting and ending states are equally prob-
able with respect to each other, a2 = 1. To ensure the chain
does not get stuck in a mode of the posterior distribution, we
also propose new branch lengths by successively proposing
small changes in length to each tb on a uniform interval
[tb 2 e, tb + e]. For both moves the probability of proposal
is the same in both directions so a2 = 1.

L and P: The inference of L for a given SNP j involves
a simple bit-flip operation. First, a SNP j and a lineage k
are selected at random and the allele state for that lineage’s
SNP is flipped: lkj /|12lkj|. Since this a deterministic op-
eration, and the SNP and lineage are chosen uniformly, a2 =
1. It is not necessary to infer directly P, since SNPs with site
patterns that are uniform—where all allele states are 0 or
1—are treated as null positions, while those that are not
uniform are treated as phylogenetic.

S: We update S by the composition of a randomly chosen
pool i. We propose a new pool S9i by drawing from a Dirichlet
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distribution with parameters (g1, . . . , gK) informed by L
such that

gk¼1þb �
PM

j¼1
�
12 ljk

�
� dij0 þ ljk � dij1PK

k¼1

hPM
j¼1
�
12 ljk

�
� dij0 þ ljk � dij1

i;
where b is a tuning parameter. In practice, we find b = 5 to
provide good rates of move acceptance. A brief calculation
shows that a2 ¼

QK
i¼1ðsik=s9ikÞ

gk21:

h, l, and j: All these are drawn directly from the prior and
so have a2 = 1.

K: We run the MCMC for K = 2, . . . , 2 � N and then compare
the runs using Bayes factors to find K. To infer the Bayes
factor between each pair of runs, we require the marginal
likelihood ℙ(D | K) and estimate it by taking the harmonic
mean of an importance sample from the likelihood, using
the posterior density as weights, as in Kass and Raftery
(1995). This estimator of the marginal likelihood is known
to have poor performance in certain circumstances, although
we empirically observe it to work well in the simulations
below, as it has as in other phylogenetic contexts (Ronquist
and Huelsenbeck 2003; Drummond and Rambaut 2007).

Simulations

Simulations under a similar model

To examine the performance of the model, we simulate data
under a very similar model to the lineage model, using
a variety of parameters to compare against inferred values.
We simulate coalescent trees with a specified number of tips
and a fixed number of segregating sites, using the ms
program with the appropriate options (Hudson 2002). This
model differs from ours in using an infinite sites, rather than
a finite sites, model. We then randomly choose a fraction of
these SNPs to be null and set all their allele states to zero or
one with probability 1

2: We generate the mixture proportions
within samples by drawing N times from a Dirichlet distri-
bution with aK varying with a mixture parameter r. We
construct aK as 1K + r �1u.0.1, where 1 is an indicator func-
tion and the vector u consists of K uniform draws from the
unit interval. We combine the lineage states and pool pro-
portions to yield the proportion of reference alleles, modi-
fied by the error rate as in Equation 2. We then draw the
desired number of read counts for each SNP for each sample
from a binomial distribution with parameter ~pij: To under-
stand the performance of the algorithm across different pa-
rameter regimes we simulated SNP count data with
parameters found in Table 2. For all parameter values, we
fix the number of pools to N = 7 and the number of lineages
to K = 6 and ran 10 independent simulations.

An example: We begin with an in-depth example from the
simulations, with 250 SNPs, a read depth of 10, l = 0.95,

h = 0.001, and r = 4. Like all of our simulations, there are
seven pools and six lineages. We select an iteration where
the model moderately underestimates the number of line-
ages to examine how the model copes with partially incor-
rect inference.

We present the simulated and inferred lineage models in
Figure 2. The dark blue tree shows the maximum posterior
probability tree while the remaining trees in light blue each
show a sample from the MCMC. The model infers only five
lineages, collapsing lineages 2 and 3 into one, although the
trees appear otherwise congruent. The pie charts of pool
proportions below the inferred trees show the 5%, mean,
and 95% estimates with colors shaded from darkest for the
5% estimates through the lightest for the 95% estimates.
The mean estimates appear close to the simulated values,
although some fraction of the proportion for lineage 6 in
pool 3 appears to have “migrated” to lineage 5. Figure 3,
left, compares the SNP patterns of the six simulated lineages
against those of the five inferred lineages, with the lowest
fraction of concordance within any column as 83%. Figure 3,
right, shows that inference of pool proportions generally
performs well. Direct comparison of simulated pool propor-
tions for lineages 2 and 3 appears to indicate poor perfor-
mance, although we observe that combining the simulated
values for these lineages (in blue) substantially improves the
agreement.

Absent an explicit modeling framework, researchers
might naturally seek to understand metagenomic SNP count
data by using principal components analysis (PCA), a general
approach to high-dimensional data exploration (Jolliffe
2005). We compare the results above to those from PCA,
as shown in Supporting Information, Figure S1. The PCA
analysis indicates that a large majority of the variation be-
tween samples can be explained by the first two compo-
nents. Examination of these components shows a distinct
separation of pools 1, 4, 5, and 6 from pools 2, 3, and 7,
consistent with simulated data. Additional components give
similar portraits but with additional separation for pool 6
from pools 1, 4, and 5. In this example PCA analysis appears
to provide a general method of separating pools based on
SNP count similarity but is difficult to further interpret.

Comparison across parameters: We present the collected
results for the model simulations in Figure 4 for varying
numbers of SNPs, read count depths, and error rates. Figure
4, left, shows lineage performance in terms of the fraction of
concordant SNPs between each simulated lineage and its

Table 2 Parameter values used in model simulations

Parameter Values

No. SNPs (M) 25, 100, 250, 1000
No. reads 2, 5, 10, 50
SNP error rate (h) 0, 0.001, 0.05, 0.15
Mixture parameter (r) 0, 1.5, 4, 10
Fraction of null SNPs (1 2 l) 0, 0.05, 0.15, 0.3
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closest inferred lineage. Figure 4, right, shows pool perfor-
mance as the mean absolute deviation between simulated
and inferred values. The lineage summaries indicate that the
read count depth affects performance most strongly, with
more moderate changes coming from the number of SNPs
and the error rate. The number of SNPs and error rate more
strongly influence pool proportion inference, where read
count contributes little. We also find that increasing mixing
correlates with increasingly poor lineage concordance. The
fraction of null SNPs alters performances negligibly.

Topological performance and model selection: Assessing
the topological performance for the lineage model presents
a significant challenge due to two related issues: that the
number of taxa is not fixed and that the taxa themselves are
not uniquely identifiable. In standard phylogenetic contexts,
the fixed number of samples and their unique identification
are implicitly used in standard algorithms to assess topo-
logical congruence (Planet 2006). We have not able to find
an applicable approach in the literature nor have we been
able to develop a straightforward extension ourselves. To
provide some understanding of the quality of model perfor-
mance, we visually examine the output of 10 iterations from
three parameter regimes: low-quality data (M = 25, h =
0.15, d = 2, r = 1.5), moderate-quality data (M = 100,
h = 0.05, d = 5, r = 4), and high-quality data (M = 250,
h = 0.001, d = 10, r = 10). We find that empirical Bayes
factor analysis underestimates the number of lineages in the
low-quality regime, as might be expected, but infers values

near the simulated number for the moderate- and high-quality
sets, as in Figure S2. In these latter two cases, we visually
compare the inferred tree against the simulated tree and
find they are often consistent. Errors encountered most
often took the form of merged lineages or “migrating” pool
proportions (Figure S3) and nearest-neighbor interchanges
between taxa.

Algorithmic performance: We implement the lineage
model in C++, using the GNU Scientific Library. Our
implementation shows reasonable computational speed
and convergence for an MCMC-based approach and is
appropriate for thousands of SNPs and up to 100 pools.
For a set of 1000 SNPs, seven pools, and six lineages,
a complete analysis (2 3 106 MCMC iterations) required
slightly .10 hr on a multicore Linux-based laptop with
a 2.1-GHz processor. As a point of comparison, these data
have substantially more SNPs than in our empirical exam-
ples and on the same order as publicly available microbiome
data. The algorithm performs linearly in the number of SNPs
and the number of pools and worse than linearly in the
number of lineages. The code is available for download at
http://code.google.com/p/lineagemodel/.

Using the CODA package in R, we apply several standard
metrics to assess the convergence of the algorithm, includ-
ing the Gelman–Brooks test, autocorrelation analysis, and
Raftery estimation of burn-in length (Geweke 1991; Raftery
and Lewis 1992; Cowles and Carlin 1996; Brooks and Gelman
1998; Plummer et al. 2006). All tests indicate that the MCMC

Figure 2 Comparison between simulated tree and pool proportions (left) and inferred trees and pool proportions (right). In the inferred model, the dark
blue tree shows the maximum posterior probability tree with the light blue trees representing samples from the MCMC. Pie charts on the right show
inferred pool proportions, with shades indicating the posterior percentile from dark (5%) to light (95%).
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converges rapidly and consistently. Examination of the Gelman–
Brooks statistics and autocorrelation analysis reveals that
thinning MCMC chain output to 1 iteration in 1000 is suffi-
cient to provide effective sampling. The Raftery estimation
suggests that 1e6 iterations are sufficient to achieve statio-
narity for a test data set with 1000 SNPs. For most data sets,
we see 10–50% acceptance rates for all parameters. Obser-
vationally, we find the model applied repeatedly on a wide
variety of data sets achieves nearly identical parameter
estimates.

Simulations under the island coalescent

To understand the model’s performance under a more realistic—
but still idealized—context, we also simulate polymorphism
data under the island coalescent model (Wakeley 2001;
Hudson 2002). This model structures a coalescent process
by allowing individuals to migrate among segregated pop-
ulations (islands) at asymmetric rates. We employ the ms
package to simulate the phylogenetic tree, specifying five
islands and assuming that the population size is constant at
120 individuals within each island. Ideally, we would be able
to simulate such that each read comes only occasionally from
the same individual, as could be expected in a microbial ex-
periment. Unfortunately, this is not computationally feasible,
so instead we use this finite approximation. To generate the
migration rate matrix we first draw from a Dirichlet distribu-
tion with parameters drawn from a Beta distribution with a=
1, b = 4, and then we multiply all off-diagonal entries by
a constant c that we call the mixing proportion. We can then
scale the degree of migration among islands, with the limit
c = 0 enforcing the island populations to be fully segregated.
Having generated an appropriate tree, we use R scripts to
generate polymorphism data in the following way. Follow-
ing the infinite-sites model, we distribute SNPs along the
branches of the tree with probability proportional to branch

lengths. This specifies the full haplotypes for each of the indi-
viduals. We then sample randomly across all sites and indi-
viduals, adjusting the number of each to account for numbers
of reads and SNPs (Kimura 1969). We aggregate the results
within islands to generate pool-specific count data. We use 10
for read depth and 1000 SNPs.

An example: To provide a more in-depth understanding of
the model’s performance, we show a typical example for
data generated with a moderately high mixing proportion
(c = 0.005). In Figure 5, bottom, we present the phyloge-
nies and pool proportions inferred by the lineage model. The
simulation provides the branch where the mutation gener-
ating each SNP occurred. For each of the 25 site patterns in
the inferred model, we size the branches of the simulated
tree by the number of SNPs with that inferred pattern. We
color branches with phylogenetic SNPs in red and those with
null SNPs in blue. The lineages are numbered from left to
right so that, for example, site pattern (1, 0, 0, 0, 0) has SNP
state 1 for lineage 1 and 0 otherwise.

We observe that the SNPs associated with a particular
sequence pattern tend to fall on a single branch or a small
number of proximate branches, indicating the model’s pres-
ervation of topological structure. The inferred model
appears to recapitulate much of the relative location of these
branches on the phylogenetic tree and also reflect appropri-
ate pool proportions. The null SNPs distribute relatively
evenly over the tree’s tips, except for one deep branch not
captured by any lineage. We note that the inferred topology
is uncertain, with two trees having high posterior probabil-
ity. This is driven by the model’s attempt to locate the in-
commensurate sequence patterns (0, 1, 0, 0, 1) and (0, 0, 0,
1, 1) as arising from mutations on the same branch within
the tree. We think this is most likely due to the model lack-
ing sufficient data to justify an additional lineage.

Figure 3 (Left) Percentage of SNP similarity between simulated and inferred lineages. (Right) Comparison between pool proportions for simulated (light
gray) and inferred (dark gray) values for each simulated lineage. Blue circles show combined proportions for simulated lineages 2 and 3.
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General performance: Across the island coalescent simu-
lations we find the performance of the model varies largely
with the degree of mixing. To ensure a uniform scale across
simulations, we examine the average pairwise distance
between SNPs with a common sequence pattern divided by
the average pairwise distance over the entire tree. We
show the results in Figure S4. When mixing is close to zero
(c = 0.0003), the model reduces to a single sequence pat-
tern per sample, phylogenetic sequence patterns strongly
cluster on a single branch, and the inferred phylogenies
show little topological uncertainty. As c increases, the de-

gree of localization decreases slightly for two orders of
magnitude until rapidly increasing afterward, with the
model’s topological uncertainty following a similar pro-
gression. For very high degrees of mixing, the localization
for phylogenetic SNPs differs very little from that for null
SNPs. For all simulations, we find the null SNPs spread
evenly over external or nearly external branches. On the-
oretical grounds, we expect inference of phylogenetic
structure to become impossible as the mixing rate tends
to infinity, so the model appears to be performing in a rea-
sonable way.

Figure 4 Comparison of simulated and inferred values for lineages (left column) and pool proportions (right column) by number of SNPS (A and B),
number of reads (C and D), and error rate (E and F). Insets give mixture value (“Mix”), number of read counts (“Reads”), number of SNPs (“SNPs”), and
error rate (“Err”).
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Empirical Examples

Green sulfur bacteria in an Antarctic lake

The Chlorobium genus comprises a class of green sulfur bac-
teria that are one of the most photosynthetically productive

microbial populations in anoxic aquatic environments. We
explore the composition of Chlorobium strains from a set of
metagenomic samples taken at differing depths within Ace
Lake, a pristine, anoxic, marine-derived, stratified lake in
Antarctica formed �5000 years ago, as well as two nearby

Figure 5 (Top) Location on simulated tree of SNPs for six sequence patterns. The branch width is proportional to number of SNPs. (Bottom) Inferred
model presentation is the same as in Figure 2.
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marine samples. Lauro et al. (2011) provide a full descrip-
tion of the collection regime and an integrated, functional
metagenomic analysis.

We examine data from nine whole-genome sequence
samples and their metadata (443679.3–443687.3) down-
loaded from the MG-RAST server on October 15, 2011
(Meyer et al. 2008). One freshwater sample contains no
metadata on sample depth collection. For comparison
against a Chlorobium sequence, we downloaded the genome
for Chlorobium limicola from the NCBI Genome Project Web
site on October 20, 2011 (Geer et al. 2010). We employ the
de novo variation detection algorithm Cortex to ascertain
SNPs and their counts per sample. We exclude four samples
(4443679.3, 4443680.3, 4443681.3, and 4443685.3) due to
low coverage for most SNPs, leaving three lake samples and
two marine samples. We also remove indel variants and
SNPs with ,70 read counts across the remaining samples,
leaving 345 SNPs for analysis.

Figure 6 shows the inferred lineage model for the five
samples. Lineage 1 is found only in Ace Lake samples, while
lineage 2 is found only in marine samples. We note that the
deep divergence time of lineage 1, substantially present
within all lake samples, is consistent with long-term isola-
tion of Ace Lake. Lineage 5 shows the presence of a unique
strain within the 23-m sample, consistent with previous
analysis (Lauro et al. 2011). Lineage 4 appears to be present
in all samples, although preferentially in those from the
lake. Lineage 3 is similar, but has no contribution to the deep
water sample. We note that pool proportions of the un-
known sample (green in Figure 6) indicate that it likely
has a similar collection location to that of the 12-m sample.

Mixed infections of Plasmodium falciparum in
northern Ghana

Plasmodium falciparum is the causative agent of most severe
malaria worldwide and is endemic in a large section of sub-
Saharan Africa (Snow et al. 2005). Examinations of infected
blood samples frequently show multiple strains of parasites
present within a single host, although the clinical import is
debated (Genton et al. 2008). A recent examination of
whole-genome-sequenced parasite samples taken from clin-
ical isolates indicates that the degree of mixed infections
varies strongly by geographic region, with western Africa
exhibiting the highest values (Manske et al. 2012).

Each P. falciparum cell contains exactly two plastids: a mi-
tochondrion and an apicoplast. The apicoplast is a chloroplast-
derived plastid necessary for essential heme metabolism.
Following methods in Manske et al. (2012), we ascertain
123 SNPs from the apicoplast within 20 clinical isolates
from the Kassena-Nankana district (KND) region of northern
Ghana. The model infers nine lineages shown in Figure 7.
Lineages 2, 5, and 8 appear to be largely unmixed in their
respective samples, while lineages 1, 3, 4, and 9 appear
almost exclusively in mixed samples. Lineages 6 and 7 ap-
pear in both mixed and unmixed samples. We note that two
lineages, 2 and 8, appear to dominate about half of the

samples. The topological uncertainty suggests that the data
may not be yet sufficiently high quality for precise inference.
However, the output strongly indicates the presence of mixed
infections, consistent with estimates from the nuclear ge-
nome, and suggests that the degree of mixture may vary
with the underlying sequence.

Neisseria meningitidis in sub-Saharan Africa

We examine data from field samples of Neisseria meningitidis
collected on sequential visits to the Kassena-Nankana region
in northern Ghana (Leimkugel et al. 2007). N. meningitidis
exists as nonpathogenic flora in the naval cavity of �10% of
adults (Caugant et al. 1994). The same bacteria may exhibit
hypervirulent forms, leading to severe meningococcal men-
ingitis (Caugant 2008). In sub-Saharan Africa, these virulent
bacterial forms appear as an epidemic each 8–12 years in the
dry season, and researchers believe that these occurrences
travel as “waves” across the continent from west to east
(Leimkugel et al. 2007). Researchers collected field samples
from different individuals in two villages within the Kassena-
Nankana district from 1998 until 2008, although we examine
only the subset of samples from 1998 to 2005.

For sequencing, individual samples were pooled by
villages and by years, giving us 10 pools, with 2 pools per
epidemic season (1998–1999, 1999–2000, etc.). Sequencing
was performed on early Illumina technology and before the
development of tags. Using the read data, we ascertained
SNPs using a novel de novo assembly approach outlined in
Ahiska (2011). After cleaning for quality, we find 1099 sites
with a mean read count depth per site of 54.53 reads. Ap-
plying the lineage algorithm to these data yields the five

Figure 6 Inferred lineage model for Chlorobium data from Ace Lake and
open ocean samples.
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lineages shown in Figure S5. Pools 7–10 correspond to years
2001 and 2002, when researchers previously noted the ad-
vent of a new sequence type in the KND. The lineage model
clearly separates the two epidemiological waves, as well as
possible “subwaves” distinct from the dominant strains.

Discussion

Biologists now produce enormous amounts of metagenomic
data, investigating a range of systems from the microbiomes
of beehives to the microflora of ocean vents. Analyses of
these data usually assess the proportions of living domains
that read data can be uniquely mapped into and compare
across samples by contrasting their compositions. These
investigations naturally focus on macroevolution across
species, phyla, or families, where genomic change is so
substantial among clades that each can be treated as fixed.
Often these studies focus only on the signal from a single
gene, such as 16S sRNA.

In this article, we consider metagenomics in the domain
of microevolution, where genomic changes occur on the
same timescale as environmental mixing, as in microbiomes,
epidemics, or cancer cell lines. This regime corresponds to
the island coalescent model when the migration and
mutation parameters are roughly on the same timescale.
We show that in this circumstance we can extract a meaning-
ful phylogenetic signal. The mixing rate is the key: for
a small rate, the situation effectively reduces to a standard
phylogenetics problem; when it is very high, we cannot
parse out pool mixtures from the tree information; in
between, we can make reliable inference. However, we

cannot yet provide precise guidelines about where this
distinction occurs in biological systems, although we empir-
ically observe that the model produces equal estimates of
pool proportions across all lineages and high tree uncer-
tainty when confronted with very highly mixed samples. The
model’s current implementation works well for trees with
K # 20, although this is a practical constraint reflecting the
rate of MCMC convergence. Our three empirical examples
also give some guidance for appropriate applications of the
model.

If reference trees are available, researchers may use
phylogeny-aware alignment algorithms such as pplacer,
EPA, PaPaRa, or PAGAN (Matsen et al. 2010; Berger et al.
2011; Berger and Stamatakis 2011; Löytynoja et al. 2012).
Although the approach varies, each of these methods aligns
read data to guide alignments using reference trees to de-
termine the best homology. The read-placement counts on
the tree could then be used to infer sample mixture. How-
ever, in the context of closely related species or novel sub-
species, these reference trees will not generally be available.

In deciding whether to use the lineage model, two
related questions must be addressed: How can it be de-
termined when reads come largely from a set of closely
related species? And why would one use the lineage
approach rather than phylogenetic placement? We do not
directly address the first question here but note that this has
already been the subject of much previous research. In each
of our empirical examples we consider previously analyzed
data where researchers determined that this was likely the
case with their data. However, in general, one might use
phylogenetic placement to determine whether use of the
lineage model was appropriate. If in mapping reads to
reference genomes (or similar guide alignment approaches)
one uncovers that nearly all reads map to a single species, or
a small number of closely related species, but there still
appears to be significant variation relative to the references,
then the lineage model would be appropriate to resolve the
underlying tree. This leads naturally to an answer to the
second question: the lineage model is not an alternative to
placement methods; it is operating in the regime where
placement methods are limited by an absent or limited
number of reference sequences. In both the Chlorobium and
Plasmodium examples, the samples represented closely re-
lated subspecies, and so phylogenetic placement would not
be possible based on currently available genomes.

To implement our model, we make a number of
simplifying assumptions. We assume that the pools are
independent of each other, that SNPs are unlinked, and
that recombination is nonexistent. In almost any biological
experiment these postulates will be violated in some
fashion. However, all violations are not created equal.
Obligate recombination that occurs in sexual organisms will
undoubtedly confound the model, rendering tree inference
very questionable (Schierup and Hein 2000). On the other
hand, a moderate frequency of co-occurrence on reads for
some SNPs will not prevent the model from functioning at

Figure 7 Inferred lineage model for Plasmodium falciparum apicoplast
data from 20 clinical samples from northern Ghana.
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all: we currently just neglect the additional information that
would provide. Similarly, some nonindependence among
pools will likely not harm the quality of inference under
the model.

We believe a place of possible improvement in our
current implementation to be in our error model, where
we treat every read as possessing possible sequencing errors.
While the model is helpful in separating phylogenetic SNP
variation from noise, we hope in the future to implement
more biologically sophisticated models where low-frequency
variants can be included. We conjecture that the inclusion of
SNP count data, the states of multiple SNPs from a single
organism, such as paired-end data or longer read data, will
help us fill this gap. These reads provide strong evidence
about the state of the lineages in reality, and their inclusion
into the model should permit better inference and more
elaborate population models. Our experience suggests that
this extension will present a methodological challenge in the
MCMC framework in finding approaches that efficiently mix
over the parameter space.

Another natural extension is to weaken the assumption
that the pools are independent. In most studies we would
expect a priori that pools’ composition will have strong cor-
relations, induced by the sampling procedure in time or
space or both. Including these structures will provide strong
indications about the pool composition, since nearby pools
are presumably composed more similarly than distant ones.
We expect that a Gaussian Markov random field prior on the
pool distribution determined by the graph representing the
experimental sampling procedures (e.g., sampling times)
will prove an efficient means of incorporating this informa-
tion (Rue and Held 2005).

Acknowledgments

We thank two anonymous reviewers for their careful read-
ings and suggestions to improve the manuscript. We thank
Sarah D’Adamo for copyediting the manuscript.

Literature Cited

Ahiska, B., 2011 Reference-free identification of variation in
metagenomic sequence data using a statistical model. Ph.D.
Thesis, University of Oxford, Oxford.

Allen, E. E., and J. F. Banfield, 2005 Community genomics in
microbial ecology and evolution. Nat. Rev. Microbiol. 3: 489–
498.

Balding, D., and R. Nichols, 1995 A method for quantifying dif-
ferentiation between populations at multi-allelic loci and its
implications for investigating identity and paternity. Genetica
96: 3–12.

Bentley, D. R., S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J.
Milton et al., 2008 Accurate whole human genome sequencing
using reversible terminator chemistry. Nature 456: 53–59.

Berger, S. A., and A. Stamatakis, 2011 Aligning short reads to
reference alignments and trees. Bioinformatics 27: 2068–2075.

Berger, S. A., D. Krompass, and A. Stamatakis, 2011 Performance,
accuracy, and web server for evolutionary placement of short

sequence reads under maximum likelihood. Syst. Biol. 60:
291–302.Brooks, S. P., and A. Gelman, 1998 General methods
for monitoring convergence of iterative simulations. J. Comput.
Graph. Stat. 7: 434–455.

Caugant, D. A., 2008 Genetics and evolution of Neisseria menin-
gitidis: importance for the epidemiology of meningococcal dis-
ease. Infect. Genet. Evol. 8: 558–565.

Caugant, D. A., E. A. Hoiby, P. Magnus, O. Scheel, T. Hoel et al.,
1994 Asymptomatic carriage of Neisseria meningitidis in a ran-
domly sampled population. J. Clin. Microbiol. 32: 323–330.

Chaffron, S., H. Rehrauer, J. Pernthaler, and C. von Mering,
2010 A global network of coexisting microbes from environ-
mental and whole-genome sequence data. Genome Res. 20:
947–959.

Cowles, M. K., and B. P. Carlin, 1996 Markov chain Monte Carlo
convergence diagnostics: a comparative review. J. Am. Stat. As-
soc. 91: 883–892.

Drummond, A., and A. Rambaut, 2007 BEAST: Bayesian evolu-
tionary analysis by sampling trees. BMC Evol. Biol. 7: 214.

Drummond, A. J., A. Rambaut, B. Shapiro, and O. G. Pybus,
2005 Bayesian coalescent inference of past population dynamics
from molecular sequences. Mol. Biol. Evol. 22: 1185–1192.

Excoffier, L., and M. Slatkin, 1995 Maximum-likelihood estima-
tion of molecular haplotype frequencies in a diploid population.
Mol. Biol. Evol. 12: 921–927.

Felsenstein, J., 1981 Evolutionary trees from DNA sequences:
a maximum likelihood approach. J. Mol. Evol. 17: 368–376.

Felsenstein, J., 2004 Inferring Phylogenies. Sinauer Associates,
Sunderland, MA.

Geer, L. Y., A. Marchler-Bauer, R. C. Geer, L. Han, J. He et al.,
2010 The NCBI biosystems database. Nucleic Acids Res. 38:
386.

Genton, B., V. D’Acremont, L. Rare, and K. Baea, J. C. Reeder et al.,
2008 Plasmodium vivax and mixed infections are associated
with severe malaria in children: a prospective cohort study from
Papua New Guinea. PLoS Med. 5: e127.

Geweke, J., 1991 Evaluating the accuracy of sampling-based ap-
proaches to the calculation of posterior moments. Vol. 196. Fed-
eral Reserve Bank of Minneapolis, MN.

Gill, S. R., M. Pop, R. T. DeBoy, P. B. Eckburg, P. J. Turnbaugh et al.,
2006 Metagenomic analysis of the human distal gut micro-
biome. Science 312: 1355–1359.

Greenspan, G., and D. Geiger, 2004 Model-based inference of
haplotype block variation. J. Comput. Biol. 11: 493–504.

Hudson, R., 2002 Island models and the coalescent process. Mol.
Ecol. 7: 413–418.

Huelsenbeck, J. P., F. Ronquist, R. Nielsen, and J. Bollback,
2001 Bayesian inference of phylogeny and its impact on evo-
lutionary biology. Science 294: 2310–2314.

Iqbal, Z., M. Caccamo, I. Turner, P. Flicek, and G. McVean,
2012 De novo assembly and genotyping of variants using col-
ored de Bruijn graphs. Nat. Genet. 44: 226–232.

Jolliffe, I., 2005 Principal Component Analysis. John Wiley & Sons,
New York/Hoboken, NJ.

Jukes, T. H., and C. R. Cantor, 1969 Evolution of protein mole-
cules, pp. 21–132 in Mammalian Protein Metabolism, Vol. III,
edited by M. N. Munro. Academic Press, New York/London/
San Diego.

Kass, R. E., and A. E. Raftery, 1995 Bayes factors. J. Am. Stat.
Assoc. 90: 773–795.

Kimura, M., 1969 The number of heterozygous nucleotide sites
maintained in a finite population due to steady flux of muta-
tions. Genetics 61: 893–903.

Kurokawa, K., T. Itoh, T. Kuwahara, K. Oshima, H. Toh et al.,
2007 Comparative metagenomics revealed commonly en-
riched gene sets in human gut microbiomes. DNA Res. 14:
169–181.

936 J. D. O’Brien et al.



Lauro, F., M. DeMaere, S. Yau, M. V. Brown, C. Ng et al., 2011 An
integrative study of a meromictic lake ecosystem in Antarctica.
ISME J. 5: 879–895.

Leimkugel, J., A. Hodgson, A. Forgor, V. Pfluger, J.-P. Dangy et al.,
2007 Clonal waves of Neisseria colonisation and disease in the
African meningitis belt: eight-year longitudinal study in northern
Ghana. PLoS Med. 4: e101.

Li, H., and R. Durbin, 2009 Fast and accurate short read align-
ment with Burrows-Wheeler transform. Bioinformatics 25:
1754–1760.

Löytynoja, A., A. J. Vilella, and N. Goldman, 2012 Accurate ex-
tension of multiple sequence alignments using a phylogeny-
aware graph algorithm. Bioinformatics 28: 1684–1691.

Manske, M., O. Miotto, S. Campino, S. Auburn, J. Almagro-Garcia
et al., 2012 Analysis of Plasmodium falciparum diversity in
natural infections by deep sequencing. Nature 487: 375–379.

Martinez, I., G. Wallace, C. Zhang, R. Legge, K. Benson et al.,
2009 Diet-induced metabolic improvements in a hamster
model of hypercholesterolemia are strongly linked to altera-
tions of the gut microbiota. Appl. Environ. Microbiol. 75:
4175–4184.

Matsen, F., R. Kodner, and E. V. Armbrust, 2010 pplacer: linear
time maximum-likelihood and Bayesian phylogenetic placement
of sequences onto a fixed reference tree. BMC Bioinformatics
11: 538.

Mau, B., M. A. Newton, and B. Larget, 1999 Bayesian phyloge-
netic inference via Markov chain Monte Carlo methods. Biomet-
rics 55: 1–12.

Meyer, F., D. Paarmann, M. D’Souza, R. Olson, E. M. Glass et al.,
2008 The metagenomics rast server - a public resource for the
automatic phylogenetic and functional analysis of metage-
nomes. BMC Bioinformatics 9: 386.

Newton, M. A., and A. E. Raftery, 1994 Approximate Bayesian
inference with the weighted likelihood bootstrap. J. R. Stat.
Soc. B 56: 3–48.

Partida-Martinez, L. P., and C. Hertweck, 2005 Pathogenic fungus
harbours endosymbiotic bacteria for toxin production. Nature
437: 884–888.

Pritchard, J. K., M. Stephens, and P. Donnelly, 2000 Inference of
population structure using multilocus genotype data. Genetics
155: 945–959.

Planet, P. J., 2006 Tree disagreement: measuring and testing in-
congruence in phylogenies. J. Biomed. Inform. 39: 86–102.

Plummer, M., N. Best, K. Cowles, and K. Vines, 2006 CODA: con-
vergence diagnosis and output analysis for MCMC. R News 6:
7–11.

Preidis, G. A., and J. Versalovic, 2009 Targeting the human mi-
crobiome with antibiotics, probiotics, and prebiotics: gastroen-
terology enters the metagenomics era. Gastroenterology 136:
2015–2031.

Raftery, A. E., and S. M. Lewis, 1992 Practical Markov chain
Monte Carlo: comment: one long run with diagnostics: imple-
mentation strategies for Markov chain Monte Carlo. Stat. Sci. 7:
493–497.

Ronquist, F., and J. P. Huelsenbeck, 2003 MrBayes 3: Bayesian
phylogenetic inference under mixed models. Bioinformatics 19:
1572–1574.

Rue, H., and L. Held, 2005 Gaussian Markov Random Fields: The-
ory and Applications. Chapman & Hall, London/New York.

Schierup, M. H., and J. Hein, 2000 Consequences of recombina-
tion on traditional phylogenetic analysis. Genetics 156: 879–
891.

Schmeisser, C., H. Steele, and W. Streit, 2007 Metagenomics, bio-
technology with non-culturable microbes. Appl. Microbiol. Bio-
technol. 75: 955–962.

Snow, R., C. Guerra, A. Noor, H. Myine, and S. Hay, 2005 The
global distribution of clinical episodes of Plasmodium falcipa-
rum malaria. Nature 434: 214–217.

Stephens, M., N. Smith, and P. Donnelly, 2001 A new statistical
method for haplotype reconstruction from population data. Am.
J. Hum. Genet. 68: 978–989.

Tavare, S., 1984 Line-of-descent and genealogical processes, and
their applications in population genetics models. Theor. Popul.
Biol. 26: 119–164.

Tringe, S. G., C. von Mering, A. Kobayashi, A. A. Salamov, K. Chen
et al., 2005 Comparative metagenomics of microbial commu-
nities. Science 308: 554–557.

Tyson, G. W., J. Chapman, P. Hugenholtz, E. Allen, R. Ram et al.,
2004 Community structure and metabolism through recon-
struction of microbial genomes from the environment. Nature
428: 1–7.

von Mering, C., P. Hugenholtz, J. Raes, S. G. Tringe, T. Doerks
et al., 2007 Quantitative phylogenetic assessment of microbial
communities in diverse environments. Science 315: 1126–1130.

Wakeley, J., 2001 The coalescent in an island model of population
subdivision with variation among demes. Theor. Popul. Biol. 59:
133–144.

Zerbino, D. R., and E. Birney, 2008 Velvet: algorithms for de novo
short read assembly using de Bruijn graphs. Genome Res. 18:
821–829.

Communicating editor: M. A. Beaumont

Bayesian Phylogenetics for Metagenomics 937



GENETICS
Supporting Information

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.161299/-/DC1

A Bayesian Approach to Inferring the Phylogenetic
Structure of Communities from Metagenomic Data

John D. O’Brien, Xavier Didelot, Zamin Iqbal, Lucas Amenga-Etego,
Bartu Ahiska, and Daniel Falush

Copyright © 2014 by the Genetics Society of America
DOI: 10.1534/genetics.114.161299



2 SI  J. D. O’Brien et al. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1   Principal components analysis of simulated read count data for first three components. Colors indicating pool are 
the same as in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



J. D. O’Brien et al.  3 SI 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2   Number of inferred linages made by empirical Bayes factor analysis for three different qualities of data. Ten 
simulations included within each group. 
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Figure S3   Example of a simulation run with ‘migrating’ pool proportions. Simulated model is above and inferred model below. 
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Figure S4   Performance of lineage model inference by mixture parameter by fraction of concordant SNPs (top) and mean 

absolute deviation in pool proportion (bottom). Mixture parameter is proportional to  . 
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Figure S5   Inferred model for Neisseria data set. 




