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L E T T E R  T O  T H E  E D I T O R

Lessons from SARS and MERS remind us of the possible 
therapeutic effects of implementing a siRNA strategy to target 
COVID-19: Shoot the messenger!

Dear Editor,
Since its first identification as a human pathogen in the Wuhan 
province of China in December 2019, the SARS-CoV-2 virus, which 
causes COVID-19, has become a global pandemic with immense 
medical and socio-economic costs. Like other coronaviruses, such 
as severe acute respiratory syndrome (SARS) and Middle East res-
piratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 is a single-
stranded positive-sense RNA virus. The SARS-COV-2 as well as the 
SARS-COV and MERS-COV genomes contain several open-reading 
frames (ORFs) that play an essential role in viral pathogenicity and in-
fection.1-3 Based on previous experiences with other coronaviruses, 
ORFs are considered to be essential for viral replication through en-
coding viral replicase proteins to synthesize mRNAs of subgenomic 
length.1,3 Silencing or small/short interfering RNA (siRNA) is a gene 
silencing approach using a small fragment of approximately 20-25 
base pairs of double-stranded RNA that binds to a specific site of 
the relevant/target messenger RNA (mRNA); siRNAs are designed to 
silence genes at the post-transcriptional level (by inducing cleavage 
and subsequent degradation of target mRNA) and can therefore be 
considered as vaccines or therapeutic agents. Zheng et al4 designed 
48 siRNA sequences that potentially target the entire SARS-CoV ge-
nome RNA, including ORFs for the translation of several key proteins. 
Among these, four siRNAs that could inhibit SARS-CoV infection in 
foetal rhesus monkey kidney cells (FRhK-4), both in a prophylactic 
and post-infection therapeutic manner, were identified. Translating 
this idea to live animal experiments, Li et al5 demonstrated a simi-
lar efficacy of siRNAs in a rhesus macaque (Macaca mulatta) SARS 
model. These agents, with no visible signs of toxicity, were shown to 
improve several symptoms of SARS-CoV, such as fever, viral load and 
acute alveolar damage. Importantly, the efficacy of the siRNAs was 
evident at relatively small respiratory doses (10-40 mg/kg). Similar 
experiments have been performed with different siRNA sequences 
targeting various regions of the SARS-CoV genome. For example, 
He et al6 showed that miRNAs targeting the replicase 1A region 
were more effective against the virus in FRhK-4 cells. In 293 and 
HeLa cells, siRNAs targeting SARS-CoV RNA-dependent RNA poly-
merase (RDRP) showed therapeutic potential as well by specifically 
inhibiting RDRP expression.7 In addition, this system reduced plaque 

formation in Vero-E6 cells, a cell line classically used to identify and 
count hemorrhagic fever viruses. In these cells, siRNA to target and 
inhibit gene expression of SARS-CoV spike (S) protein has been suc-
cessfully utilized in vitro.8,9 Similarly, siRNAs efficiently targeting S 
protein coding regions have been identified using FRhk-4 cells and 
an in vivo rhesus macaque model of SARS-CoV infection.10 In line 
with these findings, the aforementioned efficacy of the siRNA de-
veloped by Li et al5 was based on the S protein coding and ORF1b 
(NSP12) regions. Envelope (E) and membrane (M) proteins could also 
be (specifically) targeted, as demonstrated in SARS-CoV-infected 
FRhk-4 cells.11 In addition to synergistic effects that may be exhib-
ited by different siRNAs, their therapeutic action can synergize with 
other currently existing antiviral agents through direct or indirect 
targeting common structural genes or other cellular targets.11,12

In principle, several proteins encoded by the viral genome can be 
targeted by siRNA technology.13 He et al14 demonstrated the power 
of synergistic antiviral effects through siRNA targeting of various 
structural genes such as S, envelope, membrane and nucleocap-
sid. An additional advantage of siRNA technology is the incredibly 
low dose required to eliminate SARS-CoV infection; for example, 
less than 60 nmol/L in Vero E6 cells15 and 10-40 mg/kg/daily in 
monkeys was sufficient for satisfactory therapeutic effects.5 The 
application and potential effectiveness of siRNAs have also been 
evaluated in MERS-CoV using computational models.16 In view of 
angiotensin-converting enzyme 2 (ACE2) as a recognized host cell 
receptor for the SARS-CoV S protein, the development of siRNAs 
targeting key host proteins could hold promise. Indeed, silencing 
ACE2 expression in Vero E6 cells by siRNA (containing sequences 
homologous to a section of ACE2) significantly reduced SARS-CoV 
infection.17

Overall, the described studies on the effectiveness of specific 
siRNAs to battle SARS-CoV and MERS-CoV provide sufficient ra-
tionale to at least consider the use of siRNA strategies to target the 
closely related virus SARS-CoV-2. Despite their promising therapeu-
tic effects, the application of higher doses of siRNAs, if so required, 
may be associated with some challenges, including adaptive18 and 
innate immune responses,19,20 unwanted target effects, and satu-
ration of the endogenous small RNA machinery.21 It is comforting, 
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however, that previous data from several randomised, double-blind, 
placebo-controlled trials indicate that ALN-RSV01 (a siRNA-based 
drug) is safe to use and effective against respiratory syncytial virus 
infection.22,23 Taken together, siRNA-based therapeutics might be 
considered as an effective strategy to treat of COVID-19. Future 
studies are warranted to evaluate their potential efficacy and safety.
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F I G U R E  1   Potential effects of siRNAs on silencing viral genes at the post-transcriptional level in COVID-19. Coronaviruses enter the 
cell via the endosomal pathway exploiting autophagy or the non-endosomal pathway, both leading to the release of the nucleocapsid into 
the cytoplasm. Replication of genomic RNA takes place in double-membrane vesicles (DMVs) shielded from host immune responses, where 
the translation of ORF1a/b into the replicase polyprotein 1a (pp1a) and pp1ab will take place. Papain-like proteases (PLpro) and 3C-like 
protease (3CLpro) cleave pp1a and pp1ab to produce non-structural proteins (nsp), including replicases (RNA-dependent RNA polymerases) 
and helicases. The positive-strand genomic RNA is transcribed to form a negative-strand template for the synthesis of new genomic RNAs 
and subgenomic negative-strand templates. mRNA is synthesized and translated into producing the structural and accessory viral proteins. 
siRNAs can potentially silence genes at post-transcriptional level, degrading mRNA and blocking its translation. (adapted after Zumla et al24)
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