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Abstract

Social interactions are pervasive in human life with varying forms of interpersonal coordination emerging and spanning
different modalities (e.g. behaviors, speech/language, and neurophysiology). However, during social interactions, as in
any dynamical system, patterns of coordination form and dissipate at different scales. Historically, researchers have used
aggregate measures to capture coordination over time. While those measures (e.g. mean relative phase, cross-correlation,
coherence) have provided a wealth of information about coordination in social settings, some evidence suggests that multi-
scale coordinationmay change over the time course of a typical empirical observation. To address this gap, we demonstrate an
underutilized method, windowed multiscale synchrony, that moves beyond quantifying aggregate measures of coordination
by focusing on how the relative strength of coordination changes over time and the scales that comprise social interac-
tion. This method involves using a wavelet transform to decompose time series into component frequencies (i.e. scales),
preserving temporal information and then quantifying phase synchronization at each of these scales. We apply this method
to both simulated and empirical interpersonal physiological and neuromechanical data. We anticipate that demonstrating
this method will stimulate new insights on the mechanisms and functions of synchrony in interpersonal contexts using
neurophysiological and behavioral measures.
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Introduction

Social interactions are pervasive in human life with varying
forms of interpersonal coordination emerging and spanning
different modalities (e.g. behaviors, speech/language, and neu-
rophysiology). For example, couples, strangers, team members,

and patient–therapist dyads tend to synchronize their heart
rates and skin conductance during interactions (see Palumbo
et al., 2017 for review) and this occurs in multiple behav-
ioral modalities too (e.g. Louwerse et al., 2012). Increas-
ingly, researchers have linked various forms of interpersonal
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coordination to important constructs and outcomes in several
areas including team work (Chanel et al., 2013; Gorman, 2014;
Likens et al., 2014; Gorman et al., 2016; Guastello and Peressini,
2017; Wiltshire et al., 2018, 2019), relationship science (Butler,
2011; Randall et al., 2013; Gottman, 2014; Perry et al., 2017), con-
versational dynamics (Abney et al., 2015; Fusaroli and Tylén,
2016), and clinical psychology (Ramseyer and Tschacher, 2011,
2014, 2016; Crowell et al., 2017; Wiltshire et al., 2020).

Importantly, during social interactions, as in any dynamical
system, patterns of coordination form and dissipate at differ-
ent spatiotemporal scales (Schmidt et al., 1998; Dale et al., 2013;
Dumas et al., 2014; Gorman et al., 2019; Zhang et al., 2019). In
fact, recent theorizing emphasizes that moving in and out of
synch with others is critical to adaptive human behavior (Mayo
and Gordon, 2020) and that coordination in biological systems
is fundamentally a multiscale phenomenon (Zhang et al., 2019,
2020). Historically, researchers have used aggregate measures
to capture coordination over time (see Delaherche et al., 2012 for
review). While those measures (e.g. mean relative phase, cross-
correlation, coherence) have provided a wealth of information
about coordination in social settings, because coordination is
multiscale, it can occur differently at multiple spatial and/or
temporal scales and also changes over the time course of a typ-
ical experiment (Tognoli et al., 2007; Likens et al., 2014; Fujiwara
et al., 2019; Wiltshire et al., 2019).

With regard to interpersonal coordination at different scales,
a recent set of studies found that rhythmic oscillations in
human movements under 0.025 Hz and between 0.5 and 1.5 Hz
were associated with increases in rapport between individuals
(Fujiwara et al., 2019). Similarly, in another study, movement
coordination corresponding to temporal scales of 0.25 s and
1.0 s scales were found not only to relate to collaborative
problem-solving performance, but the change in this coordina-
tion over the duration of the interaction was also indicative of
task performance (Wiltshire et al., 2019). In addition to move-
ments, extant research suggests that neurophysiological signals
also have varyingly important frequency components such as
those that contribute to heart rate variability (Shaffer and Gins-
berg, 2017) and brainwaves measured with electroencephalo-
gram (EEG) (Keller et al., 2014) and, for example, hyperscanning
research using functionalNear Infrared Spectroscopy (fNIRS) has
shown that interpersonal coordination of frontal-lobe activity
in specific time scales (3.2–12.8 s) is different in cooperative vs
competitive interactions (Cui et al., 2012). In such cases, the time
durations (and, inversely, frequencies) with which events and
processes unfold are examples of temporal scales.

However, what is important is that methods for examining
change in coordination over time and/or studies that employ
them are limited. To address this gap, we present and demon-
strate an underutilized bivariate time series method we refer
to as windowed multiscale synchrony (WMS). This method is
a generalization of a phase synchronization methodology that
was introduced to measure synchrony in noisy, non-linear
time series typical of those from physiological or interper-
sonal measures (Schmidt et al., 1990; Schmidt and O’Brien, 1997;
Rosenblum et al., 1998; Tass et al., 1998; Dumas et al., 2011). Meth-
ods, like the one demonstrated below, allow researchers tomove
beyond aggregate measures of coordination, providing a lens to
focus on how the relative strength of coordination changes over
the time scales that comprise social interaction (Gorman et al.,
2016). Further, it captures a different form of synchronization
than other time- and frequency-varyingmeasures such as phase
coherence, which are correlation-based and sensitive to varia-
tions in amplitude (see section Comparison of WMS with Phase

Coherence Results for additional details). More specifically, the
advantage of the WMS method compared with other methods
for examining synchrony is that it is sensitive to both 1:1 and
n:m (i.e. other phase ratios) phase-locking dynamics that can
be short in duration, time varying, and scale specific; WMS is
robust to the influence of noise and non-covarying amplitude
fluctuations.

WMS

WMS is a time and frequency decomposition-based technique
based on the continuous wavelet transform. In brief, WMSmea-
sures the degree of coordination between two signals of equal
length at each point in time across many frequencies. In other
words, WMS provides a continuous synchrony index (SI) over
time and across scales. As noted above, WMS is a generaliza-
tion of a method for detecting phase synchronization in noisy
and non-stationary bivariate time series data (Tass et al., 1998).
Those authors developed the method with neurophysiological
measurements as a target application. WMS generalizes the
Tass et al. (1998) method by investigating synchrony at many
time scales simultaneously. The original method, being based
on the Hilbert transform, only measures a single frequency at
each moment in time Note, however, that the Hilbert transform
when combined with band-pass filtering could be conducted to
resolve synchrony at multiple frequencies/time scales (Le Van
Quyen et al., 2001). Phase synchronization, also known as phase
locking, reflects the degree to which two oscillators have a con-
stant phase difference or relative phase over some period of
time, and measures of relative phase have figured prominently
in both intra- and interpersonal coordination literature formany
years (Haken et al., 1985; Kugler and Turvey, 1987; Schmidt et al.,
1990; Amazeen et al., 1998; Kurz and Stergiou, 2002; Richardson
et al., 2007 2012; Frank et al., 2012; Washburn et al., 2019).

However, in noisy and non-stationary time series, phase slips
(rapid deviations from the current relative phase value) often
make detection of synchrony difficult. To address this issue,
Tass et al. (1998) approached the problem of measuring syn-
chrony from a statistical perspective. Rather than focusing on
a point estimate such as mean relative phase, they focused on
the distribution of relative phase values where peaks in the dis-
tribution are informative regarding dominant phase differences
(i.e. stable coordination patterns). Hence, the method detects
synchrony even when there are sudden deviations in relative
phase values or stable coordination patterns that are not clearly
in-phase or anti-phase.

To quantify n:m phase synchronization, Tass et al. (1998) pro-
posed two methods, only one of which is reviewed here. The
method entails the following steps: (i) calculate instantaneous
phase of each time series using the Hilbert transform, (ii) calcu-
late the instantaneous relative phase between the two signals by
taking their difference, mod 1, and (iii) compare the distribution
of instantaneous relative phase values to a uniform distribu-
tion by calculating a measure of negentropy (based on Shannon
entropy). This measure is normalized by dividing by the natural
log of the maximum number of bins and subtracting that value
from the entropy calculation. This essentially creates a normal-
ized negentropy or SI that ranges from 0 to 1, with 0 indicating a
uniform distribution (i.e. no synchrony), and 1 corresponding to
perfect synchrony. Because this measure reflects the clustering
of relative phase angles, it will show a high SI for unimodal as
well as multimodal distributions (Hurtado et al., 2004).

Much like the aforementioned aggregate coordination mea-
sures, this method too results in only a single phase synchrony
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value. In other words, this scalar measure carries the tacit
assumptions that synchrony is fixed to a single time scale and
remains constant over time, both of which may be unrea-
sonable in the context of individual and interpersonal phys-
iology. Hence, Tass et al. (1998) proposed making repeated
measurements of SI using a sliding window approach, provid-
ing the ability to observe time-varying patterns of synchrony
(Hurtado et al., 2004; Lai et al., 2006). However, on its own,
the sliding window approach only addresses one of those
assumptions (i.e. time constancy). To address the second
assumption, others have further extended the method via a
continuous wavelet transform (Bocian et al., 2018; Soczawa-
Stronczyk et al., 2019). A more detailed description appears
below, but the basic idea is that the wavelet transform cap-
tures instantaneous phase at many different frequencies (or,
inversely, scales), thereby allowing for measurements of syn-
chrony at multiple frequencies. In the following paragraphs, we
elaborate on the steps involved in this extension. MATLAB code
for this procedure will be made available on the first author’s
github page (https://github.com/aaronlikens/wms).

Apply Morlet wavelet transform to decompose two time
series into their component frequencies and calculate
phase angles

Approachable, yet detailed introductions to the wavelet trans-
form for both general use and for interpersonal coordination
specifically can be found elsewhere (Cohen, 2014; Issartel et al.,
2015; Torrence and Compo, 1998). The wavelet transform refers
to a family of methods that perform time-frequency decom-
position of non-stationary signals, in the sense that they have
time-varying frequency characteristics. It is based on a ‘template
matching’ procedure between each time point in the observed
signal and the template wavelet (Cohen, 2019). More techni-
cally, the wavelet transform involves time convolution between
a signal and a wavelet (i.e. a small wave). The Morlet wavelet, a
complex valued wavelet with both a real and imaginary compo-
nent, allows for extraction of both instantaneous amplitude and
phase of the observed signal (Issartel et al., 2015). Constructing a
Morlet wavelet involves pointwise multiplication of a Gaussian
window and a complex sine wave:

wave= ei2πf (1)

where i is the imaginary number, f is peak frequency in Hz of the
wavelet, and t is time. The Gaussian window is defined as:

GaussWin= ae−
(t−m)2

2s2 (2)

where a is the height of the Gaussian, t is time,m is an x-axis
offset and s is the standard deviation of the Gaussian (Cohen,
2014). Importantly, s is defined as:

s=
n
2πf

(3)

where f is the frequency inHz, and n is the number ofwavelet
cycles and controls the trade-off between time and frequency
precision. Small n emphasizes temporal precision at the cost of
frequency precision; large n emphasizes frequency at the cost
of temporal precision. A complete wavelet transform involves
repeating the convolution for several values of f. In the present
case, we used the following equation to determine the num-
ber of frequencies to resolve as f=floor(log2(T)-1)*12, where T

is the length of the series in question (Ashenfelter et al., 2009).
The product of the complex wavelet transform, then, is a time-
frequency matrix of complex wavelet coefficients that represent
estimates of the instantaneous amplitude and phase angle Φ,
the latter of which ranges from −π to π (Cohen, 2014). While
not strictly part of the wavelet transform, after performing the
wavelet transform on the two signals separately, the next step is
to calculate the phase difference between each of the respective
phase angle estimates (Φ=Φ1–Φ2) at each frequency and each
movement in time.

Utilize WMS index for two signals to derive a
continuous measure of phase synchronization

Following the wavelet transform and phase difference calcu-
lation of the two signals, one can calculate WMS at each
frequency. That is, for each consecutive window at each fre-
quency scale, the normalized negentropy calculation described
above is computed. That is, the time frequency synchronization
index (SI) is defined as

ρ̃
(
t, f

)
=

S
(
t, f

)
max

− S
(
t, f

)
S
(
t, f

)
max

(4)

where

S
(
t, f

)
= −Σ

N
k=1pklnpk = (5)

is the Shannon entropy of the relative phase distribution
determined at each t and f using a sliding window. Here, N refers
to the number of bins, whichwe define following the recommen-
dation of Le Van Quyen et al. (2001) as N= e0.626+.4ln(M−1), where
M is the sliding window size. Note that the number of bins is
fixed for f and the boundaries of the histogram should be set for
consistency with the modulus operator used (e.g. mod 1 in this
case). Hence, the interval [0, 1] should be divided into N bins,
where N is derived from the above equation. Based on the sim-
pler method that uses the Hilbert transform method (Tass et al.,
1998; Le Van Quyen et al., 2001), ρ̃(t, f ), which from here on is
referred to simply as the SI, ranges from 0 to 1 and depends
on both time and frequency. Additionally, for a given win-
dow of relative phase values, we also extract the mean relative
phase value, in order to provide information complementary to
strength of the synchrony assessed, namely the typical phase
relationship for a given window and frequency.

To better illustrate this SI measure, the example histograms
shown in Figure 1 (which draw from frequencies of Simulation
Experiment 1, details below) showcase howmore uniformdistri-
butions (Figure 1 right) exhibit low values of SI, because there is
not a stable coordination pattern. Figure 1 left, however, shows
high SI when there is a unimodal distribution.

Applying this method requires the researcher to make
parameter choices, including wavelet length and the minimum
and maximum number of cycles in the wavelet, window size,
minimum and maximum frequencies to resolve, and the num-
ber of frequencies in between. Making these choices entails
theoretical and practical considerations.

In selecting window size, the researcher should select a win-
dow that is large enough to capture the expected dynamics of
the series in question. This has consequences for frequency
selection as well (see below). Ideally, the window should capture
a few cycles of the behavior of interest. Additionally, because we
calculate a form of Shannon entropy on the distribution of rel-
ative phase values, windows should contain sufficient data to

https://github.com/aaronlikens/wms
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Fig. 1. Example histograms of mod 1 relative phase values where the left plot shows high SI, middle plot shows medium levels of SI and the right plot has a low SI.

obtain a stable estimate of entropy. Assuming a uniform dis-
tribution of phases, we suggest including>100 data points in
each window. Windows much smaller than this may produce
biased entropy estimates. Such windows are generally not an
issue for physiological andmovement data, which typically have
high sampling rates (e.g. >50 Hz). Note also that it is common in
windowing procedures to select window increments and win-
dow overlap. However, while these could be implemented in
this method, to preserve the fine grained time resolution, we
utilized a windowed increment value of 1 (thus, also an overlap
of window size M−1).

Concerning the range of f, as many well versed in time-
frequency analysis know, one cannot use frequencies higher
than the Nyquist frequency, which is one-half the sampling rate
of the signal. This does not mean that all possible frequencies
below that extreme need to be analyzed. Instead, we suggest
only investigating frequency ranges that are motivated by the-
ory, previous research, and even findings in other modalities
(cf. Wang et al., 2020). For instance, many devices such as those
used for motion capture or physiological measurements (e.g.
electrocardiogram, electroencephalogram, and electromyogram
[ECG], electroencephalogram [EEG], electromyogram [EMG]) have
very high sampling rates (e.g. 1000 Hz). However, frequency
content at 500 Hz or even 100 Hz may not be meaningful. Time-
frequency methods like WMS can be computationally intensive.
Hence, researchers should consider a more focused sub-range
of frequencies relevant to their research questions, and when-
ever possible, frequency ranges should be based on theory or
previous research.

Evaluate SI values relative to surrogate time series

Aswithmany time seriesmethods, it is important to statistically
compare the observed SI values with those values generated
from surrogate series. There are many options for generating
surrogate time series to which to compare the observed SI val-
ues (Kantz and Schreiber, 2003; Hurtado et al., 2004; Moulder
et al., 2018). For WMS, we generate a number of randomly shuf-
fled permutations of each pair of time series and perform steps
1 and 2 above on each surrogate pair (for all of our examples
below we used 19 randomly shuffled permutations; Kantz and
Schreiber, 2003). From the surrogate SI values, 95% confidence
intervals are generated for each point in the SI matrix, which
are used to threshold and suppress all original SI values that fall
within these bounds. Thus, any remaining SI values are greater
than would be expected due to random chance (i.e. statistically
significant).

Simulated data for testing WMS method

Two simulation experiments were conducted to investigate
the performance of WMS. Our simulation experiments were
designed with the following considerations: (i) time series
should exhibit (at least) quasi-periodic behavior in one or more
frequency bands; (ii) time series should have superimposed
noise in order to emulate noisy measurement devices or bio-
logical noise commonly observed in laboratory experiments and
naturalistic data collection; and (iii) each simulation should
introduce a perturbation (e.g. a drop in a common frequency
or sudden addition of matching frequency content), potentially
capturable by WMS. To that end, we selected two systems that
varied in terms of simplicity. Simulation Experiment 1 (SE1)
involved a simple pair of harmonic oscillators, while Simulation
Experiment 2 (SE2) involved a Rössler system coupled to a har-
monic oscillator (Rössler, 1976; Stepp and Turvey, 2010, 2015).
Specifics on those systems are provided below. WMS was then
performed on each system to identify the degree of synchrony
as well as the presence of the perturbations.

Simulation experiment 1: composite sine waves

As a baseline demonstration of WMS, we simulate two compos-
ite sine waves, x(t) and y(t), where time, t=0.01, 0.02, 0.03, …,
60.00. Hence, x(t) and y(t) simulate recording a periodic system
with two components for 1 min at a sampling rate of 100 Hz.
Where x(t) and y(t) are defined in equations (6) and (7) as:

x(t) = sin(2π3t +π/3) + sin(2π0.5t) + sin(2π0.05t) (6)

y(t) = sin(2π3t) + sin(2π1t) + sin(2π0.5t) (7)

and for t= 7 − 20.50 s

y(t) = y(t)+ sin(2π0.05t)

These simulated sine waves show that x(t) has a constant
3 Hz signal that is shifted by π/3, a constant 0.5 Hz, and a
constant 0.05 Hz component, while y(t) has a constant 3 Hz
component (not shifted), 1 Hz, and 0.5 Hz, as well as a 0.05
Hz component added between t=750 (14 s) and 2050 (21 s).
Next, unique sources of Gaussian noise (zero mean and unit
variance) were added to x(t) and y(t), respectively. Figure 2
(top-left) depicts these noisy composite sine waves. As noted
earlier, WMS requires specification of several parameters related
to the wavelet transform and windowing procedure. For this
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Fig. 2. Top-left of the figure shows the two composite sine wave series with noise added as described in equations (6) and (7). Top-right and bottom-left show the

frequency spectrum of the wavelet transform for series x and y respectfully. Bottom-right shows the results of applying WMS to series x and y.

experiment, we used the following wavelet parameters: (i) a
Morlet wavelet with 5 to 8 cycles, (ii) wavelet length=4 s, and
(iii) a sliding window length of 2 s.

The expectation for this experiment was that WMS would
reveal the expected phase-locked behavior at 3 and 0.5 Hz, which
would be evident from relatively larger SI values at that fre-
quency. An additional expectationwas thatWMSwould uncover
an increase in the SI during seconds 7 to 20.50 due to the
imposed perturbation. Evidence for this would be a sudden
increase in synchrony at 0.05 Hz during that time period. Lastly,
WMS would not reveal any consistent patterns of synchrony
outside of the simulated matching frequency bands with the
exception that there would be some frequency smearing.

Simulation experiment 1 results

Figure 2 (top-right and bottom-left), shows the wavelet trans-
form of series x(t) and y(t), respectively and depicts the expected
dominant frequencies within these signals (i.e. 0.05, 0.5, 1 and
3 Hz). WMS results appear in Figure 2 (bottom-right), and sup-
port all three expectations reported in the preceding paragraph.

First, WMS provides evidence that x(t) and y(t) maintain a nearly
constant relative phase over time for the 0.5- and 3-Hz com-
ponents and these are greater than the surrogate threshold.
Second, WMS captures the expected rise in synchrony of x(t) and
y(t) during the time period marked by the perturbation at 0.05
Hz. Third, the relative phase arrows clearly capture the expected
pattern in which most of the arrows indicate in-phase relation-
ships, but for the 3 Hz band, the relative phase is shifted. Lastly,
WMS suggests the presence of synchrony centered around the
frequency ranges anticipated from equations (6) and (7).

Simulation experiment 2: coupled system dynamics

As a second demonstration, we examine the performance of
WMS on a coupled dynamical system composed of a Rössler
equation (Rössler, 1976) and a harmonic oscillator:

x
′
1 = −x1 − x3 (8)

y
′
2 = y2 + k

(
x1 + y1,τ

)
(9)
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Fig. 3. The top-left graph shows the time series plots of the Rössler and harmonic system that were delay coupled as indicated in equations (8) and (9), respectively.

Top-right and bottom-left show the frequency spectrum of the wavelet transformed series. The bottom-right graph shows results of the WMS analysis with surrogate

thresholding.

where equation (8) represents a chaotic Rössler oscillator and
equation (9) represents a simple harmonic oscillator that is uni-
directionally coupled to equation (8) (Stepp and Turvey, 2010
2015). Note that the ‘′’ symbol indicates that the variables on the
left side of both equations are the first derivative, τ indicates a
time delay and k reflects coupling strength. This configuration
represents an instance of delay coupling, which produces antic-
ipating synchronization wherein a driven system anticipates
future states of a driving system. These and similar systems
have been discussed at length in papers dealing with strong
anticipation, which has been posited as a general mechanism
underlying coordination in systems ranging from pairs and pop-
ulations of neurons to coordination of groups of people (Stepp
and Turvey, 2010, 2015; Dalla Porta et al., 2019; Washburn et al.,
2019). A complete description of anticipating synchronization is
beyond the scope of this paper (but see the above references for
excellent introductions); however, there are several key dynamic
properties such systems exhibit that are useful for testing the
behavior of WMS.

Similar to the series used in SE1, the series used in SE2
are also oscillators; however, several key dynamics make SE2
a more realistic test of the WMS method. That is, these delay
coupled systems permit additional hypotheses that are perhaps
more reasonable in the context of interpersonal coordination

experiments. First, systems that develop anticipating synchro-
nization are attracted to a consistent phase lag such that the
driven system begins to anticipate (i.e. phase lead) the driver
over time. Hence, a reasonable hypothesis is that WMS will
reveal a consistent pattern of synchronization over time. Sec-
ond, altering the dynamics of one of the time series should
interrupt this consistent pattern resulting in breakdown in syn-
chronization.

These hypotheses were explored by simulating the coupled
system according to equations (8) and (9). Next, unique sources
of Gaussian noise were again added to each component of the
coupled Rössler and harmonic series. Thus, these series simu-
late recording a delay coupled system for 100 s at a sampling rate
of 50 Hz. Figure 3 (top) depicts examples of these series. Similar
to the procedure in SE1, we introduced a perturbation by mod-
ifying seconds 30 to 36 of the harmonic oscillator to exhibit an
uncoupled, dominant 1-Hz frequency. Again, this was done to
examineWMS ability to capture perturbations to synchrony. The
wavelet parameters used in SE2 were the same as those in SE1.

Simulation experiment 2 results

Results from this experiment are captured in Figure 3. Figure 3
(top-left) visualizes the time series that is useful for interpreting
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the WMS results depicted in Figure 3 (bottom-right). Figure 3
(top-left) shows that, as expected, the system tends toward a
phase lead pattern indicative of anticipating synchronization
and the phase arrows taken in tandem with the SI values in the
bottom-right support this intuition. Phase arrows pointing to the
right and parallel to the horizontal axis indicate in-phase; phase
arrows pointing to the left that are parallel to the horizontal axis
indicate anti-phase behavior. Deviations from those extremes
indicate phase lead and lag. Note how the harmonic oscillator
tends to reach its peaks in time earlier than the Rössler oscil-
lator, regardless of the instantaneous frequency. Note also that
the obvious perturbation near 30 s when the harmonic oscillator
switches to a constant frequency of 1 Hz.

Focusing now on the results from the WMS analysis, there is
evidence to support our hypotheses. As noted above, there are
high SI values (∼>0.60) around 0.1 Hz that exceed the surrogate
threshold and the shifted relative phase arrows show evidence
of anticipating synchronization. There is also clear evidence
of change in synchrony over time that follows consistent with
the applied perturbation. This is evident in the 0.1-Hz region
between 25 and 35 s where the SI values become lower than the
surrogate threshold.

Physiological data set for demonstrating
method

Next, we evaluate the WMS method on an openly available
ECG data set collected as part of an evaluation of collaborative
cognition in a 1-hour paired-programming classroom setting
(Ahonen et al., 2016). We selected this data because the origi-
nating author found evidence of a form of synchrony between
19 student dyads during this task and the data were freely avail-
able. The ECG data were collected using a medical grade ECG
device sampled at 500 Hz. In this case, WMS is a relevant analy-
sis because ECG data are commonly analyzed in terms of heart
rate variability and are typically decomposed into multiple psy-
chophysiologicallymeaningful frequencies that can change over
time (Hoover et al., 2012).

While full details of the participants and study design can
be found in the primary source (Ahonen et al., 2016), here we
describe the task in more detail to facilitate understanding of
our WMS results. The dyadic paired-programming task involved
student programmers in a classroom settingwith little program-
ming experience. Each pair worked on standard programming
tasks from the curriculum at a shared workstation (i.e. a single
computer). The first 7 min of the task involved watching a video.
For the remainder of the approximately 1-hour period, partici-
pants alternated task roles every 7 min. One participant was the
‘driver’ in which they were actively doing the programming. The
other participant was a ‘navigator’ that observed and provided
comments and guidance on the task.

Physiological data example: HRV

We preprocessed the ECG and calculated the IBIs using the Col-
ibri package (Henelius, 2016) for R (R Core Team, 2018) and the
script detailed in Ahonen et al. (2016). Computing any form of
synchrony (e.g. cross-correlation) presents a special challenge
in the case of IBI time series because heart rate varies consid-
erably over time and no two heart rate series will be identical
(Goldberger et al., 2002). This is problematic because IBI series
from individual members of a dyad will ultimately have differ-
ing lengths. To remedy this issue, we time normalized each IBI

series by resampling the original time series using linear inter-
polation into equally spaced, half-second intervals, from the
first time stamp of the later starting time series until 3600 s
(Spivey and Grosjean, 2005). Figure 4 top-left visualizes an exam-
ple pair of time-normalized IBI series. This effectively resam-
ples the IBI series at 2 Hz as has been done in prior research
(Golland et al., 2015; Bizzego et al., 2020) in which linear interpo-
lation was shown to have better performance for time-domain
and high-frequency variability compared with other interpo-
lation measures (Choi and Shin, 2018). Heart rate variability
measures, typically extracted from the IBI series, are parsed
into the following frequency bands: ultra-low frequency (≤ 0.003
Hz), very low frequency (0.0033–0.04 Hz), low frequency (0.04–
0.15 Hz), and high frequency (0.15–0.4 Hz) (Shaffer and Ginsberg,
2017). OurWMSparameters for this analysiswere as follows: (i) a
Morlet wavelet with 5 cycles, (ii) wavelet length=1750 s, and (iii)
a sliding window length of 150 s (or 300 data points) with a focus
on frequencies between 0.003 and 0.4. This range was selected
because we cannot resolve any frequencies in the ultra-low fre-
quency range due to requiring 24 hours’ worth of data (Shaffer
and Ginsberg, 2017).

HRV example results

Figure 4 shows exemplar WMS results for the IBI time series of
one dyad (see bottom right). Generally, there is evidence of syn-
chrony (see Figure 4, bottom-right), such that, after surrogate
testing, primarily only very low frequencies display stronger
interpersonal synchrony (< 0.007Hz)with values that are close to
SI=1 for extended periods with phase arrows that vary consid-
erably from one bout of synchronization to another. It is worth
emphasizing, that in comparison to the previous examples, the
time scale is much longer for these data, so not only are there
large magnitude SI values, but they do also have a tendency
to remain high for at least a couple minutes before dissipat-
ing and recurring at later time points (e.g. 10–17 min,∼25–30
min periods). In addition, these drift patterns sometimes tra-
verse several neighboring frequencies or frequencies ranges that
are far apart (for example, 0.003 and 0.006 Hz around∼25–30
min). Note that while there are large portions of the plot that do
not appear to show high SI values, we include this full range of
justifiably interesting frequency ranges for heart rate variabil-
ity (HRV). This, in turn, illustrates one of our key claims that
aggregate measures of interpersonal coordination do not always
capture the ways that people move in and out of synchrony
over time. Synchrony can be very strong and specific to certain
spatiotemporal scales, while non-existent in others.

Neuromechanical data set for demonstrating
method

For our final demonstration of the WMS method, we utilize
another openly available dyadic postural sway data set (Okazaki
et al., 2015). Postural sway, which characterizes the ability to
maintain upright posture, is argued to be neuromechanical as it
reflects the complex interactions of the nervous and themuscu-
loskeletal systems (Ting and Allen, 2013). In their study, Okazaki
et al. (2015) investigated interpersonal synchrony in postural
sway where 22 dyads were instructed to stand and look at
each other during 60s trials while minimizing movement and
thinking only about the other participant. Across 32 trials, par-
ticipants either stood far away (70 cm) or near (20 cm) and had
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Fig. 4. Top-left of the figure shows two time-normalized IBI series. Top-right and bottom-left show the frequency spectrum of the wavelet transform for the two series.

Bottom-right shows the results of applying WMS to the IBI series with surrogate thresholding.

reciprocal visual information (both participants could see each
other), no visual information (both participantswore blindfolds),
and partial visual information where one of the participants
wore a blindfold and the other did not. Participants took turns
being blindfolded.

Postural sway was captured using an infrared-camera based
motion capture system that detected five markers on glasses
that participants were required to wear (full details can be found
in the original manuscript). The markers were used to calculate
the head position of each participant and their movement along
the anterior–posterior (AP; front-backmovement) andmediolat-
eral (ML; left-right movement) directions at a sampling rate of
200 Hz. This data set was Selected because the authors found
evidence of postural sway synchrony using time-lagged cross-
correlations where synchrony was strongest for those in the
reciprocal visual information condition and because postural
sway is known to depend on multiple time scales (Collins and
De Luca, 1993; Likens et al., 2019). Our WMS parameters for
this analysis were as follows: (i) a Morlet wavelet that varied
between 3 and 20 cycles from lowest to highest frequency, (ii)
wavelet length=4 s, and (iii) a sliding window length of 2 s

(or 400 data points) with a focus on frequencies between 0.005
and 100 Hz.

Neuromechanical example results

For our analysis of the postural sway data, we focus on the
movement data along the ML axis for one pair of participants
in each visual information condition described above, but only
for the near condition (which showed the highest synchrony
on average). Figure 5 top shows an example pair of time series
for the two participants from the reciprocal visual information
condition. The bottom four plots show the WMS results on the
postural sway data from the four different visual information
conditions. All of the conditions show evidence of synchrony
beyond the surrogate thresholds in the 0.02- to 0.5-Hz range.
A surprising observation is that, contrary to the original find-
ings, the no visual information condition (Figure 5 middle-right)
shows evidence of synchronization on par with the full visual
information condition (middle-left); (Okazaki et al., 2015). That
is, there is relatively consistent, in-phase synchrony for both
conditions across the 1-min trial. In contrast, the partial visual
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Fig. 5. Top shows two example postural sway time series for a dyad from the Okazaki et al. (2015) data set. Middle-left and middle-right show WMS results from a

single dyad with both participants’ eyes open and both participants’ eyes closed, respectively. Bottom-left and bottom-right show WMS results from a single dyad

where only one of the participants is blindfolded and the other has eyes open.

information condition implies patterns similar to the original
findings, in that there seems to be a strong asymmetry in syn-
chrony, depending on which partner had visual information.
When Participant 2 had visual information, synchrony seems to
be greater with more consistent relative phase over time. Not
only this, but when Participant 1 had visual information, the
synchronization was intermittent with alternating patterns of
in-phase and anti-phase coordination.

Comparison of WMS with phase coherence results

While a comparison of WMS with the many possible meth-
ods for examining synchrony (Quiroga et al., 2002; Butler, 2011;
Delaherche et al., 2012; Butner et al., 2014; Schoenherr et al., 2019)
is beyond the scope of the paper, we do provide an example
comparison here with one of the most closely related methods,
time-dependent phase coherence, which Hurtado et al. (2004)
defined as:

γfM(tk) =

∣∣∣∣∣∣ 1N
k∑

j=k−M

eiΦf,j

∣∣∣∣∣∣
2

(10)

In this case, equation (10) shows that for each frequency f, at
teach time point tk that terminates eachwindow of lengthM, the

phase coherence measure is applied to the same relative phase
time series (Φf,j) as is done in WMS.

This measure is more directly comparable to WMS than
coherence computed from the cross-wavelet transform (CWT),
for example, because it is less sensitive to variations in ampli-
tude than ‘a localized correlation coefficient in time frequency
space’ (p. 564; Grinsted et al., 2004) would be and it is applied
directly to the same relative phase series using the same win-
dows (Hurtado et al., 2004). The SI from WMS is based on the
distribution of phase differences in a given window, and then
the negentropy calculation is applied to that distribution. Nearly
all correlation-basedmethods for examining synchrony are sub-
ject to variations in amplitude as well as phase. While the SI
value, like coherence using the CWT, ranges from 0 to 1, instead
of informing us of the covariance of the two signals, it informs
us about the relative stability of the observed coordination pat-
tern. That is, WMS can provide an answer to the question: do
two signals exhibiting a particular relative phase relationship
(values close to 1) or is each relative phase value equally likely to
occur (values close to 0)? Entropy-based measures such as this
have been used to examine neuro- and physiological synchrony
in other work corresponding to changes in team coordination
(Likens et al., 2014; Amazeen, 2018) and in some cases have been
more sensitive to synchrony than correlation-based measures
(Strang et al., 2014), while other work highlights convergence
with many measures using EEG data (Quiroga et al., 2002).
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Fig. 6. Time-dependent phase coherence analyses applied to the composite sine wave example (top-left), Rössler system (top-right), paired programming IBI data

(bottom-left) and the dyadic coupled postural sway data (bottom-right).

Whereas the time-dependent phase coherence used here is
more sensitive to phase locking when the relative phase values
are clustered around a single value, the negentropy-based SI is
more sensitive tomultimodal clustering (i.e. multiple stable rela-
tive phase values; Hurtado et al., 2004). That being said, we apply
the time-dependent phase coherence to each of the examples
above. The plots shown in Figure 6 can be directly comparedwith
the corresponding WMS plots. It is evident that these two mea-
sures provided largely convergent information for the majority
of the cases, which was expected given their similarity (Hurtado
et al., 2004). However, there are also some noticeable differences.
Time-dependent phase coherence produces greater frequency
smearing and more indication of time-frequency regions with
high coherence (i.e. over and above surrogate thresholds) than
does WMS. Regarding the latter point, it seems that coherence
values tend toward one—WMS values appear more variable,
occupying more of the theoretical range between 0 and 1, pos-
sibly indicating that WMS is more conservative in detecting
synchrony. This is perhaps most apparent with respect to the
postural sway example, where Themajority of significant coher-
ence values in low frequency regions appear to be at ceiling,
and there are also a number of significant coherence values in
high frequencies (e.g. >17 Hz), outside of 10 Hz frequency cutoff
typically investigated for postural control (Winter, 2009).

We chose one of the most similar measures with which to
compare the negentropy-based SI because this time-dependent
phase coherence shares many of the same properties. For
instance, it allows one to look at phase-locking tendencies at
multiple frequencies over time. Comparisons with aggregate
measures such as correlation of HRV features, as well as cross-
correlations of the postural sway data, can be found in original
articles that originated the datasets we analyzed (Okazaki et al.,
2015; Ahonen et al., 2016).

Discussion

This paper demonstrated the use of the WMS method on com-
posite sine waves with multiple coordinated frequencies with
a shift, coupled oscillators with anticipatory dynamics, physio-
logical data derived from a paired programming task and, inter-
personal postural sway data from a variety of visual information
conditions. Taken together, we have shown that WMS provides
a continuous SI over time and across frequency scales that not
only shows the frequency/scales at which coordination takes
place, but also how it changes over time. This is in contrast to
many of the more established methods for measuring interper-
sonal synchrony such as cross-correlation and cross-recurrence
quantification analysis. In our simulation examples, we see that
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WMS depicts coordination transitions clearly and at relevant
scales. The empirical analysis of the IBI data showed that certain
scales exhibit coordination whereas others do not, and the coor-
dination strength and scale tend to ebb and flow over time as
well. In the postural sway data, the WMS results showed a gen-
eral tendency for participants to synchronize their postural sway
in the ML direction. In addition, WMS results revealed a strong
directional dependence for the dyad we analyzed. In general,
these results imply that WMS may be useful in a broad number
of contexts involving interpersonal coordination dynamics.

A major aim of this paper was to simply educate researchers
about themethodological considerations ofWMS and to demon-
strate its utility in the context of interpersonal coordina-
tion. This was done in hopes of inspiring new theoretical
and methodological work. The remainder of the discussion
highlights several research areas we consider promising in
that regard.

Investigating WMS in other domains

Given the variety of systems demonstrated in the current work,
a natural next step is to apply WMS in other experimental
domains. An obvious application of WMS is in the context of
neurophysiological data, such as EEG, particularly in hyper-
scanning situations. Moreover, while we demonstrated WMS
on postural sway data, we also expect that WMS will reveal
important insights about coordination among specific limb seg-
mentswithin and across participants. More generally, WMSmay
reveal patterns of coordination in the many domains entailed
by interpersonal coordination dynamics, ranging from impor-
tant dyadic relationships to synchronization in teams (Louwerse
et al., 2012; Palumbo et al., 2017). Importantly, any such efforts
should attempt to link the coordination patterns observed to
relevant outcome variables (Miles et al., 2017; Wiltshire et al.,
2019, 2020) or differentiating variables such as clinical diag-
noses (Schilbach, 2019). As work in this area progresses, time-
and scale-specific research questions and hypotheses can be
generated, relating, for example, to learning and changes in
coordination over time.

Comparing WMS to other methods

Naturally,WMShas similarities to othermeasures used to exam-
ine coordination between time series in either frequency or
time domains. Because WMS relies on the wavelet transform
and thus preserves time-frequency information, it is similar
to wavelet cross-coherence (Grinsted et al., 2004). A key differ-
ence though is that WMS focuses on time-varying synchrony
overmultiple frequencies established by examining the distribu-
tion of relative phase values, and cross-coherence emphasizes
point estimation of relative phase values. In the current work,
we have compared WMS to time-dependent phase coherence
because of their inherent similarities in terms of windowing and
robustness to variations in amplitude. A systematic compari-
son of WMS performance with other measures for examining
coordination, such as recurrence-quantification-based methods
(e.g. Wallot and Leonardi, 2018), cross-correlation (e.g. Boker
et al., 2002), wavelet cross-coherence (e.g. Issartel et al., 2015),
detrended cross correlation analysis/multiscale regression anal-
ysis (Likens et al., 2019; Podobnik and Stanley, 2008) and vector
autoregressive/error correction modeling (Engle and Granger,
1987), is beyond the scope of the current manuscript; we expect,

however, that future work of such nature would be an important
contribution to the literature (Schoenherr et al., 2019).

Potential approaches for improving and
generalizing WMS

The current work demonstrates that WMS has utility in several
contexts, but no method is perfect and there are often a num-
ber of ways to improve performance of time series methods.
For example, experimental research may require summarizing
SI within specific time-frequency regions. To that end, WMS
method may be treated like any other time-frequency analysis.
As such, efforts to summarize WMS will benefit from existing
approaches to information extraction in time-frequency plots
(see Issartel et al.’s, 2015 section titled ‘How to Extract Useful
Information from a Time-Frequency Representation’ for addi-
tional ideas), and will facilitate the use of common statistical
tests related to particular events, stimuli, conditions, and/or
time points.

Also warranted is a deeper evaluation WMS performance
under varying noisy conditions, along with data from social
interactions with/without clear transitions and perhaps even,
social interactions with controllable virtual partners (Fairhurst
et al., 2013; Dumas et al., 2014). With such data, wavelet ridge
detection (Jha and Senroy, 2018), real-time change detection
(Hoover et al., 2012) and/or non-linear prediction error algo-
rithms (Kantz and Schreiber, 2003; Gorman et al., 2019) could
be utilized for marking critical transitions in the observed coor-
dination values. Applying these in such a multiscale fashion
would also be novel and could potentially allow for detecting
critical and meaningful changes in interpersonal synchrony.

Furthermore, there are opportunities to generalize WMS. A
notable example is to translate WMS from a bivariate to a multi-
variate approach, perhaps following other approaches to mul-
tivariate phase synchrony (Richardson et al., 2012; Shahsavari
Baboukani et al., 2019). This generalizationwould broadenWMS’
applicability to understanding coordination in groups larger
than dyads and in cases such as neurophysiology where there
are many data streams. Lastly, wavelet-based methods, which
are known to suffer from frequency smearing and edging effects,
may be improved by incorporating synchrosqueezed transfor-
mations (Tary et al., 2018), so this is also likely a worthwhile area
of investigation for WMS as well.

In addition to the above considerations, another improve-
ment would include exploring alternative algorithms for
estimating entropy/negentropy. The present work and the orig-
inal work by Tass et al. (1998) computed entropy based on the
histogram method. While this method is standard in many
contexts, the fundamental algorithm is known to be biased
(Schürmann, 2004). Hence, a systematic investigation to com-
pare the performance of the alternative methods for calculating
entropy within multiple contexts would identify the contexts in
which certain entropy methods perform well in and those that
they perform poorly.

In the current work, we used a surrogation method that
tested the white noise null hypothesis, but other null hypothe-
ses will likely be useful such as a first-order autoregressive
process or any number of higher order linear hypotheses (Kantz
and Schreiber, 2003; Grinsted et al., 2004). Furthermore, other
methods of surrogation that do not assume an underlying noise
process may be more appropriate when the psychological or
physiological processes under investigation are known to pro-
duce pseudo-periodic patterns of behavior (Small et al., 2001).
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Future work should explore how other null hypotheses
impact the sensitivity of WMS in detecting synchronization
phenomena.

Conclusion

In conclusion, we have shown examples of WMS applied to two
noisy simulated data sets as well as two interpersonal empirical
data sets including a physiological and neuromechanical exam-
ple. This method provides a continuous index of synchrony
over time between two time series that can vary across fre-
quency/scale. Therefore, it provides a methodological tool that
allows one to examine not only the strength of interpersonal
coordination, but also how that coordination changes over time
and at which scales. We expect that inmakingWMSmore acces-
sible, developing it further, and applying it to more widespread
domains, substantive theoretical advancements can be made in
understanding the form and function of interpersonal coordina-
tion across contexts.
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