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Abstract
1.	 Seabird species world-wide are integral to both marine and terrestrial environ-

ments, connecting the two systems by transporting vast quantities of marine-
derived nutrients and pollutants to terrestrial breeding, roosting and nesting 
grounds via the deposition of guano and other allochthonous inputs (e.g. eggs, 
feathers).

2.	 We conducted a systematic review and meta-analysis and provide insight into 
what types of nutrients and pollutants seabirds are transporting, the influence 
these subsidies are having on recipient environments, with a particular focus on 
soil, and what may happen if seabird populations decline.

3.	 The addition of guano to colony soils increased nutrient levels compared to con-
trol soils for all seabirds studied, with cascading positive effects observed across 
a range of habitats. Deposited guano sometimes led to negative impacts, such as 
guanotrophication, or guano-induced eutrophication, which was often observed 
where there was an excess of guano or in areas with high seabird densities.

4.	 While the literature describing nutrients transported by seabirds is extensive, 
literature regarding pollutant transfer is comparatively limited, with a focus on 
toxic and bioaccumulative metals. Research on persistent organic pollutants and 
plastics transported by seabirds is likely to increase in coming years.

5.	 Studies were limited geographically, with hotspots of research activity in a few 
locations, but data were lacking from large regions around the world. Studies 
were also limited to seabird species listed as Least Concern on the IUCN Red 
List. As seabird populations are impacted by multiple threats and steep declines 
have been observed for many species world-wide, gaps in the literature are par-
ticularly concerning. The loss of seabirds will impact nutrient cycling at localized 
levels and potentially on a global scale as well, yet it is unknown what may truly 
happen to areas that rely on seabirds if these populations disappear.

K E Y W O R D S
enrichment, guano, marine-derived, mobile link, vector

www.wileyonlinelibrary.com/journal/jane
https://orcid.org/0000-0002-0407-8468
https://orcid.org/0000-0003-2125-7238
mailto:﻿
https://orcid.org/0000-0001-7596-6588
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jennifer.lavers@utas.edu.au


    |  1267Journal of Animal EcologyGRANT et al.

1  |  INTRODUC TION

Abiotic and biotic vectors are responsible for the transport of subsi-
dies across ecosystem boundaries, leading to the replenishment of 
vital resources in recipient communities (Payne & Moore, 2006) and 
can be profoundly significant by altering ecosystem-level processes 
and trophic dynamics (Earl & Zollner, 2017). Abiotic vectors, such as 
wind (e.g. transport of dust from the Sahara Desert to the Atlantic 
Ocean; Kaufman et al.,  2005), gravity (e.g. fallout of marine snow 
from surface waters to the deep sea; Kiko et al., 2017) and ocean 
currents (e.g. dispersal of mangrove seedlings from one island to 
another; Hodel et al., 2018) move materials from one system to an-
other, usually unidirectional, and are determined by the force of the 
factor (Payne & Moore, 2006). In comparison, biotic vectors, such as 
mobile organisms, are often less restricted in their movement and 
can therefore transport subsidies in a multitude of directions and 
against those common gradients found with abiotic vectors.

Migratory animals are well-known biotic vectors, connecting 
ecological communities all across the globe by transporting signif-
icant quantities of spatial subsidies, with the potential to influence 
community structure, diversity and ecosystem function at resident 
habitats (Bauer & Hoye, 2014). However, the effects of vectors can 
be highly variable. Migrants can transport parasites and pathogens 
(e.g. highly pathogenic avian influenza virus (H5Nx); Wille et al., 2019) 
as well as propagules (e.g. Old World fruit bats Cynopterus sphinx 
consume fruits and deposit the seeds through their excreta; Shilton 
et al., 1999), but perhaps the most common transport effects are nu-
trients, toxicants and energy. Migrants act as transport mechanisms 
for these subsidies by feeding in one ecosystem, moving to another 
system, and then offloading the materials via a range of outputs (e.g. 
defecation; Bauer & Hoye, 2014; Blais et al., 2005). Vectors can be 
incredibly beneficial—and the ecological effects can be much more 
pronounced—when the transport of subsidies is from a nutrient-rich 
ecosystem to an oligotrophic system (Savage, 2019).

In the marine environment, transfer of spatial subsidies to 
terrestrial ecosystems has been documented for Pacific salmon 
(Oncorhynchus spp.; Payne & Moore, 2006), sea lions (e.g. Zalophus 
wollebaecki; Fariña et al., 2003) and numerous seabird species (Kolb 
et al.,  2015). Seabirds feed on marine prey (e.g. fish, squid, zoo-
plankton) and transport nitrogen (N) and phosphorous (P) from their 
marine feeding grounds to their roosting and breeding habitats on 
land (Daher et al.,  2019; Dominguez et al.,  2017; Sanchez-Pinero 
& Polis,  2000). Here, seabirds congregate in dense colonies and 
deposit these marine-derived nutrients (MDN) in huge quantities 
primarily through guano, but also through other allochthonous in-
puts of feathers, eggs, boluses (regurgitated pellets) and carcasses 
(Adame et al.,  2015; Duffy,  1994; Szpak, Longstaffe, et al.,  2012). 
For these reasons, seabirds are one of the most significant vectors 
for the transportation of these vital nutrients (Marmen et al., 2017).

Humans have been aware of the many benefits of seabird guano 
and have exploited it for the purposes of fertilizing crops as early as 
the 16th century (Cushman,  2013). The most well-known areas of 
guano mining were along the Pacific Margin in Peru and northern Chile 

where thick deposits of guano (>50 m in extreme cases) were mined 
extensively from islands (Lucassen et al.,  2017; Szpak, Longstaffe, 
et al., 2012). The trade of guano peaked at 20 million tons/year during 
the mid-19th century before declining as guano ran low, prices soared 
and chemical fertilizers became widely available (Mathew,  1970; 
Szpak, Longstaffe, et al.,  2012). When left to accumulate naturally 
in the wild, the benefits of guano as a fertilizer can include signifi-
cantly increased soil N and P, and can also impact soil pH, moisture 
and salinity (Wait et al., 2005). These changes in soil characteristics 
leads to myriad positive changes for terrestrial ecosystems and have 
been widely documented (e.g. Magnússon et al.,  2014; Mosbech 
et al., 2018; Sanchez-Pinero & Polis, 2000). The positive impacts pro-
vided by seabird guano can include enhanced primary and secondary 
productivity, increased invertebrate abundance and diversity, and 
changes to ecological communities (Buelow et al., 2018). Referred to 
as ornithogenic soils, the effects of nutrient enrichment derived from 
birds can be exceptionally distinct compared to areas without sea-
birds and can last for centuries (Mizutani et al., 1991).

On islands, the effect of seabirds on their environment can be 
more pronounced compared to mainland systems. Islands often re-
ceive few external nutrient subsidies besides what the birds transport, 
thus seabirds can play an integral role in the functioning and resilience 
of islands (Buelow et al., 2018), and the communities that live within 
and around colonies (Sanchez-Pinero & Polis,  2000). For example, 
when a new volcanic island, Surtsey, formed off the coast of Iceland in 
1963, the establishment of a gull colony which improved soil nutrient 
status was the main agent of ecosystem development (Magnússon 
et al., 2014). Seabirds can therefore facilitate the colonization and re-
generation of marginal and nutrient-limited habitats, such as barren, 
polar, post-glacial or volcanic habitats (Şekercioğlu, 2006).

While the positive benefits of seabirds to a terrestrial system are 
plentiful, high seabird abundance in an area can also contribute to 
negative consequences (Wootton, 1991). Guano adds valuable nutri-
ents to a system, but excessive deposition can alter plant and inverte-
brate communities, kill vegetation or cause dead zones (Gillham, 1961; 
Martín-Vélez et al., 2019; Saifutdinov & Korobushkin, 2020). This ‘gua-
notrophication’, or seabird-induced eutrophication, occurs when the 
level of nutrients added to a system exceeds what is required (Signa 
et al., 2015). As apex predators, many seabirds also exhibit high con-
taminant loads due to biomagnification and bioaccumulation along the 
marine food chain (Shoji et al., 2019). Chemicals, including persistent 
organic pollutants (POPs) and trace elements, can pass through individ-
uals via feathers, eggs and guano (Furness & Camphuysen, 1997; Otero 
et al., 2018). Like the transport of nutrients, many recipient habitats 
do not already contain these pollutants prior to the arrival of seabirds, 
and thus the birds introduce pollutants in, at times, substantial quan-
tities (Michelutti et al., 2009; Santamans et al., 2017). In addition to 
POPs and trace elements, many seabird species consume plastic debris 
and deposit these pollutants within their colonies via several means. 
Micro-plastics (<5 mm in diameter; Barnes et al., 2009) can be excreted 
with guano; however, it is unknown whether plastics can be digested or 
broken up to small enough pieces to be passed via guano, or whether 
it is only micro- and nano-sized particles (ingested at that size) that 
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can be passed (see Bourdages et al.,  2021; Gil-Delgado et al.,  2017; 
Provencher et al., 2018; Reynolds & Ryan, 2018). While deposition of 
plastics via guano is a relatively new topic, it has been known for some 
time that seabirds can deposit plastics in colonies through other means, 
such as regurgitation or the death of birds with high loads of ingested 
plastics (Buxton et al., 2013; Grant et al., 2021; Nel & Nel, 1999).

Here we critically review the literature regarding seabirds as vec-
tors for nutrients and pollutants from marine to terrestrial ecosystems. 
While our review captured literature encompassing multiple pathways 
of nutrients and pollutants as provided by seabirds (i.e. guano, feathers, 
eggshells, regurgitations including boluses/pellets, carrion/carcasses), 
we focused on guano as this is the most significant and common path-
way. We highlight global patterns and areas of high research activ-
ity and provide recommendations for consistent data collection and 
reporting in the future studies. We assess the various nutrients and 
pollutants associated with guano and determine if differences lie be-
tween seabird orders. Finally, we conduct a meta-analysis on the im-
pact of guano deposition on soils. We did this using published studies 
that compare common nutrients in colony soils and control soils. We 
hypothesize that colony soils will be enriched in nutrients compared to 
control soils because of the deposition of guano in colonies.

2  |  MATERIAL S AND METHODS

2.1  |  Literature searching

We conducted a systematic review of the available literature on 
the online platform Web of Science and using the Core Collection 
database, containing the following Citation Indexes: Science 

Citation Index Expanded: 1945–2021; Social Sciences Citation 
Index: 1956–2021; Arts & Humanities Citation Index: 1975–
2021; Conference Proceedings Citation Index—Science: 1990–
2021; Conference Proceedings Citation Index—Social Science & 
Humanities: 1990–2021; and Emerging Sources Citation Index: 
2015–2021. We also conducted an identical search on the online 
database Scopus. We followed established methods outlined in 
Haddaway et al.  (2018) with the aim to capture all published lit-
erature that is listed on Web of Science and Scopus on the topic 
of seabirds as vectors for nutrients and pollutants to terrestrial 
environments. ‘Terrestrial’, in the case of this review, is defined as 
any land that seabirds nest, roost, breed or loaf in and therefore 
is a site where guano is deposited persistently in space and time. 
This also includes intertidal regions. Papers that studied terrestrial 
habitats and freshwater habitats (e.g. stream, lake, wetlands) si-
multaneously were also included. Purely marine-based studies are 
not included in this review.

The search was conducted on 26 October 2021 and included 
key terms synonymous with the four broad topics, namely sea-
bird, vector, nutrient/pollutant and guano (Table 1, see Supporting 
Information for full search string), and captured published literature 
up until 26 October 2021. We included all relevant peer-reviewed 
original research papers. Review articles, book chapters and grey lit-
erature were excluded.

In addition, we performed backward literature searching on all 
papers included in the full review to gain more articles relevant to 
this topic that were not picked up through searching Web of Science 
or Scopus. For this, the reference list of each paper was combed 
through and any paper with a relevant title was extracted and added 
to the results (Figure 1).

TA B L E  1  List of all search terms applied when using the ISI Web of Science and Scopus databases. Each topic includes a list of all synonyms 
relevant to that topic and each term (within each topic) was connected by the Boolean operator ‘OR’. A total of 265 papers were returned by 
this search in Web of Science and 316 from Scopus. An asterisk represents a string of any characters and is used when the word could have 
different endings, for example, transport* could be transporting or transportation. A question mark represents a single character and is used 
when a letter within the word could change, for example, fertili?* could be fertilization or fertilization. Please see Supporting Information for 
the entire search string with all syntax included

Topic 1:
Seabird AND

Topic 2:
Vector AND

Topic 3:
Nutrient/pollutant AND

Topic 4:
Guano NOT

TOPIC 5:
Poultry

Seabird Transport* Contamin* Guano Poultry

‘Marine bird’ Marine-derived Toxin Faeces

Avian Route Organic Feces

Vector Inorganic Dropping*

Enrich* Metal Excre*

Fertili?* ‘Trace element’ Manur*

Path ‘Persistent organic pollutant’*

Translocat* Plastic

Biotransport* Debris

Deposit* Nutrient

Engineer Pollut*
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2.2  |  Literature screening

The searches returned a combined total of 581 papers, with 265 
from Web of Science and 316 from Scopus. Once duplicate records 
were removed, there were 396 unique papers from Web of Science 
and Scopus. Backwards literature searching produced a further 
218 papers (Figure 1). Each paper underwent a preliminary filter-
ing stage where titles and abstracts were read and if the research 
was not directly related to the role of seabirds as vectors to terres-
trial ecosystems, then it was removed. The remaining papers then 
went through full-text processing to remove any more irrelevant 
articles (Figure 1; Figure S1). For papers to be included in the final 
dataset, they had to demonstrate that the focal seabirds influence 
their terrestrial environment. This meant that papers had to do two 
things: (a) measure seabird influence (i.e. analyse guano, measure 
presence/absence) and (b) measure the impact of seabirds on re-
cipient environment (e.g. soil, vegetation, invertebrates). Papers 
that studied historical trends in pollutants in sediments, seabirds 
as vectors of viruses, transport of seabird-derived nutrients back 
to marine environments, atmospheric emissions (above seabird 
colonies) or laboratory-based fertilization studies were not in-
cluded (Figure S1).

We used the International Ornithological Congress World Bird 
List v11.2 (Gill & Donsker, 2021) for classification of species and 
for defining ‘seabirds’. Papers were included only if the focal spe-
cies were in the following orders: Charadriiformes (gulls, terns, auks, 
shorebirds, skuas), Phaethontiformes (tropicbirds), Sphenisciformes 
(penguins), Procellariiformes (petrels, storm-petrels, diving petrels, 
shearwaters, albatrosses) and Suliformes (boobies, gannets, cormo-
rants, frigatebirds, anhingas).

The total number of peer-reviewed articles after the completion 
of title and abstract processing and full-text screening was 181, with 
101 from database searching (Web of Science and Scopus) and 80 
from backwards literature searching. All studies used in the system-
atic review and meta-analysis are listed in the Data Sources section. 
M.L.G. and J.L.L. performed the literature screening.

2.2.1  |  Screening for meta-analysis

To demonstrate how powerful guano can be, we ran meta-analyses 
by comparing nutrient concentrations in colony soils (where guano 
is deposited) to control soils (where guano is not deposited). For the 
meta-analysis, we decided to use studies that compared nutrients in 
soils because this was the most common abiotic factor that was sam-
pled across all studies. Thus, this decision was made post hoc (i.e. 
after the studies were collected for review). The nutrients included 
within the meta-analyses were ammonium (NH4

+; μg/g), nitrate 
(NO3

-; μg/g), total nitrogen (%N) and total phosphorous (%P). All nu-
trients were measured in dry weight. For papers to be included, they 
had to:

1.	 Include a control site(s) along with a site with seabirds (i.e. a 
seabird colony). The control site(s) must be a strictly defined 
area without seabirds present. Many papers included a control 
site that was along a gradient of seabird influence, but as these 
are not strict control sites, they were excluded from analysis.

2.	 Measure one or more of the above nutrients in soils in both colony 
and control soils.

3.	 Report mean nutrient/pollutant concentrations in colony and 
control soils, standard deviations (SD) and sample sizes (n), or 
allow for them to be calculated. For studies that only reported 
these values within plots, we used GetData Graph Digitizer v.2.26 
to extract the relevant data.

After following these conditions, our list of papers that could be 
included within the meta-analysis was reduced to 32 for nutrients in 
soils (see Figure 1 for more details, Figure S2). However, not all these 
papers analysed contain all the chosen nutrients (e.g. a paper may 
have analysed total nitrogen only). As such, for each of the different 
nutrients, there were 14 to 22 papers.

2.3  |  Data extraction

From the 181 papers, we then extracted data and information on 
the following: location (island or mainland, coordinates) and habitat 
of the study (as defined by the IUCN habitat classification scheme; 
The International Union for Conservation of Nature, 2012), study 
duration (single or multi-year studies as well as the number of 
years), study site information (number of sites, whether was there a 
control/s site, that is, a nearby site without the presence of seabirds 
to compare against), seabird focal species, what metrics were used 
to measure seabirds' influence (presence/absence or guano) and if 
guano was used we included the analysis type (nutrient content, el-
emental analysis, guano cover, isotope analysis or from literature), 
what the seabirds were documented to be transporting (nutrients, 
inorganic pollutants, organic pollutants or physical pollutants) and 
what abiotic and biotic factors were sampled to determine the ef-
fect of seabirds. Due to the diversity of biotic and abiotic factors 
sampled, most were put into broad categories: terrestrial vegeta-
tion (e.g. grass, trees and moss), vertebrates (e.g. fish and reptiles), 
terrestrial invertebrates (e.g. insects and tardigrades), benthic/
aquatic vegetation (e.g. macroalgae, seagrass), intertidal organ-
isms (e.g. molluscs and bivalves) and plankton (e.g. zooplankton and 
phytoplankton). Soil, water, detritus/leaf litter and sediment were 
retained in their own categories. The overall effect of the focal spe-
cies on the given area (as stated in the results or conclusion of the 
paper, for example, soil properties improved, species abundance in-
creased) was also recorded. As guano was the focus of this study, we 
extracted information on trace elements analysed within guano and 
the respective concentrations of those elements, as well as nutrient 
concentrations in guano.
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F I G U R E  1  Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Page et al., 2021) flow diagram for study 
selection. Diagram depicts the number of studies retained and discarded at each step. The total number of records included in the meta-
analysis was 32; however, many publications studied multiple nutrients simultaneously and thus the sum of records for nutrient types does 
not equal 32

2.3.1  |  Data extraction for meta-analysis

For each of the 32 papers suitable to be included in the meta-
analysis, we extracted the following data: mean ± SD concentration 
of nutrient/s (NH4

+, NO3
−, %N and %P) in seabird soil and in control 

soil, as well as the number of soil samples for each group (in addition 
to data extracted for each paper in Section 2.3). For this subset of 
papers, we also recorded the latitudinal zone the study was under-
taken in (polar = >60°N or S; temperate = 30–60°N or S; and tropi-
cal = <30°N or S). If a paper measured nutrient concentrations in 
soils of more than one seabird species, then this was recorded for 
each species separately.

2.4  |  Meta-analysis

2.4.1  |  Effect size calculations

We calculated the log response ratio (LRR, also known as Log(Ratio 
of Means)) as our effect size since nutrient concentrations are con-
tinuous positive variables. LRR is a common effect size calculated 
in ecological meta-analyses because it quantifies the proportionate 
change between the groups (Hedges et al., 1999). It is calculated by:

where C refers to the concentration of the nutrient in question. When 
LRR is greater than zero, the concentration of the nutrient is greater in 
colony soils than in control soils, and when LRR is less than zero, the 
concentration of the nutrient is higher in control soils than in colony 
soils. Variance is calculated as:

where SD and N represent the standard deviation and sample size of 
each group from each study.

2.4.2  |  Statistical analysis

We ran all statistical analyses using the Metafor package (v 2.4-0; 
Viechtbauer, 2010) in r version 4.0.2. For each nutrient, we calcu-
lated a summary LRR and 95% confidence intervals (CI95) via a ran-
dom effects model by using the LRR and variances derived from each 
individual study. We used a random effects model to account for 

variation within each study as well as between all the studies, as there 
was considerable variation in study methodologies. Random effects 
models are commonly used in ecological meta-analyses because they 
allow the estimated effect sizes to vary due to differences observed 
from sampling error and from true ecological differences between 
the studies (Anderson et al., 2015). For each nutrient, we calculated 
the Q-score and I2 index of heterogeneity to determine the amount 
of unexplained between-study variation and we measured this with a 
restricted maximum likelihood estimator. When Q-scores and I2 were 
significant (p < 0.05), we conducted subgroup analyses using meta-
regressions with the following moderators: island vs. mainland, geo-
graphic location of sites (polar, temperate and tropical) and seabird 
order, to determine if the variation in effect sizes could be explained. 
For each moderator group, we hypothesize the following:

1.	 Island versus mainland: Island ecosystems are isolated from main-
land systems, thus are often dependent on subsidies vectored 
by mobile organisms, such as seabirds (Buelow et al.,  2018). 
As such, we hypothesize that studies on island environments 
will be more enriched than studies on mainland environments.

2.	 Geographic location: studies in nutrient-limited environments, 
such as within polar regions, will be more enriched than studies in 
regions not limited by nutrients.

3.	 Seabird order: Enrichment of soils in seabird colonies will vary 
with seabird order and with nutrients.

Further partitioning (e.g. down to seabird family or genus) was 
not possible due to our limited sample sizes. We considered the 
overall effect size and the effect size for each study to be significant 
if the 95% CI did not overlap zero.

3  |  RESULTS

3.1  |  Overall trends in publications

A total of 181 papers were critically reviewed and were published 
over 53 years (1968–2021). Overall, there was an increase in the 
number of papers published in recent years, with more than half of 
the reviewed literature published within the last 15 years (64.1%, 
n = 116) with 2015 (n = 16) and 2013 (n = 11) having the most publi-
cations. The proportion of single- and multi-year studies were similar 
(44.2% and 41.4% respectively; Table 2); however, 26 studies (14.4%) 
did not report the number of years of sampling. For multi-year stud-
ies, most were 2 years in duration (22.1%, n = 40), and the two long-
est studies were 8 years.

LRR = ln
Ccolony

Ccontrol

,

var(LRR) =

(

SDcolony

)2

Ncolony

(

Ccolony

)2
+

(

SDcontrol

)2

Ncontrol

(

Ccontrol

)2
,
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TA B L E  2  Proportion of publications (n = 181) included in this review with the variables and reported metrics extracted. Habitat types are 
based on the IUCN Habitat Classification Scheme which includes 16 broad habitat types at level 1, and a further 119 types listed at level 2 
(The International Union for Conservation of Nature, 2012)

Variable Reported metrics % of publications

Location Island 76.8

Mainland 23.2

Ecosystem Terrestrial 91.2

Intertidal 3.9

Both 5.0

Habitata Grassland

Tundra 18.2

Subantarctic 5.0

Temperate 3.9

Subtropical/Tropical Dry 0.6

Forest

Temperate 13.8

Boreal 5.5

Subtropical/Tropical Dry 3.9

Subtropical/Tropical Mangrove 1.7

Subtropical/Tropical Moist Lowland 0.6

Subantarctic 0.6

Desert

Cold 17.1

Hot 3.3

Shrubland

Mediterranean 7.7

Subantarctic 0.6

Boreal 0.6

Subtropical/Tropical Dry 0.6

Temperate 0.6

Marine Intertidal

Tidepools 3.3

Rocky Shoreline 1.1

Mangrove (Submerged Roots) 0.6

Wetlands

Permanent Freshwater Lakes (> 8 ha) 1.1

Permanent Freshwater Pools (< 8 ha) 1.1

Tundra Pools 0.6

Bogs, Marshes, Swamps, Fens, Peatlands 0.6

Marine Coastal/Supratidal

Sea Cliffs/Rocky Offshore Islands 1.1

Coastal Brackish/Saline Lakes/Pools 0.6

Artificial Aquatic

Ponds 0.6

Irrigated Land 0.6

Savanna (Dry) 0.6

Multiple 4.4

Control site Yes 75.1

No 22.1

Not mentioned 2.8
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Variable Reported metrics % of publications

Number of sampling sites 1 7.7

2–4 38.1

5–7 17.7

8–10 11.0

11–15 6.1

16–20 8.8

>21 (maximum 64) 7.7

Not mentioned 2.8

Multi-year study Yes 41.4

No 44.2

Not mentioned 14.4

Study duration (years) <1 44.2

2 22.1

3 12.7

>4 (maximum 8) 6.6

Not mentioned 14.4

Number of focal species 1 56.9

2 16.0

3 8.3

>4 (maximum 29) 15.5

Not mentioned 3.3

Was guano measured? Yes 47.0

No 53.0

Measure of guano? (n = 85 studies)b Nutrient content 32.4

Elemental analysis 21.6

Stable isotope analysis 18.0

Defecation rate 12.6

Guano cover (%) 5.4

Pre-determined from literature 5.4

Plastic load 2.7

Presence of guano 1.8

Other measures of seabird influence Presence /Absence of seabirds 81.8

Feathers 7.7

Eggs/shells 4.4

Carrion/carcasses 3.3

Boluses/pellets 2.2

Seabirds are vectors ofc Nutrients 84.5

Inorganic pollutants 24.3

Organic pollutants 5.5

Physical pollutants 1.7

Overall effect of seabirds Positive 49.2

Negative 19.9

Mixed 22.7

Neutral 8.3

TA B L E  2  (Continued)

(Continues)
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3.2  |  Distribution of publications

From the 181 publications, a total of 1,418 sites were exam-
ined from 30 different countries (Figure  2). Antarctica was the 
most represented (22.1%, n  =  40 publications), followed by 
Canada (10.5%, n = 19) and Norway (9.9%, n = 18). Six publica-
tions spanned multiple countries while all others included only 
one country. Research was more heavily focused in the Northern 

Hemisphere, with 104 studies (57.5%). Research spanned both 
terrestrial (91.2%, n  =  165 publications) and intertidal (3.9%) 
environments (purely oceanic studies were not included in this 
review), and a small handful of studies incorporated both (5.0%). 
A diversity of habitats was covered, including grassland (27.6%, 
n  =  50 publications; Table  2), forest (26.0%, n  =  47) and desert 
(cold: 17.1%, n = 31; hot: 3.3%, n = 6), and several papers stud-
ied multiple environments (4.4%, n = 8). Islands (76.8%, n = 139 

Variable Reported metrics % of publications

Factors sampledc Soil 64.1

Terrestrial vegetation 44.2

Water 19.3

Invertebrates 17.1

Sediment 13.3

Detritus/leaf litter 9.9

Vertebrates 9.9

Benthic/aquatic vegetation 9.9

Intertidal organisms 5.5

Plankton 4.4

Other 14.9

aFor definitions of habitat classes, readers are directed to https://www.iucnr​edlist.org/resou​rces/habit​at-class​ifica​tion-scheme
b20 studies measured guano using two different analyses, and three studies used three different analyses
cThe variables ‘Seabirds are vectors of’ and ‘Factors sampled’ do not sum to 100% as many publications studied nutrients and pollutants 
simultaneously or sampled multiple factors

TA B L E  2  (Continued)

F I G U R E  2  Most publications on seabirds as vectors of nutrients and pollutants were completed in the Northern Hemisphere, with a 
particular focus on regions in the Arctic. However, the country with the most studies was Antarctica (n = 40). Unique markers are used for 
publications examining nutrients (yellow circle), pollutants (tan diamond) or a combination of both (brown star; one marker per publication). 
Countries are shaded teal depending on the number of studies published. Several locations were studied frequently (e.g. King George Island, 
Antarctica) and for these areas a number is included to indicate how many studies took place in that region

https://www.iucnredlist.org/resources/habitat-classification-scheme
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publications) were studied more frequently than mainland habi-
tats (23.2%, n = 42).

3.3  |  Focal seabird species

A total of 86 seabird species from 12 families and four orders 
were covered in the literature, with Charadriiformes account-
ing for 41.9% (families: Alcidae, Chionidae, Haematopodidae, 
Laridae and Stercorariidae), followed by Sphenisciformes 
(21.7%; Spheniscidae), Procellariiformes (18.8%; Diomedeidae, 
Hydrobatidae and Procellariidae) and Suliformes (17.6%; Fregatidae, 
Phalacrocoracidae and Sulidae). Adelie penguins Pygoscelis adeliae 
was the species studied the most (7.1%, n = 23 publications), fol-
lowed by great cormorants Phalacrocorax carbo (6.8%, n = 22) and 
gentoo penguins Pygoscelis papua (6.5%, n = 21). Of the 181 papers 
reviewed, 56.9% (n = 103; Table 2) had a single focal species, while 
39.8% included multiple species (n = 72, range = 2–29). A hand-
ful of publications did not report the seabird species concerned 
(8.8%, n = 16) or only reported a portion of the seabird species in-
cluded within the study (3.9%, n = 7). Research was predominately 
done on species classified as Least Concern by the International 
Union for Conservation of Nature's Red List of Threatened Species 
(IUCN Red List; n = 267 occurrences/65 species), while research on 
species listed as Endangered on the IUCN Red List was minimal in 
comparison (n = 15 occurrences/6 species—Procellaria westlandica, 
Megadyptes antipodes, Phalacrocorax capensis, Phoebetria fusca, 
Spheniscus demersus and Morus capensis) and there were no studies 
on species listed as Critically Endangered.

3.4  |  Metrics used to measure seabird influence

Publications were highly variable in terms of what tools and metrics 
were used to measure the influence of seabirds on a given system. 
Guano was examined in 85 publications (47.0%), of which 35 analysed 
samples for nutrient content (N, P or both), 23 quantified non-essential 
trace elements and 20 included stable isotope analysis (Table 2). When 
guano was not collected and analysed, proxy measures were used in-
stead. The presence and absence of seabirds was commonly used in 
publications as a simple measure of guano (i.e. the presence of seabirds 
indicate that guano is being deposited, while the absence of seabirds 
infers that there is no guano deposition; 81.8%, n  =  148), and this 
was often reported in conjunction with the analysis of guano (30.4%, 
n = 55). A small portion of publications measured other allochthonous 
inputs by seabirds, such as feathers (7.7%, n = 14) and eggshells (4.4%, 
n = 8). Forty publications (22.1%) did not include a control site (i.e. a 
location without seabirds to compare against).

A diversity of biotic and abiotic samples was measured to deter-
mine the effect of seabirds and the flow of subsidies in recipient en-
vironments. The most common was soil (64.1%, n = 116 publications), 
followed by vegetation (44.2%, n = 80) and followed by water (19.3%, 
n = 35). Most publications measured multiple factors (57.5%, n = 104 

publications, range = 2–7 factors), while 33.7% (n = 61) sampled only one 
factor and 8.8% (n = 16) did not sample any (i.e. only measured guano).

3.5  |  Seabirds as vectors

Nutrients were the only subsidies recorded in the early literature 
(1968–1990; Figure  3) and accounted for 84.5% (n  =  153) of all 
studies considered in this review. In contrast, the first publication 
to consider seabirds as vectors of pollutants was in 1991 (inorganic 
pollutants; Godzik, 1991). Since that time, there has been an increase 
in the number of publications investigating the role of seabirds as 
vectors of pollutants; however, there has been a similar increase in 
the number of publications focusing on nutrients (43.8% of nutrient 
papers were published in the past decade; Figure 3) and scientific 
publishing in general. Overall, inorganic pollutants transported by 
seabirds were documented more in the literature (24.3%, n = 44) than 
organic pollutants (5.5%, n = 10). Several papers measured nutrients 
and pollutants simultaneously (nutrients and inorganic pollutants: 
n = 27; nutrients and organic pollutants: n = 5). Three publications 
measured physical pollutants (i.e. plastic particles) in guano.

A total of 89 publications (49.2%; Table 2) concluded that sea-
birds had a positive influence on the terrestrial environment, while 
36 (19.9%) returned a detrimental result (see Section  4.4 below). 
Some publications returned mixed results (22.7%, n = 41), showing 
both negative and positive effects, while a small portion did not de-
tect a significant change or reported neutral results (8.3%, n = 15).

3.5.1  |  Contents of guano

There were 35 papers that analysed the nutrient content of guano. 
All but two of these papers analysed the total percentage of N or P 
(or both) in guano. Seabirds from the order Suliformes had higher 
levels of P than all other orders, with a M ± SD of 15.08 ± 1.07%P 
(range  =  14.32–15.83%P; Table  3), whereas Procellariiformes 
typically exhibited guano with a higher N content (19.13 ± 3.46, 
range = 15.19–21.70%N).

Across the 23 papers that analysed guano for trace elements, 
there were a total of 30 different elements analysed. The most 
common elements analysed were zinc and cadmium, examined in 
17 papers, followed by copper (n = 16) and lead (n = 15). The con-
centrations of these elements, plus the next three most analysed 
(arsenic, manganese and nickel; n = 13, 10 and 10 respectively), were 
extracted from the relevant papers. Guano was high in zinc across all 
seabird orders, with a M ± SD concentration of 261.03 ± 235.25 μg/g 
(range = 4.07–1,200.00 μg/g; Table 4). Copper concentrations were 
high as well (84.57 ± 100.13, 1.24–350.00 μg/g), followed by manga-
nese (47.25 ± 75.49, 0.82–300.00 μg/g). Across seabird orders, there 
were some differences; for example, guano from Charadriiformes 
was high in arsenic, cadmium and lead compared to all other orders 
(6.48 ± 4.35, 11.40 ± 25.44 and 15.19 ± 14.21 respectively), whereas 
Sphenisciformes exhibited concentrations of copper and manganese 
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that were much higher than all other orders (177.50 ± 106.63 and 
87.47 ± 142.21 respectively; Table 4).

3.5.2  |  Meta-analysis

The concentrations of all nutrients were significantly higher in sea-
bird colony soils than in control soils (%N: LRR  =  1.15, p  < 0.0001; 
%P: LRR = 2.11, p < 0.0001; NO3

−: LRR = 2.18, p < 0.0001; and NH4
+: 

LRR = 2.81, p < 0.0001; Figure 4, Figures S3–S6). Ammonium levels 
in colony soils showed the biggest difference and were on average 

41.1 times higher than control soils, followed by nitrate concentrations 
(5.3× higher), total phosphorous (4.3×) and total nitrogen (2.1×). Q-
scores and I2 were significant for all models (all p < 0.001; Table S1), 
suggesting that the heterogeneity in effect sizes between studies was 
higher than what would be expected by sampling error alone. Subgroup 
analyses indicated that the impact of guano deposition on island sys-
tems was significantly greater for all nutrients in comparison to depo-
sition on mainland systems, while differences in geographic zones or 
seabird orders was less pronounced and more variable across nutrient 
types (Figure 4). Studies conducted in polar regions demonstrated sig-
nificantly higher soil nutrient values across nutrient types, whereas 
studies in temperate zones showed significant results for all but N. 
Studies undertaken in tropical zones were minimal thus firm conclu-
sions cannot be drawn. Differences in soil nutrient concentrations due 
to deposition by different seabird orders were highly variable, with 
studies examining seabirds from the order Sphenisciformes display-
ing significantly high levels of ammonium in colony soils (LRR = 4.27, 
p < 0.0001; Figure 4). Overall, the addition of seabird guano to colony 
soils increases nutrient concentrations compared to control soils.

4  |  DISCUSSION

Seabirds have a vast array of ecological functions both on land and 
at sea. They have been relied upon as ocean sentinels for decades, 
providing information on fish stocks (Montevecchi,  1993; Piatt 
et al.,  2007) and trends in chemical and physical pollutants at sea 

F I G U R E  3  Growth in publications reporting on the different subsidies (nutrients, inorganic, organic or physical pollutants) transported by 
seabirds to land. Of the 181 publications reviewed, the majority explored nutrients. Inorganic pollutants were first reported in 1998, while 
organic pollutants were first reported in 2005. Physical pollutants (i.e. plastics) were not reported until 2018. A number of papers reported 
multiple subsidies (e.g. nutrients and inorganic pollutants), thus lines do not sum to 181

TA B L E  3  Mean ± SD (range; n) of total nitrogen (%N) and total 
phosphorous (%P) analysed in guano, separated by seabird order

Order

Nutrient

Nitrogen Phosphorous

Charadriiformes 7.07 ± 4.47
(1.39–15.20; 9)

1.54 ± 0.80
(0.47–2.76; 9)

Procellariiformes 19.13 ± 3.46
(15.19–21.70; 3)

1.16 ± 0.31
(0.90–1.50; 3)

Sphenisciformes 13.04 ± 6.03
(0.35–20.85; 10)

3.13 ± 2.80
(0.16–10.28; 10)

Suliformes 9.89 ± 9.35
(3.28–16.50; 2)

15.08 ± 1.07
(14.32–15.83; 2)

Overall 11.30 ± 6.52
(0.35–21.70; 24)

3.36 ± 4.22
(0.16–15.83; 24)
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(Burger & Gochfeld,  2004; O'Hanlon et al.,  2019). On land, we ac-
knowledge seabirds as ecosystem engineers (Bancroft et al.,  2005), 
capable of changing the physical and chemical conditions in their 
breeding and roosting grounds. While seabirds as physical engineers, 
such as burrowing, has been well described (Bancroft et al.,  2004; 
McKechnie, 2006), data on the mechanisms surrounding seabirds as 
chemical engineers are comparatively limited. For example, only in the 
past 53 years have data on seabirds as vectors of nutrients or pollut-
ants become available (Figure 3), with nearly 50% of the literature pub-
lished in the last decade. This influx can be attributed to our growing 
knowledge of the important ecological services provided by seabirds 
(Mosbech et al., 2018; Şekercioğlu, 2006). The growth of literature on 
seabirds as vectors for nutrients has demonstrated their capacity to 
transport subsidies and alter environments in beneficial ways, but with 
the increasing awareness of ocean pollution, the birds' abilities to act 
as vectors for harmful subsidies has also been featured (Bourdages 
et al., 2021; Grant et al., 2021). This trend is mirrored in other fields 
globally where there has been a steady increase in pollutant research 
interest over time in both terrestrial and marine environments.

4.1  |  Geographic distribution of studies

Many studies were undertaken in nutrient-limited environments, such 
as the Arctic and Antarctic, where external nutrient subsidies are con-
sidered integral for maintaining local production as resident sources of 
subsidies are often very minimal (Adame et al., 2015). For example, a 
large proportion of studies were undertaken in high latitude regions 
(>60 N/S; 40.9%, n = 74 publications), where terrestrial areas are char-
acterized by cold temperatures and low nutrients (Maron et al., 2006); 
however, in places where seabirds congregate, there are hotspots 
of biological productivity and diversity (Brimble et al., 2009; Griffiths 
et al., 2010; Pereira et al., 2013), and this pattern was observed through 
our meta-regressions with colony soils in polar regions being significantly 
more enriched in nutrients compared to control soils (Figure 4). Similar 
observations were recorded in the Gulf of Mexico, which is known for 
its relatively productive waters juxtaposed against hyper-arid deserts, 
where the presence of seabirds increased production in comparison to 
areas without seabirds (Polis & Hurd, 1996). In general, the dynamics of 
many components (e.g. vegetation, consumers, soil properties) in terres-
trial regions across the globe are highly dependent on nutrient subsidies 
transported by seabirds (Sanchez-Pinero & Polis, 2000).

Similar to the presence of colonial seabirds in nutrient-limited en-
vironments, seabirds are integral to many islands, as these ecosystems 
are isolated from external nutrient inputs and are often reliant on 
seabirds and other mobile vectors for the continued replenishment of 
vital subsidies (Buelow et al., 2018). Overall, island environments were 
studied more intensively than mainland environments, with 76.8% 
of publications based on islands. Most studies reported that islands 
with seabirds typically exhibited increased nutrient concentration in 
vegetation (Adame et al., 2015; Richardson et al., 2019) and a higher 
abundance of invertebrates (Markwell & Daugherty, 2002; Sanchez-
Pinero & Polis, 2000; Zawierucha et al., 2016). In comparison, islands TA
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without seabirds (e.g. control sites) often reported lower soil N and 
P (Rajakaruna et al., 2009; De la Peña-Lastra et al., 2020; Figure 4), 
and hence did not see those same benefits as islands with seabirds 
present. Across island ecosystems, as well as nutrient-limited environ-
ments, the effects of MDN from seabirds are substantial and promote 
the maintenance of these ecological communities (Polis & Hurd, 1996).

While there were hotspots of research activity in a handful of 
locations around the world, such as Svalbard, the Gulf of Mexico 
and King George Island (Antarctica), there are some obvious gaps. 
There were few studies in Africa (all were based in South Africa), 
with few data available from south-east and west Asia, as well as the 
east coast of South America (Figure  2). This is worrying consider-
ing that seabird populations around the world are in decline (Croxall 
et al.,  2012; Dias et al.,  2019) or have disappeared in some cases 
(Feare, 1978), which will have implications for recipient habitats as 
the transfer of MDN will be reduced. It is important to have a wide 
representation from a range of ecosystems and habitat types, and 
not just studies from nutrient-limited environments.

4.2  |  Focal seabird species

Most seabirds were listed as Least Concern (77.2%) on the IUCN 
Red List, with very few data available for globally threatened species 
(Vulnerable, Endangered or Critically Endangered). While it is impor-
tant to study all species, regardless of population status, it is concern-
ing that very few studies have examined globally threatened species, 
given the significant influence seabirds have on their terrestrial envi-
ronments (Rodrigues et al., 2021). Interestingly, seabirds that were his-
torically important guano-producing birds (whose guano was mined 
for fertilizer) in South America were only studied once (Peruvian 
Booby, Sula variegata; Lucassen et al., 2017), despite two of the species 
(Guanay cormorant Phalacrocorax bougainvillii and the Peruvian brown 
pelican Pelecanus thagus) being listed as Near Threatened on the Red 
List. The guano produced by these species is evidently laden with nu-
trients (Szpak, Millaire, et al., 2012), thus a decline in their populations 
would lead to changes to their habitats, yet as these species have not 
been studied, we do not know what these changes would be.

F I G U R E  4  Forest plots showing the effect of guano deposition on nutrient concentrations ((a) nitrogen, (b) phosphorous, (c) nitrate 
and (d) ammonium) in soils. Effect sizes >0 show that nutrient concentrations were greater in seabird soils compared to control soils not 
impacted by guano deposition. The mean effect size (LRR, log risk ratio) and 95% confidence intervals are shown for the overall result (full 
model) and for each subgroup analysis: island vs mainland study sites, location of study sites (polar = >60°N or S; temperate = 30–60°N or 
S; and tropical = <30°N or S) and seabird order (Charadriiformes, Procellariiformes, Sphenisciformes and Suliformes). Confidence intervals 
that overlap zero are not significant. N and P were measured as percentage dry weight, while NO3

- and NH4
+ were measured in μg/g dry 

weight. The subgroup ‘Tropical’ for phosphorous is not included as n = 1. There were three publications that studied multiple seabird 
species, thus the n for the full model for each nutrient type does not equal the corresponding n in Figure 1. Four studies included in all plots 
did not clarify the seabird species, thus the sum of n for the subgroup seabird order does not equal the corresponding n for the full model
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Substantial, cascading and often detrimental changes may occur 
in areas where there once were thriving seabird colonies due to the 
reduction in MDN transported by the birds (Duda et al., 2020; Maron 
et al., 2006). The loss or major reduction in seabird colonies could re-
sult in the alteration in important ecosystem functions (Şekercioğlu 
et al., 2004). We could expect to see changes to invertebrate com-
munities and vegetation assemblages, as observed on islands where 
predators have decimated seabird populations. For example, in the 
Aleutian Archipelago introduced Arctic foxes Vulpes lagopus preyed 
on seabirds resulting in a reduction in MDN and declining soil fertility, 
which transformed the habitats on multiple islands from grassland to 
a dwarf shrub-dominated landscape (Croll et al., 2005). Furthermore, 
the loss of seabird populations may not just impact nutrient cycling 
at localized levels, but potentially on a global scale as well (Riddick 
et al., 2018) as this could lead to a reduction in global N emissions.

4.3  |  Metrics used to measure seabird influence

A range of methods were used to measure the influence of sea-
birds, ranging from simple methods such as the presence/absence 
of seabirds or percentage guano cover, to more quantitative, analyti-
cal methods (e.g. nutrient concentrations in guano). The presence/
absence of seabirds is an easy, low-cost way to test the impact of 
seabirds in each area, with sites where seabirds are absent func-
tioning as controls. Many studies benefitted from access to is-
lands with and without seabirds (e.g. Markwell & Daugherty, 2002; 
Powell et al.,  1991) while others used a gradient of seabird abun-
dance (e.g. sites were chosen with increasing distance from a col-
ony; Signa et al.,  2013; Zmudczynska-Skarbek et al.,  2013; Ziołek 
& Melke, 2014). While there is still merit in these qualitative stud-
ies, it can potentially be difficult to identify the exact cause of the 
observed effects, and definitively say that it was the presence of 
seabirds that resulted in the observed changes (Kolb et al., 2015), 
as the effects of seabirds can last long after they have left the area 
(Mizutani et al., 1991). This is particularly important as the nutrient 
concentration in guano varies considerably among seabird orders 
(Table 3) and by trophic level and foraging behaviours, as has been 
observed between coastal, oceanic and predatory seabirds (Wing 
et al., 2014) as well as between planktivorous and piscivorous sea-
birds (Zwolicki et al., 2013, 2016). While our review was limited by 
the number of studies examining the nutrient content of guano, and 
thus we only separated guano by order (Table 3), there is some dis-
cussion that guano nutrient content is different within seabird spe-
cies, particularly those foraging in different locations and feeding 
on a variety of prey types. Several studies (5.4%) based their analy-
ses on nutrient or pollutant levels in guano from previous literature. 
While there is some benefit in this (e.g. low cost), the results of this 
study demonstrate the highly variable nature of nutrients and pol-
lutants in guano (Tables 3 and 4), thus authors should attempt to use 
values from the same species (or family) to ensure accuracy.

Stable isotope analyses were a popular method for tracing 
MDN in recipient terrestrial environments in many of the studies 

(Table 2). Stable isotopes of a variety of elements (C, N, O, H and S) 
have been used extensively in seabird ecology for inferring forag-
ing locations and providing insights into diet (Bond & Jones, 2009; 
Callaham et al., 2012; Hoenig et al., 2022) and their application as 
tracers of nutrient flows is well established (Hebert et al.,  2006; 
Michener & Schell, 1994). They can easily trace seabird-derived nu-
trients in coastal and island food webs because of the distinction 
in marine δ15N and δ13C values compared to terrestrial N and C iso-
topes (Harding et al., 2004). The δ15N values of consumers are en-
riched by 3–5‰ with each trophic transfer along the marine food 
web (Post, 2002), thus seabirds—being mostly tertiary consumers—
generally have high δ15N values (Lucassen et al.,  2017). As guano 
contains considerable amounts of marine-derived N, stable isotope 
analyses can be applied to materials (e.g. soil, vegetation, inverte-
brates; Hawke & Clark, 2010) from within and outside seabird col-
onies to trace the flow of nutrients from the guano, and have been 
used successfully to determine the presence of seabirds in areas 
where colonies are no longer present (Kameda et al., 2006).

4.4  |  Detrimental impacts of seabirds

While most literature focused on the transport of MDN and the sub-
stantial positive benefits derived from the addition of seabirds in ter-
restrial environments, there were some negative impacts associated 
with seabirds as well. The deposition of excessive amounts of guano 
can cause guanotrophication, or seabird-induced eutrophication, as 
has been observed with a range of seabirds, including cormorants 
and gulls (Kolb et al., 2012; Otero et al., 2015). An excess in nutrients 
can indirectly lead to decreases in abundance and diversity of faunal 
groups (Signa et al., 2015), or directly lead to the destruction of veg-
etation through poisoning (Molina-Montenegro et al., 2013), but the 
effects of guanotrophication are most often detected in waterbod-
ies adjacent to seabird colonies (e.g. coastal lakes, rockpools; McColl 
& Burger, 1976; Portnoy, 1990; Martín-Vélez et al., 2019).

Guanotrophication is not the only negative consequence derived 
from guano deposition. Guano can contain high concentrations of 
inorganic pollutants (i.e. heavy metals) and POPs which can bioac-
cumulate in flora and fauna in recipient environments (Godzik, 1991; 
Otero et al., 2018). The literature regarding seabirds as vectors for 
such pollutants commonly focused on metals with very few stud-
ies exploring POPs (Figure 3). Several metals, particularly cadmium, 
copper and lead, were consistently analysed in guano samples (e.g. 
Celis et al.,  2014; Espejo et al.,  2014; Otero,  1998). These metals 
are often the focus of other environmental pollutant studies as 
they are well known for their toxicity, ability to bioaccumulate in 
organisms and their persistence and longevity in the environment 
(Šerić Jelaska et al., 2014). Many studies demonstrated the impact 
of pollutant laden guano on recipient environments by measuring 
metal concentrations in soils, vegetation and invertebrates, with 
results showing higher contaminant levels in samples from colonies 
compared to samples from control sites (Headley, 1996; Santamans 
et al., 2017; Shoji et al., 2019). Furthermore, of the few papers that 
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did explore POP transport by seabirds, the majority of papers es-
tablished a similar pattern, with higher concentrations of POPs in 
soils and organisms within colonies in comparison to areas without 
seabirds (Choy et al., 2010; Evenset et al., 2004; Foster et al., 2011; 
Roosens et al., 2007). The transport of POPs by seabirds is 30 times 
more efficient than atmospheric transport, with potential risks to 
human health (Evenset et al., 2007).

While this review only returned three papers that examined 
microplastics in guano (<5 mm diameter; Provencher et al.,  2018; 
Bourdages et al., 2021; Hamilton et al., 2021), a small number of pa-
pers (not included in this review) have also demonstrated that it is 
not just microplastics that can be transported to seabird colonies via 
guano, with meso- (5–20 mm) and macro-plastics (>20 mm; Barnes 
et al., 2009) being deposited through boluses and carcasses (Buxton 
et al., 2013; Grant et al., 2021), or collected from sea or shorelines and 
used as nesting materials (Grant et al., 2018; Van De Crommenacker 
et al., 2021). These papers indicate that the incidence of plastics in 
seabird colonies is likely widespread and increasing. The literature 
surrounding the movement of plastics by seabirds to their colonies 
has increased in recent years, like the increase in pollutant papers 
detected in this review (Figure 3). It is unknown whether these plas-
tics negatively impact the terrestrial systems they are deposited 
in; however, research in other fields (e.g. agriculture) suggest that 
plastics in soils can significantly affect temperature and N cycling 
(Seeley et al.,  2020; Lavers et al.,  2021) and microbial activity (de 
Souza Machado et al., 2018). As the deposition of guano increases 
the N content of soils (Figure 4a,c,d), the potential for concurrent 
positive and negative effects, if guano contains microplastics, is 
plausible, or may lead to a reduction in the incorporation of guano-
derived N. Research in this field is much needed, as plastic pollution 
is predicted to increase in coming years and, subsequently, the inci-
dence of plastics in colonies is also likely to increase.

4.5  |  Future directions

Many papers do not report the most basic information, including the 
year(s) sampled, exact location studied or the seabird species involved 
(Table 2). It is critical that all published studies contain sufficient infor-
mation so that the work may be repeated, included in meta-analyses, 
and results compared (Cassey & Blackburn, 2006). Furthermore, pa-
pers often did not report variance, presenting only mean values, or did 
not include detailed information on samples sizes. This made it chal-
lenging to conduct the meta-analysis, as papers that did not include 
these measures had to be excluded, drastically reducing the number 
of papers that could be synthesized (Figure 1). Soil types vary con-
siderably (WRB, 2015) and play a significant role in the flux of nutri-
ents and pollutants (Tian et al., 2017), yet this information was rarely 
presented across papers, particularly in those exploring the effects of 
guano addition in colony soils. The integration of soil science with pol-
lution research in the context of ornithogenic transport would be a 
useful avenue to explore in the future studies. In addition to these 
recommendations of reporting basic but necessary information, we 

recommend focusing research efforts on declining seabird species 
(e.g. those listed as Critically Endangered or Endangered on the IUCN 
Red List), the transport of pollutants by seabirds, particularly POPs, 
as this has been minimally studied over the years (Figure 3), as well as 
longer studies (i.e. >2 years) to measure annual trends.

5  |  CONCLUSIONS

While we have highlighted the role of seabirds as vectors of both 
beneficial nutrients and potentially detrimental pollutants, seabirds 
remain integral to the continued success of many environments all 
around the world. In addition to providing nutrients, seabirds can 
regulate habitats through seed dispersal, physical ecosystem engi-
neering, and assist with carcass and waste disposal. More broadly, 
birds (both terrestrial and marine) are well known to provide a highly 
diverse range of ecological functions and services, through regulation 
and supportive measures (Şekercioğlu, 2006). The potential decline 
and loss of these keystone species and the critical services they pro-
vide could be devasting for habitats globally (Bauer & Hoye, 2014; 
Ellis,  2005; Şekercioğlu et al.,  2004). Considering that many bird 
groups are currently in decline, with the biggest declines seen in sea-
birds, it is of utmost importance to continue to study avian groups, so 
that we can anticipate and mitigate potential consequences.
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