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Abstract: Learning the relationship between the part and whole of an object, such as humans
recognizing objects, is a challenging task. In this paper, we specifically design a novel neural
network to explore the local-to-global cognition of 3D models and the aggregation of structural
contextual features in 3D space, inspired by the recent success of Transformer in natural language
processing (NLP) and impressive strides in image analysis tasks such as image classification and object
detection. We build a 3D shape Transformer based on local shape representation, which provides
relation learning between local patches on 3D mesh models. Similar to token (word) states in NLP,
we propose local shape tokens to encode local geometric information. On this basis, we design
a shape-Transformer-based capsule routing algorithm. By applying an iterative capsule routing
algorithm, local shape information can be further aggregated into high-level capsules containing
deeper contextual information so as to realize the cognition from the local to the whole. We performed
classification tasks on the deformable 3D object data sets SHREC10 and SHREC15 and the large
data set ModelNet40, and obtained profound results, which shows that our model has excellent
performance in complex 3D model recognition and big data feature learning.

Keywords: 3D shape transformer; local-to-global cognition; shape-Transformer-based capsule; de-
formable 3D object

1. Introduction

How to make neural networks understand images like humans is very difficult,
because the human visual system is very complicated. There is strong psychological
evidence that people interpret visual scenes as parts of the overall hierarchy [1]. So if we
want the neural network to understand images like humans, we need to figure out how
the neural network represents the part–whole structure and model the spatial relationship
between the part and the whole. Similarly, in the feature learning of a three-dimensional
model, since the model itself has quite a wealth of space and shape information, it is more
important to be able to learn the relationship between its local shape and the whole for
the model.

Many previous works are based on scalar convolutional neural networks (CNNs) to
learn local feature representations for 3D models [2–4]. However, due to the limitation
of the convolutional receptive field, the convolutional network can only construct feature
relationships in local regions, and there is no attention mechanism to capture different
feature relationships according to different tasks. The above issues seem to be addressed
to varying degrees, as new Transformer architectures have been successfully used for
vision-based tasks [5]. These Transformer architectures do not have the structural induction
bias provided by convolution to the local spatial structure. Instead, they are completely
based on flexible attention distribution. This mechanism enables us to quickly establish
the relationship between each local patch. Therefore, we hope to extend the Transformer
to the three-dimensional domain and build the associations between local shapes on this
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basis. However, it is difficult to design a neural network for a mesh model, especially to
add information, such as direction, position, and the relationship between the part and the
whole in the three-dimensional model. The obvious difficulty is that the mesh is usually
composed of a series of irregularly distributed vertices and edges. Although the topological
information can clearly express the geometric shape of the surface and can reliably describe
the complex surface, it is difficult to directly apply the traditional deep learning framework
to this data format. So we not only have to solve the problem of irregular distribution of
vertices in 3D models, but also think about how to provide geometrically interpretable
tokens as input to the shape Transformer.

In addition, the representation of each node in the CNNs will be treated as multiple
individual scalar features instead of a vector, which may not be enough to effectively
preserve the spatial and shape information of the three-dimensional model. On the other
hand, CNNs lose a lot of information in the pooling layer. They tend to ignore the spatial
arrangement in the data, and therefore do not respect the integral part–whole relationship
that is essential for explaining and describing 3D shapes. This is also the difficulty we face
when establishing the relationship between local shapes.

Some recent studies have tried to introduce vector network to save relevant position
and structure information to solve this problem [6,7]. For example, in the recent research
hotspot of capsule networks [8], detailed pose information (e.g., precise target position,
rotation, thickness, tilt, and size) is preserved throughout the network via sequestered
vectors, rather than being lost and then recovered. The capsules are organized in multiple
layers to realize the coding of the visual scene. The low-level capsules can be used to
represent low-level visual entities (for example, edges or object parts), while the high-
level capsules can represent the entire objects, and the connections between the low-level
and high-level capsules are implemented using routing algorithms. With such explicitly
grouped visual representations, structural information will be more reasonably preserved
compared to CNNs.

Inspired by the above work, we propose a vector-type mesh trans-capsule neural
network based on shape representation. Our mesh Transformer features are treated as the
underlying 3D local shape description, which is then combined into multiple parts (larger
local surfaces), and finally these parts are combined into the entire object in a learning
manner. Specifically, in order to obtain appropriate Transformer features, we design a mesh
Transformer as a novel 3D local shape-based attention mechanism. This mechanism can
find the similarity between the local surface Query (Q) and the shape template Key (K),
and form a feature vector about the shape encoded with different weights. Subsequently,
we designed a multi-head attention mechanism for these shape features to form different
sets of multilayer perceptrons. The multi-head attention mechanism can provide different
subspace encoding representation information for the output of the attention layer so as
to more comprehensively describe the relationship between local shape information and
encapsulate it in a capsule. We organize the capsules in a hierarchical dynamic routing
way to learn the mapping from part to the whole, and finally realize the encoding of the
entire object.

In summary, the main contributions of our work are summarized as follows:

• 3D shape Transformer. We propose a novel self-attention calculation method based
on local shape representation. It allows a mechanism similar to the standard 1D self-
attention, taking the local shape of the mesh model surface as a token, and designing
a matching similarity measure for it. Thus, the well-known 1D Transformer suitable
for NLP can be adapted to 3D mesh tasks.

• Multi-head shape attention layer. We propose a multi-head shape attention mechanism
to form multiple subspaces, allowing the model to pay attention to different aspects
of information. This expands the possibility of combination between the underlying
local shapes, and makes the local combination information learned by the model
more accurate.
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• Vector representation. Based on the 3D mesh data, we propose a new primary capsule
construction method to improve the performance of the capsule network.

• 3D vector-type network. We construct a novel vector-type mesh trans-capsule neural
network and apply it to the recognition of three-dimensional deformable models.
Experiments show that compared with other methods, our network can respect the
geometric characteristics of the model itself, and has a better classification effect and
learning ability.

2. Related Work
2.1. Transformer for 2D Vision

Inspired by the success of the self-attention layer and Transformer architecture in
the NLP field, some works try to extend Transformer to the field of image recognition.
In vision applications, CNNs were once considered the fundamental component [9,10],
but nowadays Transformer is showing that it is a viable alternative to CNN. Dosovitskiy
et al. [5] proposed Vision Transformer (ViT), the first attempt to apply the standard
pure Transformer directly to the image with as little modification as possible. To this
end, they divided the image into small blocks and converted these blocks into linear
embedding sequences as input to Transformer. They proved that the dependence on CNN
is not necessary. In the image recognition task, applying the pure Transformer model to
the sequence of image patches can also perform well. He et al. [11] proposed a novel
Transformer-based framework, TransFG, to apply Transformer to fine classification tasks.
They integrated all the original attention weights of Transformer into the attention map to
guide the network to effectively and accurately select distinctive image blocks and calculate
the relationship between them. Liu et al. [12] proposed a new visual Transformer module
called Swin Transformer, which can be used as the general backbone of computer vision.
This method introduces CNN’s local area and hierarchical feature ideas into Transformer. Of
course, it is not only suitable for basic image classification problems, but Transformers are
also used to solve various other computer vision problems, such as object detection [13,14],
semantic segmentation and video understanding.

Inspired by the local patch structure used in ViT and the basic semantic information in
language words, we propose a local patch representation method based on the topological
connection of the 3D mesh model surface, and design a novel shape embedding represen-
tation that makes this local patches can visually represent shape information. Therefore,
we consider the local shape fragments as the smallest unit, through the calculation of
the similarity of the local shapes and the introduction of the multi-head shape attention
mechanism to realize the learning of the combination weights between the local shapes.

2.2. Transformer for 3D Vision

Unlike 2D images, 3D data are disordered and unstructured, making it challenging
to design neural networks to process them. Hermosilla et al. [15] proposed the Monte
Carlo convolution neural network (MCCNN) to describe convolution as a Monte Carlo
integration problem. This method guarantees that the potential nonuniform sample dis-
tribution function is fully considered from the perspective of Monte Carlo, thus cleverly
avoiding the problem of directly processing disordered structure data. Li et al. [16] pro-
posed learning the X transformation from the input points to simultaneously weight the
input features associated with the points and rearrange them into a potentially implicit
canonical order. This method applies the element multiplication and sum operation of
the typical convolution operator to the X transformation feature. MeshNet [17] uses the
extracted information from the triangular mesh data as features and uses the output of
the feature space description module and the structure description module as the input
of mesh convolution to build a deep learning network that can directly process the mesh
model. Furthermore, Biasotti et al. [18] analyzed and evaluated state-of-the-art retrieval
and classification algorithms dealing with an emerging field, namely textured 3D objects.
This not only provides a reference for researchers on shape descriptors, but also provides a
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deep learning direction on color features. Rodolà et al. [19] evaluated the performance of
15 retrieval algorithms based on the 3D deformable mesh model SHREC17.

With the breakthrough progress of Transformer in the field of NLP, there have been
many recent works on extending Transformer to 3D data. Compared with the original
self-attention module in Transformer, Wang et al. [20] proposed an improved self-attention
using implicit Laplacian and normalization. Zhao et al. [21] designed a point Trans-
former layer for point cloud processing and designed a hierarchical network structure.
Lin et al. [22] used a graph convolution named Graphormer to improve Transformer. This
approach only adds a graph convolution module to the attention module to fuse local
information, which forms global and local friendly structures, thereby realizing 3D human
pose estimation and mesh reconstruction based on a single image. However, these methods
do not have careful consideration for the design of the calculation of the 3D self-attention
mechanism; therefore, local features cannot be captured in detail. Moreover, the embedding
representation of the input is not as interpretable as the token in NLP. It is important to
note that a Transformer network suitable for 3D mesh models has not yet been proposed.
However, the 3D mesh Transformer model that we propose can overcome the limitations
described above.

2.3. Vector Networks for 3D Vision

Although the convolutional network has a good effect in the field of three-dimensional
model recognition, due to the existence of the pooling layer, the structure and position
information will be lost in the convolution process. To solve this problem, many studies
have introduced vector representations into neural networks to maintain the rotation and
translation of features [7,23–25].

Hinton et al. [24] first proposed the idea of a capsule network. They proposed a
vector encapsulation method called “Capsule” and designed a method for dynamic routing
through a protocol, thus starting the latest work on this topic. Since then, many studies
have emerged by combining the routing with several well-known concepts, such as equal
variance clustering [26], Kullback–Leibler divergence regularization [27] and expectation–
maximum algorithms [28]. They have even been extended to the field of generation, such
as the combination of autoencoders [6] and generative adversarial networks [29].

However, up until now, the application of the capsule concept in the 3D domain
has been rather uncharted territory. In recent years, a small amount of groundbreaking
work has attempted to apply capsule networks to 3D data. Zhao et al. [7] proposed a
3D point capsule network that uses capsules to learn a specific part of an object, and
confirms that the capsule representation has the possibility of extracting semantics from
3D point clouds. However, this model only learns the mapping of three-dimensional
points to component-level capsules, and does not learn the combination of component-level
capsules. In addition, this method does not decompose features into pose and feature
components separately, which reduces its geometric interpretability. Recently, quaternion
equivariant capsule networks (QECN) [30] were proposed to specifically learn the pose
representation of objects. The model is built as a multi-level structure based on local
representations, where each local representation is modeled as a quadruple. However, the
model is learned through a supervised training method of category labels and relative
positions. Based on the QECN, the geometric capsule autoencoder (GCA) [25] uses an
unsupervised method to learn the entity representation from the 3D point cloud. In order
to allow each capsule to learn the posture and feature vector at the same time, the model
decomposes the representation of the posture and feature into a translation vector and a
quaternion vector tuple. Through the joint learning of posture and features, the feature
representation of the entire object is obtained.

Although the above methods have made pioneering contributions in the field of 3D
capsules, they do not apply the concept of capsules to 3D mesh models, much less consider
the combination between component capsules in a geometric sense using the local shape
information and topology of the mesh model.
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3. Methods
3.1. 3D Mesh Trans-Capsule Networks Architecture

We describe the overall structure of the proposed 3D mesh trans-capsule networks in
this section, and its structure is shown in Figure 1. Among them, the 3D shape transformer
is used to obtain the feature representation of the local shape and build the relationship
between each local patch. Then, multiple subspaces are formed through the multi-head
shape attention mechanism to expand the possibility of combining the underlying local
shapes, and realize the mapping encoding of the mesh model from local shape fragments
to large shape parts. Finally, we introduce a vector network to learn the mapping from
large parts to whole objects. Throughout the pipeline, we use vector representations to
build shape encoders that fully contain the spatial structure information of the 3D model.
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Surface
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Figure 1. 3D mesh trans-capsule network architecture. Our network accepts NX3 mesh data as
input. By sliding the window on the surface of the mesh model to obtain patches similar to the
two-dimensional image Transformer, and use a polynomial function to fit the three-dimensional data
in each partial window. We use the typical surface shape obtained by unsupervised learning as a
simple expression of Q and K, and perform the attention mechanism calculation on the shape data in
the local window to obtain the features. These features are then constructed as primary capsules, and
we then learn combinations between features through iterations of routing.

The input of the network is an N × d mesh data, where we set N to be the number
of points of the model in the data set and d to be the feature dimension of the input. In
many representative studies, N = 1024 or 2048 is usually set. Due to the experimental
environment, we set N = 700 in our paper. Nevertheless, our proposed model still has
excellent performance on the classification task of 3D non-rigid models.

For a typical 3D data set d = 3, but in order to reflect the connection information of
the mesh surface, we add the approximate geodesic distance so that d = 4. Similar to two-
dimensional vision Transformer, we use the surface mesh transformer network proposed in
this paper to extract local surface shape features. We use the local shape patches sampled
on the model surface as the input set, namely Q. In theory, Q and K come from the same
input. In order to reduce the computational cost, we perform unsupervised clustering on
the surface of the local window to obtain a typical shape patch, which is regarded as K. In
fact, the essence of Q and K is the same; we set the number of typical shape patches to C.
We realize the attention calculation by measuring the similarity between the local surface
window and the typical local shape. Then, we introduce a multi-head shape attention
mechanism to expand the possibility of combination between the underlying local shapes
and make the local combination information learned by the model more accurate. In order
to diversify the learning as suggested by capsule networks, we feed these feature maps
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which describe shape information into a point-wise multi-layer perceptron (C − 1024)
with different weights, each with a distinct summary of the input shape with diversified
attention. We then maxpool their responses to obtain a global latent representation. These
descriptors are then concatenated into a set of vectors named primary capsules. We then
use the dynamic routing to embed the primary capsules into higher level latent capsules.
Each capsule is independent and can be considered as a cluster centroid (codeword) of the
primary capsules.

3.2. 3D Shape Transformer

The goal of the entire 3D trans-capsule network design is to achieve the mapping of
local shapes to the overall model. We choose the Transformer model to realize the feature
learning of the local basic shape. Inspired by the local patch structure used by ViT and the
basic semantic information of words in NLP, we propose a local shape token representation.
This representation can describe the shape of local patches on the surface of the 3D mesh
model, thereby capturing local geometric features and obtaining semantic information.
This section mainly introduces the 3D local shape token representation and its feature
learning module 3D shape Transformer to show how to implicitly encode the geometric
and structural information of the local area in the mesh space.

3.2.1. The Definition of Local Shape Token

In this part, we mainly introduce the definition of local shape tokens and the similarity
measurement between local shapes. Similar to the two-dimensional ViT, we design a
sliding window on the surface of the grid model to obtain a local surface shape with a fixed
number of points and a variable grid size, and then regard it as an input element with a
similar position as the word in NLP, namely the shape token. Then, a specially designed 3D
patch-based Transformer module is used to extract local shape features of the mesh model.

Given a 3D mesh model MS, we define the local mesh window of the model as follows:
Taking the vertex vi in the model as the center of the local window, a breadth-first search is
used to obtain the first K− 1 neighboring vertices. We regard the mesh surface formed by
the selected vertices and the edges between the vertices as the local mesh window.

It is worth mentioning that our proposed local shape representation method is very
suitable for the feature description of non-rigid models because under normal circumstances,
the surface shape distribution of the 3D model changes very slightly during deformation.

We use the high-order polynomial equation F(vc | θ) = 0 to describe its shape in the
local coordinate system, where F(vc | θ) is the continuous function of the local surface, and
vc is the relative coordinate of the vertex in the window, and θ is defined as a parameter
of the function. During the experiment, it is found that if the window size K is set to be
too small, the surface shape tends to be uniform and difficult to distinguish, and when
K becomes larger, the inner surface of the window is more complicated. Therefore, the
approximate geodesic distance d of the vertex relative to the center of the window is used
in the fitting for a better description. Finally, we take vc = (x, y, z, d) as the window surface
fitting function.

F(vc | θ) = z−
(

θ0 + θ1x + θ2y + θ3d + θ4x2 +θ5y2 + θ6d2 + θ7xy + θ8xd + θ9yd
)

(1)

where the parameter θ = (θ0, θl , · · · , θ9) is calculated using the generalized least squares
method (GLS).

Given two different vertices vR and vT , the corresponding local surface functions MR
and MT centered on vR and vT are expressed as FR(vc | θR) and FT(vc | θT)) respectively.
We define the one-way shape difference distance from MR to MT as,

Diff(MR, MT) = ∑
vr∈MR

F2
T(v

c
r | θT) (2)
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where vr is an arbitrary vertex in the surface MR. In order to reduce the error caused by
fitting, we define the two-way shape difference distance between two local surfaces as,

Diff < MR, MT >=
1
2
[Diff(MR, MT) + Diff(MT , MR)] (3)

3.2.2. The Definition of Typical Local Shape Token

In the last section, we surfaced the local patch to form a shape token, and on this basis,
we calculate the self-attention mechanism. However, the self-attention mechanism needs to
calculate the similarity between tokens, which will cause a larger amount of calculation,
even more in three-dimensional data. In order to reduce the computational burden, we
consider replacing one of the query and key sequences with a typical shape token. The
typical shape token is essentially a representation of the original local shape, so this is
feasible. In this section, we introduce how to obtain a typical shape token.

Our typical local shape token method is inspired by the feature bag model. The bag-
of-features model is modeled after the bag-of-words method in the text retrieval field. Each
image is described as an unordered set of local patches/keypoint features. Use a clustering
algorithm (such as K-means) to cluster local features. Each cluster center is regarded as a
visual word in the vocabulary, which is equivalent to a word in a text search. The visual
vocabulary is represented by the code word formed by the corresponding feature of the
cluster center (can be regarded as a feature quantization process). In our method, the
local window is moved on the mesh model, the model is divided into a series of mesh
fragments, and a polynomial function is used to fit the shape of the fragments to form
shape patches. After modeling the feature packet model, we can describe each mesh object
as a disordered collection of these shape blocks. Clustering these local shape functions
by clustering method, each cluster center can be regarded as a typical local shape. These
typical local shapes can form a set of shapes (similar to a visual dictionary). In addition, in
our method, these typical local shapes can be regarded as shape tokens, so that the input of
each patch of the model can be described by shape tokens to form a local shape embedding
representation in a uniform spatial dimension.

The similarity matrix is the distance measure between any two shape complements
in the local shape set. The elements in the similarity matrix are constructed by the follow-
ing formula:

wij = exp(Diff < MR, MT >) (4)

where wij is the element in the similarity matrix W . On the basis of building this similarity
matrix, we use spectral clustering to obtain typical shape tokens.

After obtaining the results of the local mesh shape clustering, the clustering center, as
the “mean” of the same category mesh shape, is difficult to represent by a specific surface.
Therefore, this method uses the polynomial function F∗ as the shape representation of the
clustering center M∗. On the basis of the above clustering results, for each typical mesh
shape, Sn, its class center is M∗n, the shape representation is F∗n , and Sn-class local shapes
are used as the fitting data. Then, the parameter θn can be solved by using the least squares
method, and the parameter σ2

n is calculated according to the following formula:

σ2
n =

1
Numn − 1

Numn

∑
i

Di f f
(

MXi , M∗n
)

MXi ∈ Sn (5)

where Numn represents the number of surfaces classified as shape type Sn in the clustering
result. The detailed calculation method of the typical shape token is shown in Figure 2.
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Mesh model set

... ...

local shape representation
Green surface: Typical shape tokens

...

Preprocess
Unsupervised 

learning

Figure 2. Obtain typical shape tokens through unsupervised learning. In the experiment, one of the
models is randomly selected from each type of model and 10% of the vertices are taken as the center
of the local shape. After that, polynomial fitting is performed on the local shape and unsupervised
clustering of the surface set. The finally obtained cluster center is the typical shape token after
polynomial fitting.

3.2.3. 3D Shape Transformer

The first step in calculating self attention is to create three vectors from the input
vector of each encoder. For each token, we create a query vector, a key vector and a value
vector. These vectors are generated by multiplying the word embeddings by the three
training matrices created during the training process. The second step is to score the
corresponding words by using the dot product of the query vector and the key vector, and
the resulting score set is the attention weight. Then multiply each value vector by the score
after softmax. The actual meaning is to reduce the attention to irrelevant words while
keeping the attention degree of the current word unchanged. Finally, the attention feature
is defined as the weighted sum of all value vectors with attention weights. Obviously, the
output attention feature of each word is related to all input features, so the global context
can be learned.

In the design of the shape Transformer in this article, we respect the standard self-
attention mechanism to the greatest extent [5]. We also designed Qmesh, Kmesh, Vmesh se-
quences in our method. Essentially, Qmesh, Kmesh, Vmesh should also represent the shape
token as input. However, in order to reduce the space and time complexity, we define
Qi ∈ Qmesh as the initial local patch (ie shape token), Ki ∈ Kmesh as the simplified local
patch (i.e., typical shape token), and Vi ∈ Vmesh as the feature value of the local patch. For
the 3D mesh model without texture, we set the value of V to 1. The specific shape attention
mechanism can refer to Figure 3.

We first designed a similarity measurement mechanism for shape tokens. Unlike VIT,
which uses dot products to calculate the similarity between feature vectors, we specifically
designed the similarity att between shapes. Assume that the distribution of this type
of local shape in the 3D mesh model data set obeys the Gaussian distribution, and its
distribution variance is σ. Then, in a given three-dimensional mesh model, the probability
that the shape of the local shape token qi is similar to this type of typical local shape token
ki is

atti = Similarity(qi, ki) = P
(
qi | θki

, σ
)
=

1√
2πσ2

exp

(
−

∑vq∈qi
F2

ki

(
vq | θki

)
2σ2

)
(6)

In order to make the attention weight more stable, finally in the experiment, we take
the logarithm of the above formula to represent atti:

atti = ln P
(
qi | θki

, σ
)

(7)



Entropy 2022, 24, 678 9 of 18

Finally we use the regular Fout = Satti · V to obtain the output. In our experiment,
for a three-dimensional model containing texture features, V represents its feature value,
otherwise V is set to 1.

In summary, the calculation process of the 3D shape Transformer we designed is
shown in Figure 3. The local shape patch of the original data can be regarded as Q;
the typical shape token with the same geometric properties as Q can be regarded as K;
and the feature value of the local shape is V. The above calculation process becomes
a complete attention calculation, that is, the output value of the local shape patch1 is
b1 = concat(att1 · v1, att2 · v2, · · · attn · vn), where att = Similarity(q, k). It is worth noting
that our output b is no longer a value, but a set of vectors based on shape description.

att1=Similarity(q1,  k1) 

b1=concat(att1·v1, … ,attn·vn)

att1

attc Head 2

W2

...
Patch 1 

Patch n

Q K

Typical local 
shape 1 

...

Typical local 
shape c

v1

V

vc

X

X

...
b1

concat

...

att1

attc

W1

...
Patch 1 

Patch n

QK

Typical local 
shape 1 

...

Typical local 
shape c

v1

V

vc

X

X

...
b1

concat

...

Head 1

Figure 3. Shape attention. For a given mesh model, we first split the input 3D mesh object into patches
through topological connection information. Each patch is regarded as a “shape token”, denoted as
Q. A typical local shape token is a representative shape formed by unsupervised clustering learning
of shape tokens to reduce the computational burden. In essence, it still represents the original patch,
denoted as k. Then use the similarity between the shapes to calculate the attention weight. Finally, the
weight and the corresponding value vector are multiplied to obtain the output of the shape attention.

3.3. ShapesToShapes and ShapesToObject

According to the traditional method, this paper can perform feature extraction by
constructing a multi-level mesh Transformer, and the obtained features can be directly
connected to the classifier for classification. But there are still some problems here, that
is, the spatial combination relationship between the underlying shape features is not
considered. Since only the relationship between the local shape tokens is paid attention
to in the attention mechanism, and the neurons in the upper layer are passed as scalars
to the neurons in the lower layer (the scalar has no direction and cannot represent the
positional relationship between the upper layer feature and the lower layer feature). So
in our network, we treat the local surface shape as the lowest-level token representation
and design a special mesh attention mechanism for them. In order to learn the combination
and geometric positional relationship between the underlying shapes, we introduced
vector-type hidden units. This can not only express the 3D model with the intensity of the
characteristic response, but also characterize the geometric structure information of the
3D model.

In ShapesToShapes, we introduce a multi-head shape attention layer to ensure the
diversity of combinations between local shapes, and use a fully connected layer to realize
the mapping between local shapes and larger parts. In the subsequent ShapesToObject,
the dynamic routing mechanism is used to update the weights from one layer to the next
between each part of the shape capsule, so as to propagate the attributes captured by the
node capsule to the appropriate object capsule, and the mapping can achieve a larger part
to the whole object. Therefore, each model is modeled as multiple partial capsules, which
are then modeled as object capsules.
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3.3.1. Multi-Head Shape Attention Layer

On this basis, we propose a multi-head shape attention mechanism, as shown in
Figure 3, to form multiple subspaces, allowing the model to pay attention to different
aspects of information. This expands the possibility of combination between the under-
lying local shapes, and makes the local combination information learned by the model
more accurate.

Different from the conventional multi-head attention mechanism, we perform a sepa-
rate feature mapping for each subspace to maintain the diversity of relationships between
its local shapes, thus laying a good foundation for the formation of the subsequent primary
capsule layer. We think this is one of the reasons why the network of this article is effective.

3.3.2. Routing-by-Agreement

We encapsulate the shape feature information extracted by the 3D ShapeTransformer
into a primary capsule, and use a multi-layer routing-by-agreement to continuously map
the partial shape to the overall model, thereby constructing the relationship between the
part and the whole.

The reason why the dynamic routing algorithm is used to construct the local-to-holistic
mapping is because in the capsule network, the lower-level features (hands, eyes, mouth,
etc.) will only be transmitted to the matching upper-level. If the bottom features include
features similar to eyes or mouth, it will be transferred to the upper layer of the “face”; if the
bottom features include features similar to fingers, palms, etc., it will be transferred to the
upper layer of the “hand”. So we imagine that in the representation of the three-dimensional
model, we can also learn the combination of local shapes and the local-to-global mapping.

On the other hand we implement the dynamic routing algorithm for local parts to
whole object mapping, i.e., PartsToObject part, and the dynamic routing algorithm is
essentially a clustering method, which is in line with our idea of clustering from small parts
to large objects.

In the mechanism of dynamic routing, the capsules are not directly connected to each
other as in the case of full connectivity, but the output of the primary capsules generates a
prediction vector, which is later weighted and summed with the corresponding coupling
coefficients. The coupling coefficient cij is determined by the softmax function, while at the
beginning they initialize yij equal to zero. At that time, it does not show the relationship
between the capsule of the previous layer and the capsule of the next layer. The latest yij is
determined by the dot product of the previous yij and the output uij of the higher capsule.
Finally, according to the squashing function, the output of the capsule is obtained. Finally,
according to the squashing function, the output of the capsule is obtained.

Capsule networks allow multiple classifications to exist simultaneously, so the tradi-
tional cross-entropy loss function can no longer be used, but interval loss is used as the loss
function, and the interval loss formula is shown below,

Lk = Tkmax
(
0, m+ − ‖uk‖

)2
+ λ(1− Tk)max

(
0, ‖uk‖ −m−

)2 (8)

where Lk is the calculated interval loss; Tk is the existence value of the kth classification,
which is taken as 1 if it exists and 0 otherwise; m+, m−and λ are taken as 0.9, 0.1 and
0.5, respectively.

4. Results

To verify the effectiveness of the method in this paper, we conducted experiments on
the standard three-dimensional deformable mesh model data sets SHREC10, SHREC15
and the large dataset, Manifold40 .

4.1. SHREC10, SHREC15 and Manifold40

The SHREC10 dataset includes 200 non-rigid 3D mesh models in 10 categories. There
are 20 models in each category and the same models have rigid body transformation and
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non-rigid body transformation. In addition, in this dataset, the grid size of each 3D model
is relatively uniform. When training the network, randomly select 14 three-dimensional
models in each category as training samples, and the rest as test samples.

In order to further verify the effect of this method in more types of 3D model data sets,
experiments are carried out using the SHREC15 data set. The SHREC15 data set includes
1200 three-dimensional mesh models in 50 categories, each with 24 models, and each model
has rigid body transformation and non-rigid body transformation. When training the
network, randomly select 17 three-dimensional models from each category as training
samples, and the rest as test samples.

ModelNet40 [31], containing 12,311 shapes in 40 categories, is a widely used 3D ge-
ometry learning benchmark. However, most of the 3D shapes in ModelNet40 are not
watertight or 2-manifold, which will affect the selection and fitting of local shapes. There-
fore, we refer to article [32], which reconstructs the shapes in ModelNet40 and constructs
the corresponding Manifold40 data set, where all shapes are closed manifolds.

4.2. Shape Classification

The classification task is often considered a litmus test for evaluating a network because
a network that shows strong performance on the classification task can often be tuned to
achieve strong performance on other tasks. The purpose of shape classification is to classify
shapes into different classes. We evaluated the performance of our 3D mesh trans-capsule
network on shape classification tasks on two non-rigid model data sets SHREC2010 and
SHREC2015, and a large data set ModelNet40. Classification accuracy is measured using
80% training samples. These samples are randomly selected from each class as training
samples, and accordingly, the remaining shapes in each class are considered as test samples.
Our network achieves a correct classification rate of 100 on the SHEREC dataset at this ratio.
Therefore, in order to further verify the capabilities of our proposed model, we will explore
the impact of training and test samples at different ratios on the classification results in
subsequent experiments.

We show the classification results on the data sets SHREC10 and SHREC15 and Mani-
fold40 in Tables 1–3. We compared several methods aimed at using this data in different
representations and using different core operators. Compared with other methods, our
method achieves a classification accuracy of 100 on the SHEREC dataset. We believe that the
higher performance of the 3D mesh trans-capsule network comes from the interpretability
of the built model on the one hand. The model is designed based on imitating human
vision, not just the stacking of models. Another aspect may come from the compactness
of the structure. Due to its compactness, the training of the classifier is easy to converge,
especially when the number of training samples is limited. On Manifold40, the data set is
more challenging due to reconstruction errors and simplified distortions, and the accuracy
of all other test methods is reduced. The 3D mesh trans-capsule network is once again
superior to all grid-based methods on Manifold40.

Table 1. The classification results obtained by different methods under SHREC10.

Methods Input Accuracy

Shape-DNA [33] point 82.67
cShape-DNA [34] point 78.50

GPS-embedding [35] point 87.17
BoW [36] feature 65.94

BoSCCs [36] feature 85.99
3D MeshConv [37] mesh 94.37

Our method mesh 99.95
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Table 2. The classification results obtained by different methods under SHREC15.

Methods Input Accuracy

SVM+HKS [38] feature 56.9
SVM+WKS [39] feature 87.5
Shape-DNA [33] point 64.55
cShape-DNA [34] point 76.21

GPS-embedding [35] point 75.13
PointNet [40] point 69.4

PointNet++ [41] point 60.2
SpiderCNN [42] mesh 95.8

3D MeshConv [37] mesh 97.3
Our method mesh 99.90

Table 3. The classification results obtained by different methods under ModelNet40.

Methods ModelNet40 Manifold40

PointNet++ [41] 91.7 87.9
PCT [20] 93.2 92.4

SNGC [43] 91.6 -
MeshNet [17] 91.9 88.4

MeshWalker [44] 92.3 90.5
Our method - 93.7

4.3. Analysis of Parameters

The size of the local shape is defined as the size of the local area centered on each
vertex of the 3D mesh model, and its value will affect the feature extraction of the object.
Based on the mesh densities of different datasets, we set the size of local shapes on the
SHREC10 dataset to be 152, 256, 320 for ablation analysis. The sizes of local shapes on
the SHREC15 dataset are set to 96, 152, 256. The comparison of the classification results
obtained under different sizes of parts is shown in Figure 4. It can be seen from the figure
that in the dataset SHREC10, the local shape size value of 256 has the best experimental
performance. In the dataset SHREC15, the local shape size value of 152 has the best
experimental performance. We believe that too small local shapes are difficult to describe
more complex surface changes, and too large local shapes will lead to overly complex
shape descriptions, resulting in learning difficulties. In addition, the grid density results in
different local shape sizes in different datasets.

The typical local shape is a representation of the set of surface shapes in the entire
dataset, and is proposed as a way to optimize the computational efficiency of the Trans-
former. We also compare and analyze the classification accuracy under different numbers
of typical local shapes, as shown in Figure 4. We can find that the optimal classification
performance is achieved when the number of typical local surfaces is 30 in SHREC10 and
45 in SHREC15, respectively. We argue that the number of typical local surfaces obtained
by unsupervised clustering can largely describe the shape of the entire dataset. Too many
typical local surfaces require the Transformer to perform more complex self-attention
calculations, that is, more 3D models are required for training.
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Figure 4. The effects of local size and number of typical local shapes on the classification accuracy on
datasets of SHREC10 and SHREC15, respectively.

4.4. Robustness on Different Resolutions

The essence of our proposed method is to consider the distribution of different local
surface shapes on the model. Compared with MeshCNN based on edge features, our
method has a good recognition effect on models of different resolutions. This is due to the
use of surface polynomial expressions with few parameters and strong expressive ability.
In order to verify the effect of our method under different model resolutions, we simplified
the model to different magnitude points for classification experiments.

In the experiment, we used the classic quadric error metrics (QEM) algorithm [45]
to simplify the mesh model. This mesh simplification method can effectively reduce the
number of vertices of the complex mesh while retaining the topological characteristics
of the original mesh and can customize the reduced number of vertices. The above two
advantages can ensure that our model is simplified to the same vertex order, and the
topological shape is kept unchanged, which provides convenience for our comparative
experiments. The simplified result is shown in Figure 5.

We reproduce the method in this paper on models of 10,000, 2500, and 700 points,
respectively, and the final classification accuracy is shown in Table 4. It is not difficult to
find that our method will work no matter whether the resolution is high or low, as long as
the surface shape of the model can be roughly unchanged.

10000points 2500points 700points 10000points 2500points 700points

Figure 5. Ablation experiment. The method we propose is based on shape representation, so it still
has good results for many simplified models or models with few points. We cited examples of lamp
and Sumotori, and showed that their partial shapes were simplified and kept consistent. The first
column of the model has 10,000 points, the second column has 2500 points, and the third column has
700 points.

Table 4. Classification accuracy of different resolutions on SHREC10 and SHREC15.

Methods 10,000 points 2500 points 700 points

SHREC10 99.97 99.95 99.95
SHREC15 99.94 99.93 99.90
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4.5. Robustness on Different Ratios of Training Set/ Test Set

The current three-dimensional data sets generally have a small sample size, which
causes difficulties for network training. For learning with a small number of samples, one
solution is data enhancement, and the other is to optimize the network. In the course of the
experiment, we found that the method proposed in this paper can obtain features with a
large degree of discrimination, and it can still work well when the number of training set
samples is small. In order to verify that our method can still have good robustness under
a small sample data set, we continuously reduce the proportion of the training set and
observe its corresponding accuracy. We compare the SHREC10 and SHREC15 data sets
when the ratio of the training set to the test set are 1/9, 2/8, 3/7, 4/6, 5/5, 6/4, 7/3, 8/2.
The experimental results are shown in Figure 6.

We can find that for the data set/SHREC10, when the training set/test set is 5/5, the
classification accuracy of the network has reached a satisfactory result. Even in SHREC15,
when the training set/test set is 3/7, the classification accuracy of the network is al-
most 100%.
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Figure 6. In order to verify that our method can still have good robustness under a small sample data
set, we continuously reduce the proportion of the training set and observe its corresponding accuracy.
We compare the SHREC10 and SHREC15 data sets when the ratios of the training set to the test set
are 1/9, 2/8, 3/7, 4/6, 5/5, 6/4, 7/3, and 8/2.

4.6. Ablation Experiment of Each Part in The Network Structure

The method proposed in this article mainly includes three parts, namely: 3D Shape-
Transformer, ShapesToShapes, ShapesToObject. The first part, ShapeTransformer, obtains
the local shape features of the model through a novel mesh Transformer method. The sec-
ond part, ShapesToShapes, combines the local shapes on the model by designing different
multi-head shape attention layers. The last part, ShapesToObject, uses the dynamic routing
mechanism to map the shape feature to the entire object. In order to verify the effectiveness
of each part, we performed related ablation experiments.

3D Shape Transformer. In this part, we design three sets of ablation experiments: the
first one is based on the basic Pointnet, where each point is connected with an MLP to
form a latent feature vector; the second is part of our proposed method, which fits the
local shape by a polynomial and obtains the latent eigenvectors based on the polynomial
parameters; the third one is the method proposed in this paper. On the basis of the second
case, a specially designed attention mechanism is added, through which various potential
feature vectors can be obtained.

Through the different network inputs designed above, we obtained the model clas-
sification experimental results, as shown in Table 5. Taking SHERC10 as an example, the
comparison is performed with different front-end inputs under the same experimental
architecture. When the input is only 3-dimensional vertex coordinates, the classification
accuracy is only 58.7 when having local division and using multi-display parameters as
input, the correct rate increases to 89.7 while applying the mesh Transformer proposed in
this paper as the front-end input, the correct rate reaches 100. The same trend is observed
on the SHREC15 dataset. This proves that our proposed 3D ShapeTransformer part plays a
considerable role.

Shapes To Shapes. Inspired by the two-dimensional capsule network, we also hope
to combine partial surface shapes into large parts in the three-dimensional model, and
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finally form the structure of the entire object. In order to solve the problem of combining
local surface shapes into larger parts, we conducted experiments and comparisons with or
without multi-head shape attention layer in the network.

The experimental comparison results are shown in Table 5. On the dataset SHREC15,
the classification accuracy reaches only 23 when we remove the multi-head shape attention
layer part, and similarly, on SHREC10, removing the multi-head shape attention layer part
makes the classification accuracy drop to 53.2. This is good proof that the multi-head shape
attention layer is an indispensable part in our network.

Shapes To Object. The core idea of the dynamic routing algorithm is to increase the
weight of the input vector that is highly similar to the output vector. In essence, it can be
regarded as a weight distribution process or a clustering process. The higher the similarity,
the characteristics of this category will be highlighted. We designed two comparative
experiments to prove the importance of ShapesToObject. One is to input the features into
the classic PointNet classification network, and the other is to input the capsules containing
shape information into the dynamic routing proposed in this paper to perform higher-level
feature combination. The experimental results are shown in Table 5.

From the experimental results in the table, it can be seen that the introduction of
ShapesToObject has improved the accuracy of 3D model classification regardless of the data
set SHREC10 or SHREC15. The classification accuracy was increased from 88.9 and 93.2 to
100, respectively. A large part of the reason is because in PointNet, features are expressed
in scalar form, and MLP is introduced to map and combine scalar features. Although this
method has good performance on recognition tasks, it loses the most natural features of the
3D model, such as spatial structure information. However, ShapesToObject clusters and
maps vector features. Due to the preservation of the spatial structure, the designed neural
network can easily achieve excellent classification results.

Table 5. Ablation experiment of each part in the network structure.

DataSet 3D ShapeTransformer ShapesToShapes ShapesToObject

SHREC10

Input Accuracy Input Accuracy Input Accuracy

3D points
(3 dimensions)

58.7 ShapeTransformer value
as primary capsule

(without multi-head shape attention layer)
53.2

PointNet 88.9

Surface parameters
(10 dimensions)

89.7 Routing-by-agreement 99.95

ShapeTransformer value
(N dimensions)

99.95 multi-head shape attention layer 99.95 - -

SHREC15

3D points
(3 dimensions)

90.2 ShapeTransformer value
as primary capsule

(without multi-head shape attention layer)
23.0

PointNet 93.2

Surface parameters
(10 dimensions)

93.8 Routing-by-agreement 99.90

ShapeTransformer value
(N dimensions)

99.90 multi-head shape attention layer 99.90 - -

4.7. Time and Space Complexity

Table 6 shows the time and space complexity of our network with several representative
methods for classification tasks based on other types of data. Params shows the total number
of parameters in the network, and FLOPs shows the number of float operations performed
for each input sample, which represent the space and time complexity, respectively.

It can be seen from the comparison that our method has a common problem with the
Transformer model, that is, the computational time complexity is high. This is because
Transformer needs to calculate the similarity between each input token, so the computa-
tional complexity is higher. However, because our method introduces local shape tokens,
the parameters of the network are lower than PointNet and MeshNet while still ensuring
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excellent performance in classification experiments. Since the capsule part of our network
adopts dynamic routing for multiple iterations for feature clustering, it is higher in terms
of the number of operations, but still within the acceptable range.

Table 6. Time and space complexity of classification on the SHEREC15 dataset.

Method Input Acc Params FLOPs

PointNet [40] point 69.4 3.5M 0.44G
MeshNet [17] mesh 90.4 4.251M 0.509G
MeshCNN [2] mesh 91.7 1.323M 0.498G
Our method mesh 99.9 2.42M 0.965G

5. Conclusions

We propose a three-dimensional mesh trans-capsule network combined with vector
representation based on the natural interpretable geometric shape information of the model.
The network mainly consists of three parts, namely, 3D ShapeTransformer, ShapesToShapes
and ShapesToObject. Among them, 3D ShapeTransformer is used to extract the local
shape information of the mesh model surface; ShapesToShapes is used to achieve the
combination of small surface shapes to large part shapes; ShapesToObject is based on
vector-based feature representation and encodes the mapping of parts to a whole. We verify
the effectiveness of the vector network proposed in this paper through the classification
experiment of the three-dimensional deformation model. Experimental results prove that
this method performs well on both SHREC10, SHREC15 and ModelNet40 data sets, and
has good generalization and robustness. In future work, we hope to extend the method
proposed in this paper to the field of unsupervised learning and realize the generation of
3D mesh models based on local shapes.
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