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Abstract: Current flu vaccines rely on the induction of strain-specific neutralizing antibodies,
which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains.
Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of
influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident
memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore
be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu
immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans
and different animal models. Furthermore, we provide an update on preclinical and clinical studies
evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life
vaccine policies.

Keywords: influenza; vaccine; influenza vaccine; T cells; tissue-resident memory T cells; TRM;
universal flu vaccine

1. Introduction

Influenza viruses are a constant threat to the world community. Globally, 290,000–
650,000 seasonal influenza-associated deaths are estimated with the highest mortality rate
in sub-Saharan Africa and southeast Asia [1]. The classical risk groups include very young
children, the elderly, and individuals with co-morbidities [2–4]. In addition to seasonal
epidemics, influenza A viruses (IAVs) occasionally cause pandemic outbreaks. While
the “Spanish flu” from 1918 was the most devastating of these pandemics, with an esti-
mated 50 million deaths [5], the most recent H1N1 pandemic in 2009 was only moderately
pathogenic. Although not caused by a flu strain, the 2020 severe acute respiratory syn-
drome coronavirus type 2 (SARS-CoV-2) pandemic has revealed the dramatic impact of
an emerging respiratory pathogen on healthcare, social life, and the economy in the 21st
century.

Influenza viruses belong to the Orthomyxoviridae family, and consist of the four genera
A, B, C, and D, with IAV and influenza B virus (IBV) being most relevant for human disease.
IBV has a limited host range and strain diversity (Yamagata and Victoria lineages), and
does not cause pandemics. In contrast, the genetic instability of IAV constantly creates
new virus lineages and subtypes. The error-prone viral polymerase of IAV and IBV lacks
a proofreading activity, leading to a continuous accumulation of mutations, especially in
the surface proteins hemagglutinin (HA) or neuraminidase (NA) [6,7], while the internal
virus proteins remain more conserved. This phenomenon called “genetic drift” allows
the genetic evolution of seasonal flu strains. “Genetic shift” occurs only in IAV, and
describes the exchange of one or more gene segments among different IAV strains upon
superinfection, leading to novel virus subtypes. By this mechanism, novel viruses can
emerge against which weak or no herd immunity exists in the human population [8]. Thus,
the ongoing drift of seasonal flu strains and the occasional emergence of IAV pandemics
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are a constant threat to the world community. While current vaccines elicit mainly strain-
specific protection, there are substantial efforts to develop a universal influenza vaccine.
This review summarizes recent flu vaccine strategies and their shortcomings, the potential
of cross-reactive T cell responses in flu immunity, and the remaining challenges for the
clinical use of T cell-evoking influenza vaccines.

2. Current Influenza Vaccines

Vaccines are considered to be the most cost-effective health care intervention against
flu. Currently, two types of seasonal vaccines are licensed: tri- or quadrivalent inactivated
vaccines (TIV/QIVs) and live-attenuated influenza vaccines (LAIVs). Both types combine
antigens from two IAV (H1N1 and H3N2) and one or two IBV strains (Yamagata and/or
Victoria). HA-directed neutralizing antibodies (nAbs) are the major immune correlate
induced by those vaccines, and the hemagglutination inhibition assay (HAI) is routinely
used to measure this correlate of protection (COP) in blood samples. However, an HAI
titer is insufficient for capturing the whole entity of “flu immunity” [9], nor does it seem to
be a good predictor of immunity in all age groups [10–12]. More recently, the analysis of re-
sponses to H3N2 viruses seem to be problematic in HAI assays [13–15]. In addition, widely
used TIV/QIVs suffer from major obstacles, like a low vaccine efficacy (VE), especially
in the elderly, and the need for annual vaccine adaptions due to the genetic instability of
HA. As a result, current vaccines yield VEs below 70%, and can even approach zero if the
vaccine does not match the circulating strain [16–18].

As early as 1944, an inactivated flu vaccine was developed by Thomas Francis and
colleagues [19]. Remarkably, the basic principle of IAV vaccines produced in embryonated
chicken eggs (ECEs) is still used nowadays, although significant problems arise from this
vaccine production system, like the enormous demand for synchronized, pathogen-free
chicken eggs, the time-consuming production cycle, mutations in the HA antigen due
to egg adaption, or compatibility problems of some flu strains with ECE, to name a few.
However, some improvements of TIV/QIV have been made lately. To increase VE in
the elderly population, high-dose influenza vaccine formulations and specific adjuvants
augment immunogenicity in this most vulnerable age group [20–22]. Cell culture-derived
vaccines, like the recombinant influenza vaccine Flublok, generated in insect cells, and the
inactivated mammalian cell-grown vaccine Flucelvax, entered the marked recently and
decrease the demand for chicken eggs [23,24]. However, significant obstacles regarding the
annual vaccine adaptions still exist with these technologies.

The need for seasonal adaptions also remains with LAIV. Such live-attenuated and
temperature-sensitive IAV strains are produced by reverse genetics in chicken eggs, using
six segments from the temperature-sensitive master donor strain and the HA/NA segments
from the respective WHO vaccine recommendation. Administered as a nasal spray, these
viruses can replicate to some extent in the colder upper respiratory tract, while they are not
able to spread to the warmer lower respiratory tract [25,26]. Importantly, LAIVs induce
not only classical HAI responses, but in contrast to TIV/QIVs, also local antibodies and
cross-reactive T cell immunity specific for conserved internal influenza proteins. LAIVs
thereby induce a broader immunity against divergent IAV [27,28]. However, while being a
proof-of-principle for T cell-mediated heterologous immunity (Het-I), LAIVs do not present
a vaccine option for all age groups, and they suffer from low VEs in some seasons [29–31].

3. Heterologous Immunity by T Cells

Due to the drawbacks of current flu vaccines, the research community has invested
great effort into finding vaccine strategies that induce a universal or at least substantially
broader immunity. T cell and antibody responses may both provide this broad immunity,
but a combination of both might presumably be the most effective strategy. However, due
to the topic of this review, we will focus on T cell-mediated Het-I. Others provide a more
detailed picture about antibody-eliciting approaches [32].
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As early as 1965, Jerome Schulman and Edwin Kilbourne observed that mice recovered
from a previous H1N1 infection were partially protected against mortality, virus replication,
and lung tissue damage following H2N2 infection [33]. Immunization with inactivated
H1N1 was not able to induce Het-I, indicating that humoral responses are not sufficient for
the protection. Later animal studies have proven the essential role of cross-reactive T cells
for such infection-induced Het-I [34–39]. Almost forty years ago, McMichael and colleagues
generated the first clinical data about Het-I by concluding from a human challenge study
that cross-reactive, cytotoxic T cells can suppress nasal virus replication efficiently [40].
More recently, the 2009 H1N1 pandemic provided the unique chance to investigate the
impact of pre-existing T cells on infections with a newly emerged pandemic IAV strain in
a naturally exposed study population lacking protective antibody responses. One study
detected IAV-specific T cell responses at baseline in 43% of the study population, and
could prove that the presence of nucleoprotein (NP)-specific T cells correlated with a
threefold decreased chance of acquiring a symptomatic, PCR-confirmed IAV infection [41].
Along this line, Sridhar et al. reported that pre-existing, cross-reactive T cells specific for
polymerase basic protein 1 (PB1), matrix 1 protein (M1), and NP were inversely associated
with illness severity in case of an infection with the novel H1N1 [42]. More specifically,
the frequency of IAV-specific, cytotoxic (interferon-γ+, interleukin-2–), and lung-homing
(CD45RA+CCR7−CD8+) T cells showed the strongest inverse correlation to symptom
scores. CD4+ T cells were shown to correlate with disease protection as well [43]. In mice
and humans, CD8+ T cell responses are predominantly focused on internal virus proteins
like NP, polymerase (PA), PB1, polymerase basic 2 (PB2), and M1, while CD4+ T cell
responses are more diverse, recognizing the surface proteins HA and NA as well [44–55].
Although the internal virus proteins are generally considered as more conserved than the
surface proteins, viral escape through immune pressure can happen; however, it seems to
be connected to a loss of viral fitness, as shown for NP [56,57].

4. Flu Immunity by Tissue-Resident Memory T Cells in Animal Models and Humans

When Schulman and Kilbourne conducted their studies in 1965, they could not know
that they had observed T cell-mediated Het-I. This specific knowledge was just not available
at that time. As immunology has made much progress in the recent decades, we can tell
today that they not only did observe T cell immunity, but this immunity was probably also
provided by tissue-resident memory T cells (TRMs).

Today we know that T cell responses are diverse in terms of functionality and spatial
distribution. For CD8+ T cells, effector and effector-memory T cells (TEFFs and TEMs,
respectively), central memory T cells (TCMs), and TRMs exist [58]. While the rather short-
lived effector populations have access to peripheral tissues, including the lung, allowing
them to directly fight invading pathogens by their cytotoxic functionalities, TCMs are
longer-lived and predominantly circulate among lymph nodes to accelerate anamnestic
responses in case of reinfection. In contrast to these circulating subsets, TRMs stably reside
at the tissue of the primary infection [59,60].

Studies in mice have proven the essential role of lung CD8+ and CD4+ TRMs in
providing Het-I against secondary IAV infections. Although localized T cell responses
cannot prevent an initial infection like nAbs can do, they restrict virus replication, disease
severity, and lung pathology [60–63]. However, CD8+ TRM responses in the lung tissue
wane over time. Wu et al. found a substantial loss of TRM immunity within seven months
after the primary infection [62]. Work from Takamura and colleagues suggests temporary
TRM niches in the lung at the foci of tissue regeneration, because the disappearance of those
repair-associated memory depots (the authors call them RAMDs) parallels the waning
of TRM responses [60]. Moreover, lung CD8+ TRMs seem to be prone to apoptosis [64].
Interestingly, lung CD4+ TRMs occupy different niches than CD8+ TRMs in the airways
and around B cell follicles, and seem to be more stably maintained [60,65,66].

TRM populations can differ phenotypically due to tissue-specific adaptions, but two
commonly used markers are the C-type lectin CD69 and the integrin CD103. Both markers
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are expressed on murine CD8+ TRM cells in the respiratory tract [60,62,67]. Apart from
this constitutive expression of adhesion molecules, the limited ability of TRM to recirculate
is further caused by a lack of molecules that enable tissue egress and promote migration
towards lymphatic tissues, such as S1PR1, CCR7, or CD62L. Accessory TRM markers
like CD11a, CD49a, or PD-1 have been described as well [62,65,66,68]. However, the
exact phenotype and the mechanisms that maintain specific TRM populations might differ
depending on the inductive conditions. Even different immunodominant T cell clones
against the same pathogen might show divergent transcriptomic profiles [67]. Lung CD4+

TRM populations and their phenotypes are substantially less well studied. Nevertheless,
CD69 is a stringent marker for resident CD4+ T cells, while CD103 might indicate a
regulatory phenotype rather than being a good marker for effector TRMs [61,69,70]. Apart
from phenotypic occurrences, intravascular staining can be used to delineate TRMs from
circulatory T cells [71].

Mouse models provide several advantages for immunological research, like the avail-
ability of tools and transgenic strains or economic husbandry. However, mouse models
do not optimally represent human IAV disease, immunology, or lung anatomy. Thus, in a
translational regard, other animal models might be more suitable to study TRM-mediated
flu immunity. Particularly important for TRM research, methods to define and quantify
localized T cell populations like parabiosis [59–61], intravascular staining [71], or specific
phenotypic profiles were first established in mice, but can be principally transferred to
less common laboratory animals (although parabiosis is technically difficult and ethically
controversial). In the following, we will discuss the current knowledge about respiratory
TRMs in other animal models and in humans (Table 1).

Table 1. Current knowledge about respiratory tissue-resident memory T cells (TRMs) in different species.

Respiratory
TRMs

Reported

Methods Used
to Define

TRMs

Phenotype
(Accessory
Markers)

Induced by Contribution
to Het-I Refs

Mouse Yes, CD4+ and
CD8+

Intravascular
staining,

parabiosis,
phenotyping,

transcriptomics

CD69+CD103+/−

(CD11a, CD49a,
PD-1, CD127,

CXCR6)

Infection,
vaccination

Yes, both CD4+

and CD8+

TRMs provide
Het-I

[59–62,72–75]

Ferret Yes, CD4+ and
CD8+

Lung perfusion
to exclude

vascular T cells

n.d.,
but tools
available

Infection Correlation [76–78]

Domestic pig Yes, CD4+ and
CD8+

Intravascular
staining (CD27–CCR7–) Infection,

vaccination Correlation [79–82]

NHPs Yes, CD4+ and
CD8+

Intravascular
staining,

phenotyping
CD69+CD103+/− Infection n.d. [83,84]

Human Yes, CD4+ and
CD8+

Phenotyping,
transplantation,
transcriptomics

CD69+CD103+/−

(CD49a,
CXCR3, CCR5,
CCR6, CXCR6,
CD101, CD97,
CTLA-4, PD-1)

Pre-existing,
infection

n.d.
(correlation of
airway CD8+

TRMs in RSV
clearance)

[74,85–90]

n.d.: not determined; NHPs: Non-humane primates; RSV: respiratory syncytial virus.

As early as 1933, ferrets were shown to be permissive to human influenza strains [91].
Nowadays, ferrets are a valuable model organism to study flu disease and novel vaccine
candidates, due to their similarities in IAV pathogenesis and transmission compared
to humans [92,93]. Immunologic studies in ferrets have been hampered so far by the
lack of relevant reagents. However, efforts have been made to identify commercially
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available antibodies with cross-reactivity in the ferret model, leading to a basic selection of
reagents [76,94]. A further expansion of this toolbox to analyze adaptive immune responses
in ferrets is part of the strategic plan for a universal flu vaccine, communicated by the
National Institute of Allergy and Infectious Diseases [95]. Several studies have shown that
Het-I in ferrets induced by experimental infections, leading to reduced pulmonary virus
replication and virus transmission to naïve ferrets [81,96–103]. TRMs were unfortunately
not investigated in these studies. Also, a recent study demonstrated Het-I after H1N1
infection against a secondary H2N2 challenge [78]. Animals with pre-existing immunity
experienced reduced virus replication, weight loss, and fever (a symptom not evident
in mice, since they get hypothermic upon infection). The analysis of systemic T cells
exposed cross-reactive responses biased towards the recognition of NP, non-structural
protein 1 (NS1), and PA. Mucosal T cells were not analyzed after the priming infection.
However, the authors established lung perfusion in ferrets to remove blood contaminations
from the respiratory organ (although perfusion is not an optimal method to identify lung
TRMs [71]) and isolated flu-specific T cells from the nasal turbinate and lung tissue after
the secondary infection, which at least suggests the establishment of local T cells after IAV
infections in ferrets. Intravascular staining or a rough phenotypic analysis, both feasible
with available antibody clones against CD3, CD4, CD8, CD103, CD11a, and Ly6C [76],
were not conducted.

H1N1, H1N2, and H3N2 strains are endemic in pig populations all over the world [104,105],
and domestic pigs are a source of pandemic IAV strains, while also being economically of great
importance. Therefore, this model organism is increasingly used in flu research, as outlined
in a separate review [106]. Importantly, pigs show several anatomical and immunological
similarities to humans [107]. Similar to the ferret model, the immunological toolbox is limited,
but has grown in recent years for example by the identification of immunodominant T cell
peptides and the development of respective MHC-multimers for NP, HA, NA, M1, and PB2-
specific CD8+ T cells [80,108,109]. LAIVs are licensed for vaccination in pigs [110] and induce
protection against matching and divergent IAVs [111–113]. T cell responses were not assessed
in these studies, but others report an induction of T cells by LAIV vaccination [114–116] and
by experimental infection with H1N2 [117]. Tungatt and colleagues used newly developed
swine multimers to stain NP-specific CD8+ T cells in blood, lymph node, and bronchoalveolar
lavage (BAL) samples of IAV-experienced pigs [80]. The latter ones showed the greatest T cell
responses, with up to 13% multimer-positive cells. A separate study demonstrated that 90% of
BAL T cells are protected from intravascular staining, suggesting that this population is mainly
composed of TRM cells [81]. In contrast, T cells isolated from lung tissue contained only about
40% TRMs, indicating significant contamination by vascular T cells, as commonly described in
mouse models [71]. Moreover, a rough phenotypic analysis of BAL TRM in pigs showed a
predominant CD27–CCR7– phenotype [82].

Non-human primates (NHPs) are the animal model with the highest degree of sim-
ilarity to humans [118,119]. In particular, their adaptive immune systems are largely
comparable and therefore NHPs present a valuable model for viral infections [120]. Like-
wise, human immunological reagents often show cross-reactivity to NHPs, resulting in
a diverse toolbox. On the other hand, NHP models are expensive, and ethical aspects
must be considered. This might be the reason why, despite great advantages, they are not
used extensively to study (mucosal) flu immunity. Nevertheless, T cell-mediated Het-I has
been reported in macaques [121,122]. The work of Pichyangkul and colleagues demon-
strated a significant induction of local humoral and cellular responses following pulmonary
exposure to the 2009 pandemic H1N1 virus [83]. NP-specific CD69+CD103+ lung TRMs
(both CD4+ and CD8+) were highly prevalent in the lung, while only marginally found in
blood. Another study described TRM phenotypes induced by Mycobacterium tuberculosis in
macaques via intravascular staining and reported the expression of CD103 and CD69 on
BAL und lung TRMs [84].

The analysis of localized T cell responses directly in human tissues is most meaningful
regarding clinical applications. However, the investigation of human TRMs is difficult,
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since most immunological methods used in preclinical research are not applicable to
humans. Thus, so far no direct investigation of TRM-mediated protection against flu
infections has been conducted, but some insights could be generated in BAL samples, lung
tissue biopsies [85,86,88,90], and human cadavers [74,87], as well as in the context of lung
transplantation [123]. These studies have shown that CD4+ and CD8+ TRMs in the airways
and lungs express CD69 and less stringently CD103. Other studies could further define
accessory markers like chemokine receptors (CXCR3, CCR5, CCR6, CXCR6), adhesion
molecules (CD49a, CD97), and checkpoint molecules (CTLA-4, PD-1) [86,88]. In a seminal
study, Snyder et al. followed lung transplant recipients longitudinally for the maintenance
of existing TRM phenotypes in the donor organ and the de novo generation of new TRM
populations [89]. Donor TRM populations persisted for more than 15 months after lung
transplantation, and expressed canonical TRM markers like CD69, CD103, CD49a, and PD-
1. Two studies from Christopher Chiu’s lab investigated CD8+ and CD4+ TRM responses in
experimental human respiratory syncytial virus (RSV) infection [85,90]. Immune responses
were assessed longitudinally in BAL samples showing an accumulation of CD69+CD103+

TRM cells in the airways after convalescence. Moreover, the CD8+ TRM responses before
the challenge correlated with reduced symptoms and viral replication. BAL CD4+ T cells
were mainly CD69+, and about 20% showed additional expression of CD103. Thus, these
studies reported protective effects of airway TRMs against human respiratory viruses for
the first time. Similar experimental human challenge studies are essential to investigate
TRM-mediated immunity against influenza.

5. Vaccine Strategies that Establish Pulmonary TRM Responses

In contrast to current IAV immunization strategies, which primarily induce humoral
responses, numerous preclinical vaccine candidates exploit T cell immunity to induce
protection against a broad spectrum of IAV strains. Considering the important contribution
of localized T cell responses to Het-I, several strategies aim at the induction of TRM re-
sponses in the respiratory tract. A main prerequisite for respiratory TRMs is a local delivery
of antigens [60,62,63] or specific adjuvants that bypass the need for local antigens [124].
Nevertheless, one of these vaccine components must be administered into the airways.
Moreover, an induction of lung CD8+ TRMs relies on antigen cross-presentation by den-
dritic cells (DCs), mainly by migratory CD103+ type I conventional DCs [125]. This antigen
cross-presentation is much more efficient after genetic vaccination, leading to endogenous
antigen production in the host, compared to protein- or peptide-based strategies that need
further enhancement by adjuvants or other mechanisms.

Several genetic vaccine platforms have been established for intranasal delivery, such
as DNA formulated with polyethylenimine [126,127], adenoviral vectors [75,128–132],
recombinant Sendai virus [133,134], modified vaccinia Ankara virus (MVA) [135], or murine
cytomegalovirus vectors [136]. By the vector-driven expression of conserved internal flu
proteins, all these approaches (and many more not mentioned here) are able to induce
Het-I. However, the extent of lung TRM establishment might differ among these platforms.
Even vectors based on different subtypes of the same virus family evoke divergent immune
profiles [137]. Thus, an induction of lung TRMs per se might not be problematic with genetic
vaccines, but the amplitude and the long-term maintenance are parameters to be improved
by refined strategies. First, an increased number of initial TRMs could lead to longer
maintenance of the protective levels of T cell immunity. The co-delivery of inflammatory
factors in genetic vaccinations has been used extensively to modulate systemic immune
responses [138–145]. We could show that the mucosal co-delivery of interleukin (IL)-1β can
increase the induction of lung CD4+ and CD8+ TRMs significantly [73], thus illustrating that
genetic adjuvants might be an important tool to boost TRM responses. Second, repetitive
intranasal immunizations over time can maintain and refresh the existing TRM pool [146].
Third, optimized heterologous prime-boost regimens or even simultaneous immunizations
at different body sites might lead to synergistic effects between local and systemic immune
responses to ensure long-term immunity [147].
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When it comes to protein- and peptide-based vaccines, additional tricks must be
exploited to enhance the induction of T cell immunity in the respiratory tract, especially
regarding CD8+ TRMs. Some of these tricks rely on the use of specific adjuvants or
antigen-targeting to cell types of interest. Wakim and colleagues used an antibody-targeted
intranasal vaccination to specifically address a model antigen to CD103+ DCs. As a result,
antigen-targeting to Clec12a or Dec205 could increase induction of CD103+ CD8+ TRM
cells in the lung, leading to improved protection against a subsequent IAV challenge [148].
Another study from the same lab describes the use of zymosan as a mucosal adjuvant,
allowing an establishment of CD103+CD69+ CD8+ TRMs independent of local antigen ap-
plication to the lungs [124]. However, both studies used a model where in vitro activated, T
cell receptor-transgenic T cells were administrated before immunization. The physiological
priming process of naïve CD8+ T cells was not assessed in these models. Therefore, it
would be interesting to see whether these strategies work in a less artificial vaccination
setting as well. Another study used the conserved matrix 2 protein ectodomain fused to
a protein-adjuvant called CTA1-DD (cholera toxin A1 derivative and S. aureus fragment
D dimer) as an intranasal vaccine [69]. The vaccine induced CD103low CD69+ CD4+ TRM
responses that were crucial for flu immunity, and the protective effects partially relied on
IL-17A production. These data illustrate the important role that CD4+ TRMs can play in
Het-I and the feasibility to induce protective levels of CD4+ TRMs by protein vaccines.

6. Clinical Studies of T Cell-Inducing Flu Vaccines

While numerous vaccine strategies that evoke cross-reactive T cell responses have been
developed in animal models, a fairly low number also progressed towards human clinical
trials. Even fewer of these studies have exploited local or mucosal administration strategies.
A comprehensive review about clinical trials with universal flu vaccine candidates is given
elsewhere [149]. Here, we will predominantly focus on vaccines intended or expected to
induce T cell responses and for which clinical data have already been published.

A few trials evaluated epitope-based peptide vaccines, but so far none of them have
induced efficient protective immunity. Flu-v consists of conserved peptides derived from
M1, M2, and NP formulated with Montanide ISA-51 as an adjuvant. The vaccine induces
cellular immunity in humans, and could reduce symptoms and viral shedding in a small
human challenge study [150,151]. A recently published phase IIb study showed only
a limited capacity of the vaccine to protect against mild to moderate influenza disease
in experimental infections. One but not two vaccine doses reduced disease burden, but
an impact on virus shedding could not be found in any of the vaccinated groups [152].
BiondVax’s Multimeric-001 peptide vaccine contains nine conserved B cell, CD4+, and
CD8+ T cell epitopes from HA, NP, and M1 of IAV and IBV [153]. While it has been proven
safe and immunogenic, recent data from a phase III trial (NCT03450915) with more than
12,000 participants did not demonstrate significant VE against flu infections [154]. Another
peptide vaccine is FP-01.1, which combines peptides from NP, M1, PB1, and PB2. Two doses
of the vaccine, given four weeks apart, resulted in a responder rate of 83% in the high-dose
group. CD4+ and CD8+ T cell responses against the conserved vaccine immunogens were
induced and peaked at day 7 post-immunization. By now, no data about longevity of
the immune responses or VE were published, but an experimental challenge study was
conducted (NCT02071329).

If the induction of strong CD8+ T cell responses is desired, genetic immunizations with
DNA, RNA, or viral vectors that lead to endogenous antigen production in the vaccinees
have an intrinsic advantage over protein- and peptide-based vaccines. One of the most
characterized vector-based universal flu vaccine approaches is MVA–M1/NP. In total, nine
clinical trials were initiated with this vaccine candidate, which encodes full-length NP and
M1 derived from IAV. MVA–M1/NP was shown to induce CD4+ and CD8+ T cell responses
specific for the conserved vaccine epitopes. Analyses of the vaccine immunogenicity
in different age groups presented a decreasing induction of T cell responses in older
individuals. While vaccine-induced T cell responses remained statistically significant over
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the baseline for 52 weeks in 50–59-year-old participants, the responses in >70-year-old
participants were only significant over the baseline for three weeks after vaccination [155].
In a human challenge study, the vaccine showed a slightly decreased infection rate in the
vaccine group (2 out of 11) compared to the placebo group (5 out of 11), but an interpretation
of the vaccine effect was hampered by the unexpectedly low number of infections in the
placebo group [156]. Of note, the flu infections in the placebo group induced stronger T cell
responses than vaccination with MVA–M1/NP, suggesting that vaccine-induced immunity
is weaker compared to naturally acquired immunity. VE is currently being evaluated in
larger trials, both as a standalone vaccine (NCT03883113) and as adjunct to a licensed
QIV (NCT03880474). ChAdOx1–NP+M1 is based on a replication-deficient chimpanzee
adenovirus. Similar to the MVA–M1/NP, it encodes full-length NP and M1 proteins. In a
phase I study, the vaccine was shown to induce T cells against the vaccine antigens, peaking
14 days after immunization. A boost with the aforementioned MVA–M1/NP 7 or 14 weeks
after ChAdOx1–NP+M1 could further increase T cell responses [157].

While all the above mentioned vaccine trials exploited systemic immunization routes,
mucosal vaccine administration is key to engage local immune responses, especially TRMs
in the respiratory tract. Altimmune’s NasoVax is an adenovirus serotype 5-based vaccine
(Ad5) encoding full-length HA from an H1N1 strain. No trial data have been published
yet, but results presented at a conference suggest superior immunogenicity with a high
dose of NasoVAX compared to a licensed QIV [158]. Besides a 100% seroprotection rate, T
cell responses were six-fold higher compared to the QIV. It must be investigated to which
extent those responses provide Het-I, but cross-reactive T cell responses against conserved
epitopes of HA are described [159,160].

In addition, two orally given vaccines have been in human trials. One trial was
assessing replication-competent adenovirus serotype 4 (Ad4) encoding HA from an H5N1
strain [161]. The “vaccine take”, defined as the percentage of vaccinees being PCR-positive
and/or seropositive for Ad4 after vaccination, was strongly dose-dependent but reached
96% after three high-dose immunizations. A total of 70% of the participants in these high-
dose groups mounted antigen-specific T cell responses, but these consisted predominantly
of CD4+ T cells. While HA seroconversion was achieved in only a minority after Ad4–
HA immunization (4–19%), a parenteral boost vaccination with inactivated H5N1 led
to increased seroconversion rates in a dose-dependent manner like the previous Ad4–
HA immunizations. Similarly, an Ad5-vectored vaccine encoding HA from H5N1 from
VaxArt induced T cell responses in 75% of the participants, but failed to induce nAbs [162].
Unfortunately, the specific contribution of CD4+ and CD8+ T cells were not deciphered in
these analyses. It is important to note here that the low seroconversion rates reported in
these studies are not due to a low immunogenicity of the vaccine platforms; instead, this is
rather attributed to a generally low immunogenicity of some avian HA variants [163].

Another vaccine from VaxArt, VXA-A1.1, relies on a non-replicating Ad5 encoding
HA and an immunostimulatory dsRNA as a TLR3 agonist. VXA-A1.1 is given as a tablet
and targets epithelial cells in the small bowel [164]. Due to the tablet formulation and its
stability at room temperature, this vaccine enables distribution independent of healthcare
professionals, for example by mail delivery. Moreover, it seems that the oral administration
evades pre-existing anti-vector immunity to some extent. The respond rate after one
dose of the vaccine was 92% with regard of humoral responses (four-fold increase in
HAI) [164]. In a recent phase II study, the VE against a vaccine homologous strain was
evaluated by experimental infections. Compared to a study group that received a licensed
QIV, VXA-A1.1 generated a similar protective immunity against infection [165]. Since
serum HAI titers were about nine-fold higher in the QIV group compared to VXA-A1.1,
additional immune parameters must be responsible for the observed VE. Immunoglobulin
A (IgA)- and immunoglobulin G-secreting cells, as well as polyfunctional T cells, have been
correlated with protective immunity. Mucosal immunity in the respiratory tract was not
directly assessed in this study, although preclinical studies report an induction of mucosal
IgA in the respiratory tract [166]. Whether orally administered vaccine platforms are able
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to establish respiratory TRMs has not been reported so far, but the “gut–lung axis” allows
some tissue-resident immune populations to traffic between both organs [167].

In conclusion, vaccine strategies aiming at the induction of cross-reactive T cell immu-
nity have been evaluated in clinical trials, but no breakthroughs with clear and effective
Het-I were reported so far. Some vaccines induce T cells but lack efficacy; others show a
relatively rapid decline of T cell immunity. While a few mucosal vaccines have entered
clinical trials, none of the studies really assessed local immune responses directly. However,
the analysis of vaccine-induced TRMs is essential to define new mucosal correlates of
protection that are not accessible in peripheral blood mononuclear cells (PBMCs).

7. Challenges in Establishing TRMs as Protective Correlate

Preclinical studies have illustrated the indispensable role of localized T cell responses
in the protection against IAV. Concomitantly, many different vaccination strategies have
been developed in these animal models to establish TRMs and eventually led to broad and
effective Het-I. However, it is still a long way to establish T cell immunity as a protective
correlate in humans. In the following, we will discuss essential steps to define novel
COPs and give an outlook about a potential implementation of T cell immunity in current
vaccination guidelines.

Early-phase clinical trials are not only important to show the safety of novel vaccines,
but are also key to estimate their efficacy and to prioritize on the most promising candi-
dates for later phases. To this end, either a direct correlate of protection or a surrogate
marker must be assessed to interpolate protective efficacy from vaccine immunogenicity.
Classically, the HAI is such a correlate with a clearly defined protective threshold, although
there are debates about the general validity of a hemagglutination inhibition titer of 1:40 for
protective immunity [12,168]. Such specific thresholds of protective immunity parameters
(directly assessed COPs or surrogate parameters) are urgently needed for T cell-mediated
flu immunity.

The first obvious question is this: where should T cell responses be sampled? While
PBMCs might be an adequate biological sample to estimate systemic T cell immunity,
mucosal vaccines hold the greatest promise to evoke local immune responses. Thus,
sampling at the mucosal site of interest is key to evaluate the actual purpose of these
vaccines. However, what is the actual mucosal site we would like to address? In animal
models, lung TRMs are the most studied mucosal T cell COP [62,63]. However, it is
unlikely that human vaccines will exploit administration routes directly aiming at the
lower respiratory tract, due to the invasive nature of such procedures and potential side
effects. Instead, it is more likely that mucosal next-generation vaccines will target tissues
of the upper respiratory tract, like the nasal mucosa. In mice, CD8+ TRMs in the nasal
epithelia were shown to protect against severe disease by blocking pulmonary spread
of the IAV infection [169]. Sampling of nasal tissue in clinical trials would be much less
elaborate compared to sampling of the lung tissue. However, human challenge studies
with RSV as well as studies from the Farber lab illustrate the feasibility of assessing CD4+

and CD8+ TRM responses in the lower respiratory tract by bronchial biopsies and BALs
in humans [85,89,90]. An interesting alternative induction and sampling site for mucosal
immunity are nasopharynx-associated lymphoid tissues, which include the adenoids and
tonsils. In particular, studies from Rebecca Cox showed that immunization with LAIV
in children rapidly evokes B cells, CD4+ T cells, and CD8+ T cells in the tonsils [170,171].
While it seems clear that tonsillar T cells are induced upon intranasal LAIV immunization,
and that these responses correlate with serum HAI, their contribution to or significance
in mucosal immunity is not clear yet. Neither their direct protective effect (used as direct
COP), nor any correlation with tissue TRM responses (used as surrogate marker) have been
described so far. Interestingly, tonsillar immunization with genetic vaccines in NHPs induce
T cell responses in BAL samples, which are considered as a stringent TRM population [172].
Thus, there are several mucosal sites where immune responses can be induced and assessed.
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Future studies must investigate the relevance of each of these compartmentalized responses
in respect to protection.

Preclinical animal models are essential to investigate the basic immunological prin-
ciples of anti-flu immunity and have helped us in the past to develop concepts like T
cell cross-reactivity, TRM responses, and universal flu vaccine approaches. However, the
critical step is to translate these concepts into real-life human vaccines. A combination of
controlled human challenge studies that employ in-depth immunological analyses and
large efficacy trials seem to be required to establish novel COPs. This was also outlined at
the “Immunological Assays and Correlates of Protection for Next-Generation Influenza
Vaccines” meeting in 2019 [173]. Once specific COPs are identified, it is important to define
protective thresholds of the respective responses (absolute COPs). For systemic T cell
responses, Forrest et al. found that >100 spot-forming cells per 106 PBMCs in interferon-γ
ELISPOT analyses correlated with protection against symptomatic flu infections in young
children vaccinated with LAIV [174]. Although this value is discussed within the field, this
type of protective threshold is needed to estimate VE in clinical trials from immunogenicity
data. Likewise, the sample collection at different (mucosal) body sites and the actual
immunological assays must be standardized to allow direct comparisons of clinical trials
among study sites and labs [173]. This also helps to prioritize the most promising vaccine
candidates already after early clinical phases.

8. Consideration of Cellular Immunity in Vaccination Practices

Once effective flu vaccines that rely on T cell responses are market-ready, it must be
discussed how those are integrated in vaccination practices and recommendations. Elderly
people aged over 65 years, people with underlying diseases (diabetes, chronic obstructive
pulmonary disease, asthma, heart and kidney diseases), and pregnant women are the most
vulnerable groups. Since sterilizing immunity is the most efficient way to protect them
against flu complications, the induction of nAbs must remain the most important COP in
these risk groups. Moreover, the induction of nAbs in pregnant women is important for a
maternal antibody transfer to the offspring—an important risk group that is unlikely to
receive genetic or mucosal flu vaccines within the first months of life.

All parts of the community would benefit from the presence of cross-reactive T cell
immunity against flu. In risk groups, T cell immunity would present a safeguard in case
of vaccine mismatches and emerging pandemic strains. Young and healthy individuals
do not necessarily require sterile protection against influenza, since potential infections
in these groups are less likely to result in severe disease. Nevertheless, cross-reactive T
cell responses can further decrease the rate of flu-related complications and might also to
some extent provide population-wide protection against emerging flu strains with higher
pathogenicity. At the same time, the non-sterile nature of T cell immunity would still allow
mild IAV infections, which can naturally boost systemic and mucosal T cell responses [175].
Thus, regular boosting of T cell immunity by T cell-inducing vaccines and natural infections
might be a way to maintain long-term mucosal Het-I in humans. Table 2 summarizes our
recommended vaccination practices for different target groups.

Table 2. Implementation of T cell immunity in vaccination practices.

Target Group Sterilizing Immunity Desired ? T Cell Immunity Desired ?

Young children 0–2 years Yes, preferentially by maternal
antibodies in the first months of life

Yes, but approval of genetic vaccines
might be difficult in this age group

Healthy individuals 2–65 years No Yes, by genetic vaccinations
and natural infections

Elderly > 65 years Yes Yes, by genetic vaccinations

Adults with chronic health conditions Yes Yes, by genetic vaccinations

Pregnant women Yes, to protect during pregnancy and for
the transfer of maternal antibodies

Yes, preferentially induced
before conception
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So far, the effect of such broad and pronounced T cell immunity in large parts of the
community on virus evolution is unknown. As pointed out by others, one result could be
a general decrease of flu infections, while decreasing virus replication per person is also
slowing down virus evolution. On the other hand, immune pressure on conserved virus
proteins exceeding natural immunity could select for escape mutants [176]. However, viral
escape might be limited due to functional constraints and loss of viral fitness [57].

Regarding the vaccine platforms, a full switch to genetic and favorably mucosal
vaccines in all target groups should take place if the safety profile of the respective vaccine
allows it. In those vaccines, the antigen components can be combined and updated as
needed. All vaccine formulations should include conserved flu proteins like NP, M1, or
polymerase proteins in order to induce cross-reactive T cell responses. In the mentioned risk
groups, HA-encoding components can be easily added (and adapted annually) in order to
evoke nAbs, preferentially in the respiratory tract. This strategy combines the advantages
of genetic vaccines regarding immunogenicity, manufacturing, and adaptability, while it
considers the vulnerability of specific target groups and the benefits of infection-permissive
immunity in healthy individuals at the same time.

9. Concluding Remarks

Recent influenza vaccines are not appropriate to protect the community against sea-
sonal and pandemic flu strains. The time has come to implement modern immunology
and vaccine technology in human flu vaccines. In the context of the latest Ebola and
SARS-CoV-2 outbreaks, several efficient genetic vaccines have been approved. Thus, the
aim should be to employ these technologies for routine flu shots also in order to enable
new T cell-based COPs. Many years of preclinical research prove the protective potential
of cross-reactive T cell immunity and more recently of respiratory TRMs. Substantial
knowledge could be gathered to understand and induce TRM responses in animal models.
It is now critical to illuminate remaining knowledge gaps and their translation into clinical
approaches. Current preclinical data indicate that local inflammation in the respective
mucosa is a minimal prerequisite for the establishment of local T cells. Local expression of
antigens seems to be additionally required for the induction of lung TRMs. Therefore, local
vaccination techniques currently seem inevitable to evoke TRM responses. However, the
respiratory tract is an immunologically fragile environment, and the unintentional induc-
tion of autoimmunity or allergies must be avoided. This becomes even more important if
mucosal vaccines are used in individuals with pre-existing respiratory diseases. For the
long-term maintenance of immunity, it is essential to develop vaccine strategies that either
induce long-lived TRM populations or refresh short-lived TRMs regularly. Eventually, the
consideration of novel vaccine technologies and cross-reactive T cell responses holds the
promise of decreasing flu mortality in seasonal and pandemic outbreaks significantly.
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