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ABSTRACT 11 

Pseudomonas aeruginosa frequently causes chronic lung infection in individuals with muco-obstructive 12 

airway diseases (MADs). Chronic P. aeruginosa infections are difficult to treat, primarily owing to antibiotic 13 

treatment failure, which is often observed in the absence of antimicrobial resistance. In MADs, P. aeruginosa 14 

forms biofilm-like aggregates within the luminal mucus. While the contribution of mucin hyperconcentration 15 

towards antibiotic tolerance has been described, the mechanism for mucin driven antibiotic tolerance and the 16 

influence of aggregates have not been fully elucidated. In this study, we investigated the contribution of flagellar 17 

motility towards aggregate formation as it relates to the diseased mucus environment. We found that loss of 18 

flagellar motility resulted in increased P. aeruginosa aggregation and tolerance to multiple classes of antibiotics. 19 

Further, we observed differential roles in antimicrobial tolerance of the motAB and motCD stators, which power 20 

the flagellum. Additionally, we found that control of fliC expression was important for aggregate formation and 21 

antibiotic tolerance as a strain constitutively expressing fliC was unable to form aggregates and was highly 22 

susceptible to treatment. Lastly, we demonstrate that neutrophil elastase, an abundant immune mediator and 23 

biomarker of chronic lung infection, promotes aggregation and antibiotic tolerance by impairing flagellar motility. 24 

Collectively, these results highlight the key role of flagellar motility in aggregate formation and antibiotic tolerance 25 
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and deepens our understanding of how the MADs lung environment promotes antibiotic tolerance of P. 26 

aeruginosa.  27 

IMPORTANCE 28 

Antibiotic recalcitrance of chronic Pseudomonas aeruginosa infections in muco-obstructive airway 29 

diseases is a primary driver of mortality. Mechanisms that drive antibiotic tolerance are poorly understood. We 30 

investigated motility phenotypes related to P. aeruginosa adaptation and antibiotic tolerance in the diseased 31 

mucus environment. Loss of flagellar motility drives antibiotic tolerance by promoting aggregate formation. 32 

Regulation of flagellar motility appears to be a key step in aggregate formation as the inability to turn off flagellin 33 

expression resulted in poor aggregate formation and increased antibiotic susceptibility. These results deepen 34 

our understanding of the formation of antibiotic tolerant aggregates within the MADs airway and opens novel 35 

avenues and targets for treatment of chronic P. aeruginosa infections.  36 

INTRODUCTION 37 

Pseudomonas aeruginosa is a Gram-negative bacterium frequently found in environments associated 38 

with human activity and is capable of causing a wide range of opportunistic infections (1). Individuals with muco-39 

obstructive airway diseases (MADs) such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), 40 

and non-CF bronchiectasis (NCFB) frequently suffer from recurrent and chronic P. aeruginosa lung infections 41 

(2). Collectively, MADs represent the 3rd leading cause of death worldwide, primarily owing to COPD and the 42 

increasing prevalence of bronchiectasis (3). MADs are characterized by the accumulation of dehydrated mucus 43 

within small airways. Stagnant mucus provides a unique, nutrient-rich environment for P. aeruginosa colonization 44 

that promotes the formation of bacterial community structures termed aggregates (4–6). These aggregates 45 

exhibit biofilm-like properties including enhanced tolerance and resistance to antibiotics and are associated with 46 

antibiotic treatment failure (7). While high dose inhaled antibiotic therapies show better efficacy and less toxicity 47 

than traditional delivery methods (e.g., oral and intravenous), chronic P. aeruginosa infections remain recalcitrant 48 

to antibiotic therapy and develop clinical resistance at high frequency (8). Antibiotic treatment failure remains a 49 

major cause of decreased quality of life and early mortality. 50 
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While genetically encoded antibiotic resistance remains a global health threat, we hypothesize that the 51 

failure of antibiotics to eradicate chronic P. aeruginosa lung infections is primarily due to antibiotic tolerance and 52 

persistence. Tolerance is a state where bacteria fail to grow in the presence of antibiotics, but still survive. 53 

Persistence occurs wherein a subpopulation of bacteria can withstand antibiotics for prolonged periods of time 54 

and often will not succumb to antibiotics (9). Understanding the mechanisms that contribute to antibiotic tolerance 55 

and persistence is paramount to the development of more effective treatment strategies. 56 

In the transition from acute to chronic lung infection, clonal populations undergo significant diversification 57 

both genotypically and phenotypically. Isolates from chronic infection often exhibit a loss of acute virulence 58 

factors and increased antibiotic tolerance and persistence (10). While chronic infection often results in a 59 

remarkable array of diversity, there are some common traits that evolve in the MADs airway environment. One 60 

of the most frequent adaptations is loss of flagella-mediated motility (11–13). Flagellin is a potent pro-61 

inflammatory TLR5 agonist and swimming motility has been shown to stimulate the formation of neutrophil 62 

extracellular traps, which are a potent tool of neutrophils to trap and destroy pathogens (14,15). It has been 63 

suggested that the loss of flagellar motility is an adaptation that may allow for host immune evasion (16,17). 64 

However, MADs are an inherently inflammatory disease, and the loss of flagella has not been shown to reduce 65 

immune activation or inflammation (12,18). Several studies have investigated the relationship between loss of 66 

flagella and antibiotic susceptibility of P. aeruginosa under laboratory conditions (19,20). For instance, a mutant 67 

lacking the flagellar hook protein (flgE) displayed altered biofilm structure and a reduction in gentamicin 68 

penetration of the biofilm (20). Another study showed that a flgK mutant, which lacks another component of the 69 

flagellar hook complex, was more tolerant to the clinically relevant antibiotic, tobramycin (19). Specifically, the 70 

authors showed that a flgK mutant more readily formed aggregates in an agar gel. Despite these observations 71 

the role flagella and flagellar motility on tolerance in the diseased mucus environment is poorly understood.  72 

There are many factors that have been shown to contribute to antibiotic tolerance, ranging from the 73 

specific environment to bacterial encoded factors. In the context of MADs, we have previously shown that mucin 74 

and DNA content within the environment can shape tolerance to tobramycin (20). Within the MADs lung 75 

environment, P. aeruginosa has been shown to reside as multicellular aggregate biofilms (4), that are thought to 76 
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be highly tolerant to antimicrobial therapies. However, the requirements for aggregation and events that lead to 77 

the formation of aggregates are poorly understood.  78 

Here, we investigated the role of flagellar motility in antibiotic tolerance and aggregate formation in the 79 

context of a MADs-like mucus environment. We found that mutants of the flagellar machinery are significantly 80 

more tolerant to antibiotics and that aggregate formation directly correlates with antibiotic tolerance. Using single 81 

cell motility tracking, we uncovered differential roles of the flagellar stator complexes, MotAB and MotCD, in 82 

tolerance and aggregation. Our results also suggest that regulation of flagella is important for the genesis of 83 

aggregation, and subsequently antibiotic tolerance. Our results significantly increase our understanding of the 84 

requirements of aggregate formation and describe the contribution of flagellar motility to antibiotic tolerance in 85 

the context of the MADs airway environment.   86 

RESULTS 87 

Aggregation increases in a mucin concentration dependent manner and correlates with antibiotic 88 

tolerance.  89 

Our previous work has shown that antibiotic tolerance increases as a function of mucin concentration 90 

(21). It has been shown that charged polymers, including mucin, drives aggregation of P. aeruginosa (22,23); as 91 

such, we investigated the relationship between aggregation, mucin concentration, and antibiotic tolerance. To 92 

assess aggregation and antibiotic tolerance, we used the wild type (WT) laboratory strain mPAO1 grown in 93 

synthetic CF mucus media 2 (SCFM2), a medium that mimics the CF lung environment (24,25), and modulated 94 

the mucin content to assess how mucin concentration impacts tolerance and aggregation. We assessed 95 

tolerance by growing bacteria in SCFM2 with various mucin concentrations for 8 hours, followed by treatment 96 

with high dose tobramycin (300μg/mL) for 24 hours. Aggregation was assessed by confocal microscopy using 97 

bacteria that expressed the fluorophore, dsRed-Express2 (26). To capture aggregation within the luminal media 98 

rather than surface attached bacteria, all confocal images were taken at least 10μm above the bottom of the 99 

growth chamber surface. Aggregates were quantified using the Imaris image analysis software (Oxford 100 

Instruments) and the surfaces function; surfaces greater than 5μm3 were considered as aggregates (27). 101 
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Consistent with our previous work, we observed a mucin concentration dependent effect on tolerance, 102 

with survival to tobramycin increasing as mucin concentration increased (Fig. 1A). Similarly, aggregate size 103 

increased significantly as mucin concentration increased (Fig. 1B, top panels, 1C, and Fig. S1). We also 104 

observed a mucin concentration dependent reduction in the proportion of the biomass that remained planktonic 105 

(Fig. 1D). These data demonstrate that aggregation positively correlates with antibiotic tolerance, and that 106 

increasing mucin concentration shifts the population to a more aggregated phenotype.  107 

Loss of flagellar motility increases antibiotic tolerance to tobramycin and correlates with increased 108 

aggregation. 109 

 One of the most common phenotypic adaptations observed in chronic P. aeruginosa isolates from MADs 110 

is the loss of flagellar motility (12,13). It was previously shown that flagellar mutants exhibit decreased 111 

susceptibility to tobramycin when embedded in an agar polymer gel (19). We investigated whether this trend 112 

existed in a more relevant mucus airway environment, and if similarly, aggregation of flagellar mutants were 113 

responsive to changes in mucin concentration. We utilized a non-polar deletion mutant of fliC, which encodes 114 

flagellin, the structural subunits of the flagellum fiber. A ΔfliC mutant was significantly more tolerant than WT 115 

mPAO1 to tobramycin and exhibited a significant increase in aggregation at all mucin concentrations tested. 116 

(Fig. 1A-C, Fig S1). Unsurprisingly, the proportion of planktonic biomass also decreased in ΔfliC compared to 117 

WT, with virtually no planktonic bacteria remaining in SCFM2 with 2% mucin (Fig. 1D). These data strongly 118 

suggest that aggregation may account for mucin concentration driven antibiotic tolerance. To confirm the role of 119 

the flagellum in tolerance, we also tested a non-polar flgE deletion mutant (ΔflgE). Both flgE and fliC mutants fail 120 

to produce flagellin or produce surface flagella (Fig. S2A). Similar to the fliC mutant, deletion of flgE resulted in 121 

a significant increase in tobramycin tolerance in SCFM2 with 2% mucin (Fig. S2B). Further, ectopic expression 122 

of fliC from its native promoter in the ΔfliC mutant (ΔfliC::ΦCTX-fliC) restored the tolerance to tobramycin to a 123 

level similar to WT (Fig. S2C). Based on the findings here, our previous findings, and its relevance to disease, 124 

we utilized SCFM2 with 2% mucin for the remainder of this study (21). 125 

We next assessed whether the phenotypes of the fliC and flgE mutants were related to loss of the 126 

flagellum structure, or loss of motility. The flagellum is primarily powered by two stator complexes, MotAB, and 127 

MotCD. As such, we generated non-polar deletion mutants of the motAB and motCD stators. Deletion of either 128 
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system alone or both stator complexes simultaneously does not prevent flagellin synthesis or the assembly of 129 

flagella on the cell surface (Fig. S2A). Like the non-flagellated mutants, deletion of motCD or both stator 130 

complexes (ΔmotABCD) resulted in a significant increase in tolerance to tobramycin (Fig. 2A). In contrast, 131 

ΔmotAB exhibited a decrease in tobramycin survival, suggesting a differential role of the stator complexes in 132 

antibiotic tolerance.  133 

While tobramycin is one of the most commonly used antibiotics for chronic P. aeruginosa lung infection, 134 

other antibiotics such as meropenem (carbapenems) and ceftazidime/avibactam (cephalosporin/β-lactamase 135 

inhibitors) are also used (28–30). Thus, we assessed whether loss of flagellar motility promoted tolerance to 136 

other classes of antibiotics. Similar to tobramycin, the ΔmotCD and ΔmotABCD mutants exhibited an increase 137 

in survival to both meropenem and ceftazidime/avibactam, similar to ΔfliC (Fig. 2B, C). Interestingly, the ΔmotAB 138 

mutant showed either no difference in tolerance (ceftazidime) or a slight increase in survival (meropenem), 139 

further suggesting a differential role of the different stators in antibiotic tolerance. 140 

The ability of bacteria to survive high concentrations of antibiotics for prolonged periods of time can 141 

promote resistance (31,32). We assessed the ability of flagellar mutants to withstand prolonged exposures to 142 

antibiotics by treating cultures for 72 hours (Fig. S3). We found that for all antibiotics tested, both WT and 143 

ΔmotAB had similar susceptibilities while ΔfliC, ΔmotCD, or ΔmotABCD remained tolerant during prolonged 144 

antibiotic exposure.  145 

Flagellar stators differentially contribute to tolerance and aggregation.  146 

Given that non-flagellated mutants exhibit increased tolerance to several classes of antibiotics and 147 

showed increased aggregation, we investigated aggregate formation of the stator mutants. We found that the 148 

mutants that exhibited increased antibiotic tolerance (ΔmotCD and ΔmotABCD) also exhibited a significant 149 

increase in aggregate size compared to WT mPAO1 (Fig. 3A-B). Consistent with the increase in aggregate size, 150 

there was a decrease in the proportion of planktonic biomass, indicating that more of the population was 151 

aggregated (Fig. 3C). The ΔmotAB mutant, which was less tolerant to tobramycin, showed less aggregation than 152 

WT and exhibited a higher proportion of planktonic biomass. We also assessed traditional surface attached 153 

biofilm formation by the flagellar mutants in the presence of disease concentrations of mucin (2% w/v). 154 
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Interestingly, we found an inverse correlation between antibiotic tolerance and surface biofilm formation where 155 

ΔmotAB exhibited more biofilm formation than WT and ΔmotCD, ΔmotABCD, and ΔfliC all exhibited significantly 156 

less surface attached biofilm formation (Fig. S4A). These data support our initial assessment that aggregation 157 

is tightly linked to antibiotic tolerance and that the stator complexes have differential roles in aggregate formation 158 

in the diseased mucus environment.  159 

Motile subpopulations correlate with aggregative phenotypes.  160 

Several studies have investigated the differences between MotAB and MotCD stators in powering 161 

flagellar motility. While their functions are mostly redundant, they do have some unique properties. MotCD was 162 

found to be more important for swarming motility (33). Additionally, it was found that while MotAB provides more 163 

total rotational torque, MotCD provides better rotational stability (34). Therefore, we investigated the impact of 164 

the stator mutants on motility in our mucin rich system. As a first step, we assessed swimming motility using a 165 

traditional soft-agar based motility assay. We observed that both ΔmotAB and ΔmotCD exhibited a decrease in 166 

motility zones compared to WT mPAO1 (Fig. S4B-C). While this agreed with previous studies it did not explain 167 

the decreased tolerance and aggregation result for ΔmotAB (Figs. 2 and 3). To better discern differences in the 168 

stator mutants, we used 2-D single cell motility tracking in our diseased mucus model. We grew bacteria in 169 

SCFM2 containing 2% mucin (w/v) for 1 hour prior to imaging. This timepoint was chosen to allow sufficient 170 

acclimation to the media, but also to retain a reasonable bacterial density for high resolution imaging of single 171 

cell motility. We observed multiple differences in motility behavior. Most notably, we found a significant difference 172 

in the proportion of motile bacteria between WT and the stator mutants. For WT mPAO1, we observed that ~16% 173 

of the population was motile at a given time (Fig. 4A-B). The motAB mutant exhibited a significant increase in 174 

the proportion of motile bacteria. Conversely, less than 10% of motCD mutant cells were motile. Despite the 175 

significant difference in the motile subpopulation, there were only modest differences in the distance traveled 176 

(track length) of the motile bacteria between each strain (Fig. 4A and C). These data suggest that the proportion 177 

of motile bacteria within a population may directly correlate with aggregative capabilities.  178 

 To better understand the direct impact of mucin on motility, we also conducted single cell motility tracking 179 

with bacteria grown in SCFM2 lacking mucin. In the absence of mucin, we observed a significantly higher 180 

proportion of motile bacteria (Fig. S5), indicating mucin polymers negatively impact motility.  181 
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FliC regulation is important for tolerance and aggregation.  182 

Given our result that ΔmotAB exhibited a significantly higher proportion of motile cells, we suspected that 183 

regulation of flagellar motility may also be important for aggregation. Downregulation of flagella is important for 184 

biofilm formation (35–37) and is likely also involved in aggregate formation. We engineered a strain that is 185 

incapable of shutting off flagellin expression and assessed whether the inability to control flagellin regulation 186 

impacted tolerance and aggregation. For constitutive fliC expression, we engineered the fliC gene such that 187 

expression was under the control of the synthetic IPTG inducible TAC promoter. We confirmed that both surface 188 

flagellin expression and swimming motility in soft agar is restored to levels comparable to WT (Fig. S6). When 189 

compared to WT in SCFM2 with 2% mucin, the constitutive fliC strain exhibited a marked reduction in tolerance 190 

to tobramycin (Fig. 5A) and decreased aggregation (Fig. 5B-D). We then reasoned that, similar to ΔmotAB, a 191 

constitutive fliC strain may have a much higher proportion of motile cells within the population, which would 192 

hinder aggregation and therefore decrease tolerance. Indeed, using single cell tracking, we observed that the 193 

constitutive fliC strain exhibited a significantly higher proportion of motile cells compared to WT, as well as an 194 

increase in track length (Fig. 5E-G). These data suggest that regulation of flagella plays a key role in aggregate 195 

formation and antibiotic tolerance. 196 

Neutrophil elastase drives aggregation and antibiotic tolerance. 197 

 Another hallmark of the MADs airway environment is the dominant neutrophil response. As a result, 198 

copious amounts of neutrophil effectors, particularly neutrophil elastase (NE), flood the airway. It has previously 199 

been shown that NE is capable of degrading flagellin of P. aeruginosa (38,39). Consequently, we evaluated if 200 

NE exposure would result in a similar phenotype as the flagellar mutants. We added disease relevant 201 

concentrations of NE (40) to SCFM2 containing 2% mucin and assessed tolerance to tobramycin and 202 

aggregation. We observed that exposure to NE led to an increase in tobramycin tolerance and an increase in 203 

aggregation (Fig. 6A-C). While the increase in aggregate size was not statistically significant, there was however 204 

a significant shift towards a reduced proportion of planktonic biomass in NE treated samples (Fig. 6D). Exposure 205 

to NE also led to a significant decrease in the proportion of motile bacteria and a decrease in track length (Fig. 206 

6E-G). These data suggest that NE exposure drives antibiotic tolerance by impairing flagellar motility, thereby 207 

increasing aggregation. These observations suggest that while aggregate size likely plays a part in antibiotic 208 
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tolerance, the proportion of bacteria in aggregates of any size (reduction of planktonic bacteria) has an important 209 

role in dictating antibiotic tolerance. Lastly, these data suggest that the host immune response may protect 210 

bacteria against antibiotic attack.  211 

DISCUSSION 212 

MADs are characterized by the accumulation of dehydrated mucus within the airways, which provides a 213 

niche for bacterial colonization and chronic infection. Chronic bacterial infections in MADs, where P. aeruginosa 214 

is the dominant pathogen, is the primary contributor to exacerbation, decreased quality of life, and early mortality. 215 

The failure of antibiotics to eradicate P. aeruginosa infections contributes significantly to mortality and morbidity 216 

in MADs (41–43). Understanding the mechanisms that contribute to antibiotic tolerance is critical to re-217 

envisioning more effective therapies. 218 

Our data show a strong correlation between the ability to form aggregates and antibiotic tolerance. 219 

Increases in mucin concentration led to increased antibiotic tolerance that was likely driven by the observed 220 

increase in aggregate size and decrease in planktonic biomass. Additionally, we showed that mucin polymers 221 

drive antibiotic tolerance by impeding flagellar motility and promoting the formation of aggregates. We speculate 222 

that when P. aeruginosa is trapped within the mucin polymer mesh, this likely facilitates cell-cell interactions 223 

thereby promoting aggregation. Alterations in flagellar motility that ultimately diminished motility (ΔfliC, ΔflgE, 224 

ΔmotCD, ΔmotABCD) in SCFM2 all exhibited both increased tolerance to antibiotics and increased aggregation. 225 

Notably, there was a marked decrease in the planktonic biomass when flagellar motility was diminished. It has 226 

been noted by many studies that planktonic bacteria are usually more susceptible to antibiotic treatments (44–227 

47). The shift from the population from a planktonic to aggregated state is likely the primary driver of tolerance 228 

that we observed in this study.   229 

The aggregates we observed were not adhered to a surface, but rather suspended in the media, and are 230 

more reminiscent of the aggregates observed in sputum, which are also not adhered to a traditionally defined 231 

surface. The motAB mutant, which exhibited lower tobramycin tolerance, exhibited increased biofilm, or surface 232 

attachment. This contradicts conventional logic in that better biofilm formation would confer tolerance. However, 233 

there are many stages of biofilm development and structure that likely impart various qualities that contribute to 234 
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antibiotic tolerance. While the aggregates we observe are not adhered to a surface, they are likely to share many 235 

qualities of traditional surface attached biofilms. For instance, despite observations that P. aeruginosa resides 236 

in aggregate-biofilms that aren’t adhered to a traditional surface, it has been shown that, similar to biofilms, they 237 

produce exopolysaccharides (4). Additionally, despite flagellar mutants exhibiting lower biofilm, one study has 238 

shown that certain clinical isolates with defective flagellar motility exhibited increased production of Pel and Psl 239 

exopolysaccharides in a surface dependent manner (48). 240 

Previous work has suggested that aggregate formation of P. aeruginosa in mucus is driven by a process 241 

termed “aggregation by depletion”, where entropy drives the formation of bacterial clusters in the presence of 242 

charged airway mucin and eDNA polymers (22,23). Here, we showed that loss of flagellar motility also drives 243 

aggregation. Though the mechanism of the observed increase in aggregation is still unknown, our results 244 

suggest that bacterial motility phenotypes, in combination with the environment, shape aggregative phenotypes 245 

and that aggregation likely occurs through active and passive processes. It is possible that some attachment 246 

structures, such as type IV pili, or other fimbria may be involved. Type IV pili have been described as a mediator 247 

of bacterial-mediated autoaggregation (49,50). However, it is difficult to discern fine differences between 248 

entropically driven aggregation and bacterial-mediated autoaggregation using our current system. It is also 249 

possible that loss of flagella, which renders bacteria non-motile, simply provides the opportunity of aggregation 250 

since the bacteria are unable to move away. Our results with the constitutive fliC strain, which was highly 251 

sensitive to tobramycin and did not form large aggregates, suggest that control of fliC expression is important for 252 

aggregate formation. It is possible that turning off flagellar motility is a response to becoming trapped in a polymer 253 

mesh, but the inability to control fliC expression allows bacteria to more readily escape mucin polymer 254 

entrapment, which would explain why the constitutive fliC strain is significantly more motile within SCFM2. 255 

Regardless, these results support the notion that there are ordered events that lead to the formation of 256 

aggregates. 257 

While MotAB and MotCD have been described to have redundant functions, our results demonstrate that 258 

MotAB possesses a distinct role in aggregate formation. The MotCD complex has been shown to facilitate motility 259 

in higher viscosity environments (51). Therefore, when MotCD was absent (ΔmotCD), in a viscous solution such 260 

as SCFM2 with 2% mucin, this likely resulted in the reduced motility, which then led to the increased aggregation 261 
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and subsequently increased antibiotic tolerance. It has been shown that cells with only MotCD (i.e ΔmotAB) had 262 

10x more active motors than WT or cells with only MotAB (33). This could explain the phenomenon that ΔmotAB 263 

had a higher proportion of motile cells which are less likely to become trapped by mucins. 264 

One distinct function that has been described for MotAB is surface sensing. FimW is a c-di-GMP binding 265 

protein that localizes at cellular poles when contact with a surface occurs. This was shown to be dependent on 266 

MotAB (52). In a motAB mutant, there was a reduction in FimW localization, suggesting that MotAB is involved 267 

in surface sensing (52). It is possible that in our system, “surface sensing” can include non-traditional surfaces, 268 

like mucin polymers. We posit that sensing these non-traditional surfaces may be important for aggregation and 269 

that a motAB mutant, with defective surface sensing, is less efficient at forming aggregates.  270 

Both phenotypic and genotypic heterogeneity is a hallmark of P. aeruginosa chronic infection in MADs 271 

(53,54). Heterogeneity is particularly relevant to antibiotic treatment failure, where a portion of a population 272 

possesses increased tolerance to antibiotics. Control of flagellar motility is a complex network of various 273 

regulators in which a diverse array of stimuli impacts motility (55). While complete ablation of flagellar 274 

biosynthesis is a common adaptation, other adaptations that alter flagellar motility without impacting flagellin 275 

expression, such as those affecting the motor/stator complex, the flagellar switch, or chemotaxis systems also 276 

arise (35,56,57). Our results help explain why defects in swimming motility are selected for over time during 277 

chronic infection as these mutations confer tolerance to multiple antibiotic classes. However, loss of flagellar 278 

motility may be detrimental in other aspects of infection. For instance, chemotaxis, either towards nutrients, or 279 

away from danger, relies on swimming motility. Without flagella, chemotaxis is limited and begs the question of 280 

how important chemotaxis is in chronic infection. It is possible that other forms of motility such as type IV pilus 281 

mediated twitching motility are used, though mutations in type IV pilus machinery and subsequently defects in 282 

twitching motility are common as well (58).  283 

The inappropriate neutrophil response is a hallmark of MADs. Since P. aeruginosa primarily resides as 284 

aggregates within the airway, neutrophils often resort to releasing neutrophil extracellular traps (NETs) in order 285 

to deal with infection. One of the most abundant neutrophil effectors in NETs is neutrophil elastase (NE) (59–286 

61), which also causes substantial damage to the host lung tissue. Leveraging previous literature and based on 287 

our results with flagellar mutants, we had predicted that exposure to NE would increase aggregation and 288 
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tolerance through its effect on flagella. Indeed, we showed that NE decreased flagellar motility and subsequently 289 

increased aggregation and tolerance to tobramycin. These results suggest that a novel strategy to limit tolerance 290 

could be to use an already FDA approved NE inhibitor such as Sivelestat. While NE inhibitors are sparingly used, 291 

their main indication is to target inflammation. However, using NE as a new indication for treating antibiotic 292 

tolerant infections could be presented as a novel therapeutic in conjunction with tobramycin therapy. 293 

Collectively, our results show a strong correlation between aggregate formation and antibiotic tolerance 294 

of P. aeruginosa in an in vitro mimic of the MADS lung environment. Adaptation to host environmental factors 295 

shifts P. aeruginosa into a more aggregative state, thereby conferring tolerance to multiple classes of antibiotics. 296 

Flagellar motility plays a key role in the formation of aggregates within the diseased mucus environment and 297 

alterations of motility can skew population aggregation phenotypes. Host immune derived factors such as NE 298 

negatively impact motility and help drive antibiotic tolerance. The results of this study shed light on how such a 299 

common adaptation is advantageous in the presence of antibiotics and also deepens our understanding of why 300 

mutants in flagellar motility are selected for during chronic infection. 301 

MATERIALS AND METHODS 302 

Bacterial Strains and Culture Conditions 303 

All bacterial strains and plasmids used in this study are listed in Table S1. Bacteria was swabbed from 304 

frozen stocks onto Lysogeny Broth (LB) (Miller) agar and incubated overnight at 37ºC. Overnight liquid cultures 305 

were inoculated from single colonies and were shaken overnight in LB broth at 250 RPM at 37ºC. SCFM2 was 306 

prepared as described (21,24), or purchased from Synthbiome. Where indicated, antibiotics or neutrophil 307 

elastase were added. Neutrophil elastase (Innovative Research) was added at 150μg/ml.  308 

Generation of mutants, complementation, and constitutive expression plasmids.  309 

Primers used in this study are listed in Table S2. Deletion of genes was achieved through SacB assisted 310 

allelic exchange, using the Gateway Cloning (GW) platform (Invitrogen) (62). Fluorescent bacteria were 311 

generated via triparental mating of P. aeruginosa with E. coli containing the pUC18T-mini-Tn7T-Gm-Pc-DsRed-312 

Express2 (26) plasmid and E. coli containing the pTNS2 helper plasmid (63). Vector backbone was removed 313 
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through flp recombinase (64). Complementation of fliC was achieved through amplifying the fliC gene and its 314 

promoter region (500bp upstream of start codon), then using GW to introduce fliC and its promoter into a GW 315 

adapted pMini-CTX vector for chromosomal complementation at the neutral ΦCTX site. The vector backbone 316 

was removed through flp recombinase (64). Complementation was confirmed by PCR and swimming motility 317 

assays. Constitutive expression of fliC was achieved by amplifying the fliC gene and introducing it via GW cloning 318 

into the pMMB67 vector, which contains the TAC promoter that is inducible by isopropyl β-D-1-319 

thiogalactopyranoside (IPTG). Expression of fliC was achieved through addition of 100μM IPTG to culture 320 

conditions. IPTG was only added during culture in SCFM2, and not during overnight culture. 321 

Antibiotic susceptibility assays 322 

Antibiotic susceptibility assays were performed as previously described (21). Briefly, overnight cultures 323 

of P. aeruginosa were subcultured into fresh LB at a 1:50 dilution and cultured to exponential phase until an 324 

OD600 of 0.25 was achieved. Exponential phase bacteria were then inoculated 1:100 into SCFM2  for an inoculum 325 

of 1x106 CFU/mL. Bacteria were then incubated statically at 37ºC for 8 hours. At 8 hours, duplicate wells were 326 

collected and serial diluted and plated for CFU at time of treatment (“At Treats”). Another set of wells were then 327 

treated with various antibiotics: tobramycin at 300μg/ml, ceftazidime/avibactam at 1000/40 μg/ml, and 328 

meropenem at 2000μg/mL. All antibiotics were purchased through Sigma Aldrich. Treatment went for 24 329 

(standard assay) or up to 72 hours (persistence assays) before bacteria were collected, washed twice in M63 330 

salts, and plated for enumeration. Percent survival was calculated using the following: 331 

% 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = (
𝑃𝑜𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝐹𝑈

𝐴𝑡 𝑇𝑟𝑒𝑎𝑡 𝐶𝐹𝑈
∗ 100) 332 

Swimming motility assays 333 

Bacteria were grown overnight in LB and subcultured for 1 hour at a 1:50 dilution. 2μl of subculture was 334 

inoculated into LB +0.3% agar. Plates were incubated at room temperature for 30 hours before the zone of 335 

motility was measured. Imaging of swimming plates was achieved using the iBright FL1500 imager (Applied 336 

Biosystems) using the 490-520 (TRANS) filter in the visible channel.   337 

 338 
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Fluorescence microscopy  339 

Bacteria were prepared the same as for antibiotic survival assays described above. 1x106 CFU/mL was 340 

inoculated into 300 μL SCFM2 in 8-well #1.5 coverglass bottom chamber slides (Cell-Vis, Cat# C8-1.5P). After 341 

6 hours of static incubation at 37C, the center of the wells were imaged using a Leica Stellaris5 laser scanning 342 

confocal microscope with an environmental box (Okolab) set to 37C for live cell imaging. Fluorescence was 343 

observed with a white light laser at a laser line of 554nm at 5% power and detection range of 569-650nm and 344 

gain of 60. Using a 63x, HC PL APO CS2 oil immersion objective with a numerical aperture of 1.4 and a pinhole 345 

diameter of 1 Airy Unit (AU), we obtained 180x180x30 μm 3D Z-stacks at a resolution of 1024x1024 and scan 346 

speed of 600hz, beginning at least 10μm above the bottom of the glass. Images were captured using the LAS X 347 

software version 4.5 (Leica microsystems). Raw Leica images files (LIF) were then exported for analysis.  348 

Motility Tracking 349 

Motility tracking was achieved with the same methods as described above for fluorescent microscopy 350 

with some modifications. Bacteria were inoculated into 100μL SCFM2 at 5x106 CFU/mL and grown statically for 351 

1 hour prior to imaging. 2D videos of 30.75x30.75μm were captured at 256x256 resolution with a zoom of 6 and 352 

bidirectional scanning at a speed of 1600hz (~11.76 frames per second). Pinhole diameter was set to 6.28 AU. 353 

Videos were approximately 1 minute long. A minimum of 10 videos were captured per condition/strain and a 354 

minimum of 800 cells were tracked. Video files were then exported for analysis.  355 

Image Analysis 356 

Analysis of aggregates and motility tracking were performed using Imaris 10.0 (Oxford Instruments). LIF 357 

files were imported into Imaris. Images were visualized in Imaris as a 3D max projection. For analysis of 358 

aggregates, we created a custom surfaces creation parameter algorithm. Background subtraction threshold 359 

minimum value was set to 15. Surfaces with volumes less than 0.335μm3 or greater than 5000μm3 were filtered 360 

out as artifacts. Surfaces with volumes greater than 5μm3 were considered aggregates. Examples of aggregates 361 

are highlighted in Fig. S1A. Planktonic biomass proportion was determined as the ratio of the sum of surface 362 

volumes between 0.335-5μm3 to the sum of all surfaces calculated.  363 
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 For motility tracking, we used the spots function to track bacterial motility. Minimum quality threshold was 364 

set to 30 and maximum gap size was set to zero. For motile bacteria, we set a track distance minimum of 2μm 365 

and track duration between 0.050-5.00 seconds. Traces of motile bacteria were highlighted in Imaris and 366 

exported.  367 

Immunoblot of FliC 368 

Visualization of FliC was achieved through western blotting. Strains were inoculated into 2% mucin 369 

SCFM2 and grown for 8 hours. For isolation of surface flagella, bacteria were collected and centrifuged at 7,500x 370 

g for 3 minutes to pellet the bacteria without shearing flagella. The supernatant was removed, and pellets 371 

resuspended in 150 μl M63 salts. Using a 1mL syringe and 25-gauge needle, the suspensions were passed 372 

through the needle 20 times. The cells were pelleted at 17,000 x g for 2 minutes, and the supernatant containing 373 

sheared flagella from the cell surface was collected. Sample protein content was normalized by quantifying 374 

protein content of the cell pellets using the bicinchoninic acid (BCA) assay (Thermo Fisher). Samples were 375 

adjusted according to cell pellet protein content and ran on a pre-cast 10% TGX acrylamide gel (Bio-Rad) with 376 

the Precision Plus Protein Dual Color Standards ladder (Bio-Rad) for 1.5 hours at 80 volts. Proteins were then 377 

transferred to a PVDF membrane using standard wet transfer at 90 volts for 1 hour at 4C. Following blocking 378 

using 5% milk for 1 hour, the membrane was probed with rabbit anti-FliC polyclonal antibody (65) (1:2000) 379 

overnight at 4C, followed by donkey anti-rabbit secondary antibody conjugated to IRDye680 fluorophore 380 

(1:20,000; LI-COR Biosciences, Cat# 926-68023) for 2 hours. Bands were visualized on an iBright FL1500 381 

imager using the X4 (610-660nm excitation) and M4 (710-730nm emission) pre-configured filter set for IRDye 382 

680.  383 

Biofilm assay 384 

Biofilm assays were performed using the crystal violet staining method, as previously described (66) 385 

Briefly, overnight cultures of bacteria were subcultured at 1:50 dilution for 1 hour in LB to allow bacteria to enter 386 

exponential phase. 1x106 CFU/mL were then inoculated into SCFM2 containing 2% mucus in tissue-culture 387 

treated 96-well plates. Bacteria were incubated statically at 37C for 24 hours. To measure biofilm, after 388 

incubation, plates were washed in water and dried for 2 hours in ambient air before adding 0.1% crystal violet to 389 
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stain attached bacteria for 15 minutes at room temperature. After staining, plates were washed 3 times in water 390 

and allowed to dry overnight. 95% ethanol was then added to the wells and the plate was incubated for 15 391 

minutes at room temperature. Well contents were transferred to a clean 96-well plate and the absorbance at 392 

550nm was measured using a Tecan Infinite M Plex plate reader. Wells containing sterile media were used as 393 

blank and negative controls.  394 

Statistical Analysis 395 

All experiments were performed in at least biological triplicate and across different days and media 396 

preparations. Statistical analysis was achieved via student’s two-tailed t-test, one way analysis of variance 397 

(ANOVA), or two-way ANOVA as indicated. Differences were considered significantly different with P-value 398 

<0.05. Statistical tests were carried out using GraphPad Prism version 10.2.  399 

Data Availability 400 

Custom Imaris creation parameters used for the analysis of aggregates and motility tracking are publicly 401 

available in the Carolina Digital Repository at: https://doi.org/10.17615/tvvm-8f83.  402 
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Figures 592 

 593 

 594 

 595 

 596 

 597 

 598 

Figure 1. Aggregation strongly correlates with tobramycin tolerance in a mucin concentration dependent 599 

manner. A) WT mPAO1 or ΔfliC were grown in SCFM2 with the indicated mucin concentration for 8 hours, then 600 

treated with tobramycin (300μg/mL) for 24 hours. Percent survival is plotted as mean +/- SD. B) WT PAO1 or 601 

ΔfliC expressing fluorescent protein were grown in SCFM2 at various mucin concentrations for 6 hours prior to 602 

imaging via 3D confocal microscopy. Scale bar is 30μm. C) Quantification of aggregates from B) using Imaris. 603 

Aggregates were classified as surfaces >5μm3. Data represents the average +/- SEM aggregate volume from 604 

at least 3 independent images. D) Proportion of planktonic biomass (<5um3) from Imaris analyzed images. 605 

Planktonic biomass plotted as average +/- SEM from a minimum of 3 images. All data are representative of 3 606 

independent experiments. *P<0.05, as determined by two-way ANOVA with Tukey multiple comparisons test A) 607 

or students t-test C). 608 
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 619 

 620 

Figure 2. Loss of flagellar motility promotes tolerance to multiple classes of antibiotics. The indicated 621 

strains were grown in SCFM2 containing 2% mucin for 8 hours, then treated with A) 300 μg/mL tobramycin 622 

(aminoglycoside), B) 2000μg/mL meropenem, or C) 1000/40 μg/mL ceftazidime/avibactam for 24 h. *P<0.05 as 623 

determined by one-way ANOVA with Dunnett’s post-hoc test. Data shown are mean +/- SEM and are 624 

representative of 3 independent experiments. 625 
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 637 

 638 

 639 

 640 

 641 

 642 

Figure 3. Mutants in flagellar rotation significantly impacts aggregation. Bacteria were grown in SCFM2 643 

with 2% mucin for 6 hours before imaging. A) Representative images of flagellar mutants. Scale bar is 30μm. B) 644 

Quantification of aggregates C) Proportion of planktonic biomass of the indicated strains. *P<0.05 as determined 645 

by one-way ANOVA with Dunnett’s post-hoc test. Data shown are mean +/- SEM and are representative of 3 646 

independent experiments. NS = not significant 647 
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 654 

 655 

 656 

 657 

Figure 4. The MotAB and MotCD stators differentially contribute to motility in mucus. Exponential phase 658 

bacteria were inoculated into SCFM2 with 2% mucin for 1 hour. A) Representative traces of the motile bacteria 659 

from each strain, representing one field of view. Scale bar is 5μm. B) Quantification of the percent of motile 660 

bacteria within the tracked population. C) Average track length for the motile proportion. *P<0.05 as determined 661 

by one-way ANOVA with Dunnett’s post-hoc test. NS = not significant. Data shown are mean +/- SEM (B and 662 

C). 663 
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 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

Figure 5. Constitutive fliC antagonizes  tolerance and aggregation. A) Survival of WT or constitutive fliC 682 

expressing strain to tobramycin. B) representative images of aggregates after growth in 2% SCFM2 for 6 hours. 683 

Scale bar is 30μm. C) Quantification of aggregates from B. D) Proportion of planktonic biomass. E) 684 

Representative tracking traces and motility fraction proportions of WT or fliC constitutive strain as determined by 685 

single cell motility tracking. Scale bar is 5μm. F) Quantification of the percent of motile bacteria within the tracked 686 

population. G) Average track length for the motile proportion. *P<0.05 as determined by students t-test. Data 687 

shown are mean +/- SEM and are representative of 3 independent experiments (A-C), and a minimum of 800 688 

cells tracked (E-G). 689 
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 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

Figure 6. Neutrophil elastase drives aggregation and antibiotic tolerance. A) Bacteria were grown in normal 703 

SCFM2 media with 2% mucin (-) or with neutrophil elastase (+NE) (150μg/mL) for 8 hours then treated with 704 

tobramycin (300μg/mL) for 24 hours. B) representative images of aggregates after growth in 2% SCFM2 for 6 705 

hours. Scale bar is 30μm. C) Imaris quantification of aggregates in (B). D) Proportion of planktonic biomass from 706 

analysis of (B). E) Representative tracking traces and motility fraction proportions of WT or fliC constitutive strain 707 

as determined by single cell motility tracking. Scale bar is 5μm. F) Quantification of the percent of motile bacteria 708 

within the tracked population. G) Average track length for the motile proportion. *P<0.05 as determined by 709 

students t-test. Data shown are mean +/- SEM and are representative of 3 independent experiments (A-C), and 710 

a minimum of 800 cells tracked (E-G). 711 
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Supplementary Material 716 

Supplementary Figures 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

Figure S1. Visualization of Imaris calculated aggregates. A) Representative images from Figure 1 with 726 

individual aggregate surfaces highlighted using Imaris. Scale ranges from 5-500μm3. B) Aggregate distribution 727 

by size from a single image.  728 
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 735 

 736 

 737 

 738 

 739 

Figure S2. fliC complementation restores tolerance and motor protein mutants still produce surface 740 

flagella. A) Bacteria were grown in SCFM2 containing 2% SMM for 8 hours. Cell and surface fraction were 741 

probed for FliC via western blot B) WT PAO1 and ΔflgE, and C) WT PAO1, ΔfliC, or fliC native complement 742 

(ΔfliC::ΦCTX-fliC) were grown in SCFM2 with 2% mucin for 8 hours, then treated with tobramycin (300μg/mL) 743 

for 24 hours. Percent survival is plotted as mean +/- SEM. *P<0.05, as determined by B) unpaired t-test or C) 744 

one way ANOVA with Dunnett’s post hoc test. 745 
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 755 

 756 

 757 

 758 

Figure S3. Loss of flagellar motility increases tolerance and persistence to multiple classes of 759 

antibiotics. Bacteria were grown for 8 hours in 2% mucin SCFM2 then treated with A) tobramycin (300μg/mL), 760 

B) meropenem (2000μg/mL), or C) ceftazidime/avibactam (1000/40 μg/mL) for up to 72 hours. Dashed line in 761 

(A) indicates limit of detection.  762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.25.620240doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.620240
http://creativecommons.org/licenses/by-nc-nd/4.0/


 775 

 776 

 777 

 778 

 779 

 780 

Figure S4. Biofilm formation and swimming motility of flagellar mutants. A) Bacteria were grown in 2% 781 

mucin SCFM2 for 24 hours before staining surface attached bacteria with 0.1% crystal violet. Absorbance was 782 

measured at 550nm. B) Bacteria were inoculated into LB with 0.3% agar and incubated at room temperature for 783 

~30 hours before zone of motility was measured. Representative images of motility zones shown. C) 784 

Quantification of swimming motility from (B). 785 
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 795 

 796 

 797 

 798 

 799 

 800 

Figure S5. Mucin constrains motility. Single cell motility tracking was conducted either in SCFM2 with 2% 801 

mucin or SCFM2 lacking mucin. The percent of motile bacteria is presented as mean +/- SEM. *P<0.05 as 802 

determined by student’s t-test 803 
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 814 

 815 

 816 

 817 

 818 

 819 

Figure S6. Inducible fliC expression restores flagellin levels and swimming motility. A) Swimming motility 820 

in soft agar for WT and constitutive fliC strain with varying concentrations of IPTG. 100μM IPTG was chosen for 821 

subsequent experiments. B) Western blot of surface flagella of indicated strains. 822 

 823 

Table S1: Strains and plasmids used in this study. 824 

Strain/plasmid Description Source/Reference 

Pseudomonas aeruginosa  
  

mPAO1 WT mPAO1 (67) 

ΔfliC In frame deletion of fliC This study 

ΔflgE  In frame deletion of flgE This study 

ΔfliC+ΦCTX-fliC Native fliC complement via insertion of fliC and 
promoter into neutral ΦCTX site 

This study 

ΔmotAB In frame deletion of motAB This study 

ΔmotCD In frame deletion of motCD This study 

ΔmotABCD In frame deletion of motABCD This study 

WT mPAO1 dsRed-
Express2 

WT mPAO1 expressing DsRed-express2 from Tn7 
site 

This study 
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ΔfliC dsRed-Express2 ΔfliC strain expressing DsRed-express2 from Tn7 
site 

This study 

ΔmotAB dsRed-Express2 ΔmotAB strain expressing DsRed-express2 from Tn7 
site 

This study 

ΔmotCD dsRed-Express2 ΔmotCD strain expressing DsRed-express2 from Tn7 
site 

This study 

ΔmotABCD dsRed-
Express2 

ΔmotABCD strain expressing DsRed-express2 from 
Tn7 site 

This study 

Constitutive fliC ΔfliC strain carrying pMMB plasmid with fliC under 
TAC promoter 

This study 

Constitutive fliC dsRed-
express2 

Constitutive fliC strain expressing dsRed-Express2 at 
Tn7 site 

This study 

   

Plasmids 
  

pDONR201 Gateway entry vector Invitrogen 

pEXG2 Suicide plasmid for in frame deletions (68) 

pFLP2 Vector containing flp recombinase for removing 
vector backbone of CTX and Tn7 plasmids 

(64) 

pTNS2 Helper plasmid for transformation of pUC18-mini-Tn7 
vectors 

(63) 

pMMB67 IPTG inducible Expression vector  (69) 

pMMB-fliC pMMB67 with fliC ORF under TAC promoter This study 

pUC18T-mini-Tn7T-Gm-Pc-
DsRed-Express2 

Tn7 vector for insertion of DsRed-express2 
fluorophore 

(70) 

pMini-CTX CTX vector for chromosomal insertion (71) 

Table S2: Relevant primers used in this study. 825 

Primer Description Sequence (5’-3’) 

fliC-up5’ 
Upstream homology 
arm for deletion of fliC 

TACAAGAAAGCTGGGTGCCTTGAGAATGTCTTCGTTGGAAGAC 

fliC-up3’ CCGGGCTTAGCGCAGCAGGCTCAGGTTGACTGTAAGGGCCATGGTGATTTC 

fliC-down5’ 
Downstream homology 
arm for deletion of fliC 

TACAAAAAAGCAGGCTGTGGACTGGGTGTTCTTCGGATTCTGC 

fliC-down3’ GAAATCACCATGGCCCTTACAGTCAACCTGAGCCTGCTGCGCTAAGCCCGG 

flgE-up5’ TACAAAAAAGCAGGCTCAGAACGGCGAGTTCATCGCCCAACTG 
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flgE-up3’ 
Upstream homology 
arm for deletion of flgE 

CCGTCATCAGCGCAGGTTGATGATGGTCTGGTTGAAACTCATGGATAGCTCCTTGCC 

flgE-down5’ 
Downstream homology 
arm for deletion of flgE 

TACAAGAAAGCTGGGTCACCTTTTCCTCCGGCGGCACGGC 

flgE-down3’ GGCAAGGAGCTATCCATGAGTTTCAACCAGACCATCATCAACCTGCGCTGATGACGG 

motAB-up5’ Upstream homology 
arm for deletion of 
motAB 

TACAAAAAAGCAGGCTGCGTTGCTGCCATTGCTCCAGTAG 

motAB-up3’ CTTGATCTGCTCCAGCTTCAGGCTGCCCATGAGGACCGGACGTGCGAAATGAAC 

motAB-
down5’ Downstream homology 

arm for deletion of 
motAB 

TACAAGAAAGCTGGGTGGCCTGGCGATGGACGAACTGCGC 

motAB-
down3’ 

GTTCATTTCGCACGTCCGGTCCTCATGGGCAGCCTGAAGCTGGAGCAGATCAAG 

motCD-
up5’ Upstream homology 

arm for deletion of 
motCD 

TACAAAAAAGCAGGCTGCCTTCACCAAGGCCTTCGCCGAG 

motCD-
up3’ 

CGCAAACCATGGTTCGCGCGCTCATGGGACCAGGCTGAGCACATCCATCAGCGC 

motCD-
down5’ Downstream homology 

arm for deletion of 
motCD 

TACAAGAAAGCTGGGTCAGCCCTTTCACCGCGAGGAACTC 

motCD-
down3’ 

GCGCTGATGGATGTGCTCAGCCTGGTCCCATGAGCGCGCGAACCATGGTTTGCG 

Native fliC-
5’ For amplification of fliC 

and promoter for native 
complement 

TACAAAAAAGCAGGCTGTTGCACGGGAGGGCTAAAGAAAATCGCCG 

Native fliC-
3’ 

TACAAGAAAGCTGGGTTTCATTAGCGCAGCAGGCTCAGGACCGC 

fliC gene-5’ For amplification of fliC 
gene for constitutive 
expression 

AGGCTCGAGGAGGATATTCATGGCCCTTACAGTCAACACGAAC 

fliC gene-3’ TACAAGAAAGCTGGGTTTCATTAGCGCAGCAGGCTCAGGACCGC 

 826 
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