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Supplementary Figure 1 | Characterizations of the vdW α-MoO3 flake. a Atomic 

force microscope (AFM) topography of the α-MoO3 flake. b Polarization-dependent 

Raman spectroscopy. The polarization angle is defined as the angle between the 

excitation polarization and [001] crystallographic axis of the α-MoO3 flake. c and d 

Polar plots of the Raman intensities at the peaks of 158 cm–1 (c) and 819 cm–1 (d), 

respectively. 

 

 
 

Supplementary Figure 2 | Scanning electron microscope (SEM) images of 

one-dimensional periodic tuner patterns with different w and θ. a 
One-dimensional periodic tuner patterns with different w and θ fabricated on the same 

α-MoO3 flake. b Enlarged SEM images of one-dimensional periodic tuner patterns 

with different w. c Enlarged SEM images of one-dimensional periodic tuner patterns 

with different θ. d−f Enlarged SEM image of the one-dimensional periodic tuner 

patterns marked with red (d and e) and green (f) colors shown in (b). 

 

 
Supplementary Figure 3 | Real parts of permittivity of vdW α-MoO3 along the 

three crystallographic axes. 

 

Supplementary Note 1. Fano lineshape fittings on reflectance spectra and 

extraction of the Q-factors 



When a broad resonance interferes with a relatively narrow resonance, the 

resulting spectrum (absorption, reflectance, transmission, or scattering spectrum) is 

characterized by an asymmetric non-Lorentzian profile. This phenomenon is 

well-known as Fano interference or Fano resonance, which was proposed by Ugo 

Fano1. In our study, the reflectance spectra of the pristine α-MoO3 flake (Fig. 1c) and 

one-dimensional periodic tuner patterns are asymmetric, suggesting occurrence of the 

Fano resonances. Specifically, the Fano interferences will occur between the phonon 

modes (for pristine α-MoO3 flake) or PhP resonances (for one-dimensional periodic 

tuner patterns) with narrow linewidths and the background reflectance with a broad 

linewidth. Therefore, the corresponding reflectance spectra around the resonances 

(reflectance peaks or valleys) can be fitted using the Fano lineshape1,2, 
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where  is the linewidth of a specific Fano resonance, p is the amplitude, qf is the 

Fano parameter accounting for the lineshape, and 0 is the shifted phonon frequency 

or PhP resonance frequency. Consequently, the Q-factor of the PhP resonance can be 

evaluated as 


 0Q


. 

 

 
Supplementary Figure 4 | Fano lineshape fittings on reflectance spectra of the 

pristine α-MoO3 flake (a and b) and two representative one-dimensional periodic 
tuner patterns (c−f). The fittings are performed around the reflectance peaks (a, c, 

and e) and valleys (b, d, and f). The experimental data points are overlaid onto the 

fitting curves. 

 

Supplementary Note 2. Discussion on the excitation mechanism of HPhPs by the 

1D-PRP 
To excite the HPhPs from far-field, it is required to compensate the large 

wavevector mismatch between free-space photons (k0) and polaritons (qPhPs). In our 



study, this can be achieved from two pathways (Fig. S5). Specifically, the first one is 

formation of Fabry−Pérot resonance (FPR). When the ribbon arrays are illuminated at 

normal incidence with an electric field pointing perpendicularly to the ribbon 

longitudinal axis, the ribbon edges will act as subwavelength-scale structures 

providing evanescent fields with high momentum. The evanescent waves can then 

hybridize with the optical phonons in α-MoO3 and excite HPhPs propagating 

transverse to the ribbons. Once the polaritons are stimulated, they will form 

standing-wave resonances, i.e., the FPR, by multiple reflections from the ribbon edges 

under the condition, 

 

qPhPsw+Φ = mπ, m = 1, 2, 3, … (S2) 

 

where w is the ribbon width, Φ is the possible phase shift upon reflection at the edges. 

The second one is that the 1D-PRP acts as a grating structure. The incidence waves 

will be scattered into guided waves (GWs) propagating transverse to the ribbons if the 

following condition is satisfied3, 

 

kΛ = n2π, n = 1, 2, 3, … (S3) 

 

where k and Λ are the wavevector of the GWs and period of the ribbon array, 

respectively. The GWs can then couple with the α-MoO3 ribbons and convert into 

HPhPs with the same wavevectors4. Considering that in our study the Λ was 

deliberately set as 2w, Eq. S3 can be written as, 

 

qPhPsw = nπ, n = 1, 2, 3, … (S4) 

 

The Eq. S2 and Eq. S4 are very close to each other except the phase difference Φ 

in Eq. S2. To ascertain which pathway of the two dominates the excitation of the 

HPhPs resonances, the energy absorbed by an isolated individual ribbon (labeled as 

Ribbon 1) and a typical single ribbon (labeled as Ribbon 2) in the 1D-PRP is 

compared. To that end, the energy consumption and electric field distributions within 

the Ribbon 1 and Ribbon 2 are calculated. Both ribbons have thicknesses of 200 nm 

and w of 800 nm. The longitudinal axes of the ribbons are set along [100] crystalline 

direction. The illumination power is kept the same. As shown in Fig. S6a, the energy 

absorption in Ribbon 1 and Ribbon 2 is both frequency dependent, with the maxima at 

ω01 = 878 cm–1 and ω02 = 876 cm–1, respectively. The absorption maximum in Ribbon 

2 is an order of magnitude larger than that in Ribbon 1. The ω02 coincides with the 

polariton resonance frequency of the 1D ribbon array extracted from the far-field 

reflectance spectrum (Fig. S6a, dashed line). Moreover, the electric field distribution 

inside the Ribbon 1 is much smaller than that in the Ribbon 2 (Fig. S6b). Similar 

results can also be observed for ribbons orientating along the [001] crystalline 

direction (Fig. S6c and d). From these analyses it can be deduced that the excitation of 

HPhPs are originated from the synergy between GWs of the array and FPR in an 

individual ribbon: the scattering of light at the ribbon edges excite the polariton FPR, 

while the GWs further couple with and transfer energy to the polariton FPRs. 

Due to its periodicity, in our study we define the 1D-PRP as a “1D lattice”, giving 

rise to the reciprocal lattice momentum G. Because the period of the ribbon array is Λ 

= 2w, the G then equals to mπ/w. 

 



 
Supplementary Figure 5 | Schematic showing excitation of polariton resonances 
in the 1D-PRP from far-field. The incident waves will be scattered by the sharp 

ribbon edges into evanescent waves with large momenta, whereby HPhPs propagating 

transverse to the ribbons are excited. Fabry−Pérot (FP) resonances can then be formed 

upon the multiple polariton reflections from the ribbon edges. Simultaneously, the 

1D-PRPs can also diffract the incident light into guided waves propagating 

perpendicular to the ribbon long axis, whose wavevectors are much larger than the 

free-space waves. These guided waves can then couple with and transfer energy to the 

polariton FP resonances. 

 

 
Supplementary Figure 6 | Comparison of the energy absorption by an individual 
ribbon and a typical single ribbon in the 1D ribbon array. a, c Simulated energy 

absorption by an individual ribbon (Ribbon 1: black lines) and a typical single ribbon 

(Ribbon 2: red lines) in the 1D ribbon array. The calculated far-field reflectance 



spectra are included for reference (dashed red lines). The longitudinal axes of the 

ribbons are parallel to [001] (a) and [100] (c) crystallographic axis of α-MoO3, 

respectively. b, d Optical near-field distributions of Ribbon 1 (lower) and Ribbon 2 

(upper). The near-field distributions are drawn on the cross section perpendicular to 

the ribbon transverse axis, i.e., the x–z plane for (b) and y–z plane for (d). 

 

Supplementary Note 3. Numerical simulations on optical near-field distributions 

of the α-MoO3 ribbon 

The origin of the resonance peaks in the far-field reflectance spectra of the 

α-MoO3 one-dimensional periodic tuner patterns can be unveil by calculating their 

respective near-field optical distributions. Specifically, for a typical resonance peak, 

its near-field optical distribution was numerical calculated using the RF module in 

Comsol, a commercial software capable of solving the Maxwell’s equations in the 

frequency domain. The one-dimensional periodic tuner pattern was placed onto a 

pristine silicon substrate. A plane wave was utilized as the excitation source, which 

illuminated the one-dimensional periodic tuner pattern from the air side with an 

incidence angle of 10° with respect to the normal direction. Periodic boundary 

condition was applied in the simulation. The near-field distribution at a specific 

resonance peak can be obtained by drawing the modulus of the electric field, |E|, were 

obtained on the cross section perpendicular to the ribbon long axis. The thickness and 

width of the ribbon were set according to the geometrical parameters obtained with 

AFM and SEM characterizations, respectively. Permittivity of the silicon substrate 

was taken from previous reported values5, while permittivity of α-MoO3 was modeled 

by fitting the experimental data using Lorentzian dielectric models6. 

 
Supplementary Figure 7 | Simulated optical near-field distributions |E| of a 

typical α-MoO3 one-dimensional periodic tuner pattern at 874 (a), 689 (b), 1001 
(c), and 1000 cm–1 (d). The near-field distributions are drawn on the cross section 

perpendicular to the ribbon long axis, i.e., the x–z plane (a, c) and y–z plane (b, d). 

Scale bars: 400 nm. The grey dashed arrows indicate the propagation trajectories of 

the polaritons. 

 



 
Supplementary Figure 8 | Variation of PhP resonance in Band 3 against the 
ribbon width. The resonance frequencies are obtained from the spectra shown in Fig. 

2a and b in the main text. 

 

Supplementary Note 4. Calculations of Imrp(q, ω) 
The Imrp(q, ω) was calculated using a polariton waveguide model developed for 

vdW crystal7. Specifically, the permittivity of the anisotropic α-MoO3 was modeled 

as7, 
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where 
j

  denotes the principal components of the permittivity, and the x, y, and z 

denote the three principal axes of the crystal. The 
j

 is the high frequency dielectric 

constant, the 
j

LO
  and 

j

TO
  refer to the LO and TO phonon frequencies, respectively. 

The parameter 
j  is the broadening factor of the Lorentzian lineshape, which is 

determined by the phonon lifetime. All of the parameters used in our calculations are 

adopted from Ref. 6 (for LWIR regime) and Ref. 5 (for THz regime) with slight 

modifications to match with the experimental data, which are given in Table S3. 

In the principal coordinate system, the dielectric tensor 


 can be described as, 
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To study the anisotropic polariton propagation along different directions in the 

basal plane of the vdW crystal, a coordinate transformation is applied, 
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where θ denotes the angle of the polariton propagation direction relative to the x-axis. 

In our theoretical model the supported α-MoO3 is treated as a multilayer structure 

composed of four layers: air layer (0 < z, 𝑗 = 0), α–MoO3 layer (−d1 < z < 0, 𝑗 = 1), 

SiO2 layer (−d2 < z < −d1, 𝑗 = 2), and Si substrate layer (𝑧 < −d2, 𝑗 = 3). For a 

p-polarized excitation, the in-plane magnetic field in the system are written as, 
( ) ( ) ( )( , ) [ exp( ) exp( )]exp( )j j j

y j z j zH x z A ik z B ik z iqx    (S8) 



Consequently, we can get, 
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By matching the continuity condition of the electromagnetic fields at the 

interfaces between adjacent layers (𝑧 = 0, −d1, and −d2), we can obtain, 
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The complex reflectivity rp of the air/α-MoO3/SiO2/Si multilayer structure is then 

given by, 
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where q represents polariton wave vector away from the x-axis by an angle θ. One 

should note that by plotting the Imrp(q, ω), only the real part of q was considered. 

 

Supplementary Note 5. Extraction and comparison of the polariton lifetimes 

obtained from far-field and near-field measurements 
We extracted the lifetime of HPhPs in the 1D-PRPs by fitting the reflection 

spectra with the Fano line-shape function (Eq. S1 and Fig. S9a). The lifetime τ at a 

resonance frequency 0 can be derived as  2 . As shown in Fig. S9c, the 



polariton lifetime of the 1D-PRPs ranges from 0.2 ps to 3.0 ps for Reststrahlen Band 1 

to Band 3. We also performed near-field nano-imaging measurements on the same 

α-MoO3 flake in the unpatterned region. A scattering type scanning near-field optical 

microscope was employed for the near-field characterizations (neaSNOM, neaspec 

GmbH)6,7. It should be noted that due to the limitation of the quantum cascade lasers 

integrated into our s-SNOM system, the near-field measurements can only be 

conducted in the frequency range of 890 to 1250 cm−1 (Band 2 and 3). In addition, to 

make a direct comparison, the excitation frequency of the s-SNOM was set according 

to the resonance frequency of the 1D-PRPs measured in the far-field. Specifically, for 

an 1D-PRP with the ribbon longitudinal axis pointing along [100] ([001]) direction, 

the resonance frequency was measured from far-field as 0. The same frequency 0 

was then employed as the excitation frequency for the near-field measurements. 

Consequently, clear interference fringes can be observed along the [001] ([100]) 

crystallographic direction (Fig. S9b). According to the line profiles extracted from the 

near-field interference fringes (Fig. S9b, insets), it is able to obtain the propagation 

length of the HPhPs upon an excitation frequency of 0. A typical line profile along 

[100] crystallographic direction of α-MoO3 can be fitted using the equation8, 
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where t0 denotes the polariton propagation length. The group velocity vg of the HPhPs 

in α-MoO3, which is defined as vg = ∂ω/∂k, can be extracted from the polariton 

dispersion relation calculated using the analytical model (see Note S7 below). 

Afterwards, the lifetime of the HPhPs in the unpatterned α-MoO3 can be calculated as 

τ = L/vg. 

The comparison of the polariton lifetimes obtained from far-field and near-field 

measurements is shown in Fig. S9c and Table S1. 

 
Supplementary Figure 9 | Comparison of the polariton lifetimes obtained from 

far-field and near-field measurements. a Fano lineshape fitting on a typical 

reflectance spectrum of the α-MoO3 1D-PRPs. The fitting was performed around the 

reflectance peaks and valleys. The experimental data points (symbols) are overlaid 

onto the fitting curve. b Experimental near-field images of unpatterned α-MoO3 at the 

resonance frequencies of 0 = 923 cm–1 (upper panel) and 993 cm–1 (lower panel). 

Scale bars: 0.5 μm. Insets: typical near-field line profiles along the [100] 

crystallographic direction (solid red lines) of α-MoO3. c Comparison of the polariton 

lifetimes of the unpatterned α-MoO3 (opened symbols) and ribbon arrays (solid 

symbols) at various resonance frequencies. The thickness of the α-MoO3 is d = 200 

nm. The solid spheres are extracted from the far-field spectroscopic measurements, 

while the open spheres are results from near-field characterizations. For far-field 

measurements, the long axes of the ribbons are paralleled to the [100] (red) and [001] 

(blue) crystallographic directions, respectively. For near-field measurements, the line 



profiles are analyzed along [001] (red) and [100] (blue) crystallographic directions, 

respectively. 

 

Supplementary Table 1. Comparison of the polariton lifetimes measured from 

the unpatterned α-MoO3 and 1D ribbon arrays. 

Frequencies 

(cm–1) 

A: lifetime from 

unpatterned α-MoO3 (ps) 

B: lifetime from 1D 

ribbon arrays (ps) 
Difference: (A–B)/A 

Line Profile of near-field 

images along [001] 

Ribbon longitudinal axis 

// [100] 

636 -- 0.37 -- 

652.5 -- 0.37 -- 

664 -- 0.36 -- 

688 -- 0.31 -- 

714.8 -- 0.21 -- 

745 -- 0.20 -- 

993 3.62 2.40 34% 

996 3.71 2.63 29% 

998 3.99 3.00 23% 

999 3.50 2.80 20% 

1000 3.40 2.60 23% 

Frequencies 

(cm–1) 

C: lifetime from 

unpatterned α-MoO3 (ps) 

D: lifetime from 1D 

ribbon arrays (ps) 
Difference: (C–D)/C 

Line Profile of near-field 

images along [100] 

Ribbon longitudinal axis 

// [001] 

906 0.89 0.55 38% 

912 1.15 0.59 48% 

915 1.31 0.61 53% 

917 1.71 0.73 57% 

923 1.23 0.93 25% 

993 4.03 2.62 35% 

996 3.96 2.46 38% 

998 4.32 2.65 38% 

999 3.91 2.55 34% 

1000 3.83 2.41 37% 

 

Supplementary Note 6. Raman mapping on the unpatterned α-MoO3 and 1D 

ribbon arrays 
The linewidth γ of the phonon modes can be obtained by performing 

spatially-resolved two-dimensional (2D) Raman mapping on both unpatterned 

α-MoO3 and 1D ribbon arrays using a confocal Raman spectrometer (Renishaw inVia 

Reflex). A typical Raman spectrum of the unpatterned α-MoO3 flake is shown in Fig. 

S10a. The linewidths of the phonon modes at 820 cm–1 and 995 cm–1, which originate 

from the vibrational modes along the [100] and [010] crystallographic directions, 

respectively, can be readily obtained by fitting the spectrum with a Lorentzian 

lineshape. In the Raman mapping measurement, the Raman spectra at each position 

were obtained by scanning the sample under the laser spot. The 2D pseudo-colored 

images shown in Fig. S10b and S10c visualize the spatial distribution of the phonon 

linewidths over the unpatterned region. The phonon linewidth is rather homogeneous, 

with 8.0 cm–1 ≤ γ ≤ 9.0 cm–1 for the mode at 820 cm–1 and 3.0 cm–1 ≤ γ ≤ 3.5 cm–1 for 

that at 995 cm–1, respectively. 



 
Supplementary Figure 10 | Raman spectroscopic mapping on unpatterned 
α-MoO3 flake. a Typical Raman spectrum of the unpatterned α-MoO3 flake. Inset: 

enlarged spectrum from 980 cm–1 to 1010 cm–1. The symbols correspond to 

experimental data while the red lines are Lorentzian lineshape fittings on the 

experimental spectra. b, c Two-dimensional Raman mapping on the unpatterned 

α-MoO3 flake. The mappings correspond to linewidths of the phonon modes at 820 

cm–1 (b) and 995 cm–1 (c), respectively. The polarization of the incident light is 

parallel to the [100] crystallographic direction. The mapping was conducted over an 

area of 50 μm×50 μm (red and blue regions in (b) and (c), respectively). The scale 

bars are 20 μm. 

 

Afterwards, we conducted 2D Raman mapping on α-MoO3 nanoribbons with 

widths of w = 1.0, 2.0, 2.5, and 3.0 μm. The mapping was performed to enclose the 

ribbon edges, as shown in Fig. S11 (pseudo-colored regions). Compared to the 

unpatterned flake, the overall linewidths of phonon modes at 820 cm–1 and 995 cm–1 

in these ribbons increased by 4.6% to 14.1% (Table S2). Notably, the ribbon edges 

exhibited larger linewidths than the center of the ribbon (Fig. S11a−S11d) due to 

defects and impurities introduced during fabrication processes. Therefore, the 

linewidths of phonon modes are not uniform across the nanoribbon. Additionally, the 

phonon linewidths increased significantly in the nanoribbon region, particularly at the 

ribbon edges, compared to the unpatterned region. This broadening contributes to the 

reduced lifetime of the HPhPs in the nanoribbons. 



 
Supplementary Figure 11 | Raman spectroscopic mapping of α-MoO3 

nanoribbons with widths of 1.0 μm (a), 2.0 μm (b), 2.5 μm (c), and 3.0 μm (d). 

The mappings correspond to linewidths of the phonon modes at 820 cm–1 and 995 

cm–1, respectively. The polarization of the incident light is parallel to the [100] 

crystallographic direction. The mapping was conducted to enclose a typical ribbon 

(pseudo-colored regions shown in (a) to (d)). The scale bars are 3 μm. 

 

Supplementary Table 2. Comparison of the linewidths of phonon modes 

measured from the unpatterned α-MoO3 flake and 1D ribbon arrays with long 

axes parallel to [001] crystallographic direction. 

Raman 

Shift (cm–1) 

A: linewidth from 

unpatterned 

α-MoO3 (cm–1) 

*B: linewidth from 

1D ribbon arrays 

(cm–1) 

Difference: (B–A)/A 

Width of Ribbon 

(μm) 
Width of Ribbon (μm) 

1.0 2.0 2.5 3.0 1.0 2.0 2.5 3.0 



820 8.5 9.2 9.2 9.3 9.7 8.2% 8.2% 9.4% 14.1% 

995 3.25 3.6 3.4 3.7 3.5 10.7% 4.6% 13.8% 7.6% 

*Maximum value from the Raman mapping on a specific nanoribbon shown in Fig. 

S11 is used for the linewidths of the phonon modes. 

 

Supplementary Note S7. Calculations of PhP dispersion relations    ,,dq


 

The solution of polariton electric field has the form as, 

      trqirEtrE 


exp,  (S14) 

where q


 represents wave vectors of the PhP. In α-MoO3 one can only consider the 

transverse magnetic modes (TM: Ex, Hy, Ez)
7. Therefore, solutions of the Maxwell 

equations should satisfy, 
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To simplify the model, the vdW crystal is treated as a 2D infinite waveguide of 

thickness d sandwiched between two semi-infinite plates, which are the substrate and 

cover layer, respectively. Because the PhPs are confined electromagnetic modes, the 

solution should have the form as, 
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where ckq 
2

0

2

c  , ckq 
2

0

2

s  , and   22

0 / qkk zxxz   .; k0 = 2π/λ0 

is the free space wave vector.; q is the propagation wave vector of PhPs along a 

specific direction. Parameters εc, εx, and εs are the permittivities of the cover layer (z > 

0), waveguide layer (−d ≤ z ≤ 0), and substrate (z < −d), respectively. The electric 

field Ex can then be obtained as, 
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where ω is the excitation frequency. According to the continuity of tangential 

components of electric fields at the interfaces z = 0 and z = −d, the following relation 

can be obtained, 
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To have non-trivial solution of A and B, the determinant of coefficient should be 



zero. As a result, the expression of PhPs dispersion relation    ,,dq


 can be 

obtained as7, 
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where  22 cossin xyt  , with θ denotes the angle of the propagation direction 

relative to the [100] crystal direction in the basal plane of the α-MoO3, and M = 0, 1, 

2, … represents order of the different TM modes. One should note that by plotting the 

dispersion relation, only the real part of q was considered. 

 

 
Supplementary Figure 12 | PhP dispersion relations of α-MoO3 one-dimensional 
periodic tuner patterns at different skew angles θ. The color spheres indicate 

experimental data extracted from reflectance spectra at different w. The false color 

plots represent the calculated Imrp(qPhPs, ω) of the air/α-MoO3/SiO2/Si multilayered 



structure. The polariton wave vector is normalized by the thickness of the α-MoO3 

flake. 

 

 
Supplementary Figure 13 | The IFCs of PhPs in THz spectral regime. a−c 

Polariton IFCs at various frequencies in Band 1. The false color plots represent the 

Imrp(ω, qx, qy). The colored spheres in the first quadrant represent the experimental 

resonance peaks at 296 ± 0.8, 299 ± 0.7, 300.5 ± 0.5 cm−1. Spheres in in other 

quadrants are duplicated according to the symmetry of the measurement scheme and 

the α-MoO3 crystal. The wave vectors in (a−c) are normalized by the thickness of the 

α-MoO3 flake. 

 

 
Supplementary Figure 14 | Comparison of the FWHM between PNFs and other 

commercial band pass filters. 
 



 
Supplementary Figure 15 | Extinction spectra of PNFs in LWIR and THz regimes. 
a, b Polarized extinction spectra of THz PNFs with different w. c, d Polarized 

extinction spectra of FWIR PNFs with different w. The long axes of the 

one-dimensional periodic tuner patterns are parallel to [100] (left panels) and [001] 

(right panels) crystallographic directions, respectively. The black arrows indicate the 

increments of w. 

 



 
Supplementary Figure 16 | Extinction ratio (a, c) and FWHM (b, d) of the PNFs as a 

function of the resonance frequency ω0 in LWIR (a, b) and THz (c, d) regimes. The 

widths/periods of the tuner patterns change from 0.4 μm/0.8 μm to 8.0 μm/16.0 μm. 

The long axes of the ribbons are parallel to [100] (red spheres) and [001] (grey 

spheres) crystallographic directions, respectively. 

 

Supplementary Table 3. Parameters used in calculating the relative permittivities 

of α-MoO3 in LWIR and THz regimes. 

α-MoO3 

(LWIR) 
x [100] y [001] z [010] 

ε∞ 4.0 5.2 2.4 

LO /cm−1 972 851 1004 

TO /cm−1 820 545 958 

 /cm−1 4 4 2 

α-MoO3 

(THz) 
x [100] y [010] z [001] 

ε∞ 5.78 4.47 6.07 

LO /cm−1 385 363 367 

TO /cm−1 362.4 337 268.4 

 /cm−1 3 1 4 
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