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Summary  
SARS-CoV-2 T cell response assessment and vaccine development may benefit from an approach that 
considers the global landscape of the human leukocyte antigen (HLA) proteins. We predicted the binding 
affinity between 9-mer and 15-mer peptides from the SARS-CoV-2 peptidome for 9,360 class I and 8,445 class 
II HLA alleles, respectively. We identified 368,145 unique combinations of peptide-HLA complexes (pMHCs) 
with a predicted binding affinity less than 500nM, and observed significant overlap between class I and II 
predicted pMHCs. Using simulated populations derived from worldwide HLA frequency data, we identified 
sets of epitopes predicted in at least 90% of the population in 57 countries. We also developed a method to 
prioritize pMHCs for specific populations. Collectively, this public dataset and accessible user interface (Shiny 
app: https://rstudio-connect.parkerici.org/content/13/) can be used to explore the SARS-CoV-2 epitope 
landscape in the context of diverse HLA types across global populations. 
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Introduction 
Infection with SARS-CoV-2 can result in a spectrum of clinical phenotypes encompassed by COVID-19, from 
asymptomatic illness to a potentially lethal disease with hallmarks of acute respiratory distress syndrome 
(ARDS) (Yang et al., 2020). While some clinical demographics have been associated with a more severe 
disease course (Guan et al., 2020), the heterogeneity of clinical outcomes is otherwise poorly understood. 
The range of clinical outcomes may at least in part be related to patient-specific antiviral T cell responses. T 
cells are crucial for viral clearance and development of immunologic memory (Wherry and Ahmed, 2004) and 
are plausible contributors to immunopathology following viral infection (Channappanavar and Perlman, 2017). 
Both SARS-CoV-2 reactive CD4 and CD8 T cells have been detected in patients with COVID-19 (Chour et al., 
2020; Grifoni et al., 2020a; Weiskopf et al., 2020a), though early studies suggest the relationship between T cell 
responses and the severity of COVID-19 is complex (Mathew et al., 2020).  
The heterogeneity in T cell responses to SARS-CoV-2 may be related to recognition of viral antigens in the 
context of class I and II human leukocyte antigen (HLA) proteins (Chour et al., 2020). Indeed, genetic 
susceptibilities to viral infection have been tied to variation in the major histocompatibility complex (MHC) 
genes that encode HLA proteins (Dutta et al., 2018; Hill, 2001). Meanwhile, functional differences in viral 
antigen-specific T cell responses in symptomatic and asymptomatic patients may also contribute to the biology 
of at-risk populations (Mathew et al., 2020; Weiskopf et al., 2020a).  
Further understanding of virus-specific T cell responses may aid in designing and monitoring the impact of 
preventative SARS-CoV-2 T cell vaccines. In contrast to SARS-CoV-2 vaccines focused on generating 
antibody responses against the surface spike glycoprotein that facilitates viral entry into the cell (Thanh Le et 
al., 2020) T cell vaccines have the capacity to generate immune responses against the entire viral proteome 
(Gilbert, 2012).  In fact, non-spike T cell responses may be associated with less severe COVID19 (Peng et al., 
2020).  
To evaluate patient-specific T cell responses, recent studies have used large pools of SARS-CoV-2 epitopes 
based on homology with SARS-CoV, or based on prediction of MHC class I- and class II-binding peptides 
across common HLA alleles in order to capture a broad population (Grifoni et al., 2020b; Smith et al., 2020). To 
facilitate a more comprehensive evaluation of anti-viral and vaccine-induced T cell responses, and to support 
region-specific and global vaccine design strategies, we generated a resource database with a corresponding 
user-friendly interface to facilitate exploration of predicted MHC-binding peptides across 9,360 and 8,445 class 
I and II HLA alleles, to account for the genetic diversity in the MHC gene complex across global populations.   
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Results  
In silico predictions of SARS-CoV-2 antigens 
We deployed binding predictions across the SARS-CoV-2 proteome (Figure 1) for 9,360 class I HLA alleles 
(2,987 HLA-A; 3,707 HLA-B; 2,666 HLA-C; 9-mers) and 8,445 class II HLA alleles (15-mers). The predicted 
binding affinity (in nanomolar [nM]) between peptides and HLA proteins (pMHCs) were summarized by the 
median predicted binding affinity across all algorithms (Median Score). The Median Score values were filtered 
to those less than 500nM, a common filter used in peptide binding predictions for the purpose of identifying T 
cell epitopes (Rajasagi et al., 2014; Sidney et al., 1999).  There were 368,145 unique combinations of peptides 
and HLA alleles (pMHCs) with a predicted binding affinity of less than 500nM (Table S2), including 1,103 
unique 9-mer and 2,547 15-mer peptides and 1,022 MHC class I and 3,481 MHC class II HLA proteins, 
respectively. Of note, 905 9-mers (82%) were nested within 1,789 15-mers (70%), indicating that a subset of 
peptides are predicted as both class I and II epitopes. 

In order to better understand the predicted antigenic profile of SARS-CoV-2, we focused on the set of 368,145 
pMHCs with predicted binding affinity of less than 500nM for the subsequent analyses. Both class I and class II 
antigens were predicted across 10 of the SARS-CoV-2 genes (Figure 1B), with the most derived from Orf1ab 
(n=690 9-mers; 1,589 15-mers), encoding the Orf1ab polyprotein. The number of peptides from each gene 
correlated with protein length (R2 = 0.997, p=2.10e-11; Figure S1).  
Confirmation of predicted SARS-CoV-2 antigens in published datasets 
In order to assess the validity of the predictions in our dataset, we compared our predicted antigens to 
previously reported SARS-CoV-2 or SARS-CoV T cell epitopes. There were 9 nine-mer and 5 fifteen-mer 
peptides in our dataset that were previously validated experimentally as T cell epitopes and reported in IEDB 
from SARS (Table 1). Since our dataset was restricted to 9-mers and 15-mers, we expanded this search to 
include any IEDB epitopes that overlapped (i.e. either nested, or in overlapping positions) with our predicted 
peptides, which resulted in 81 additional epitopes (Table S1). Four of these total 95 epitopes were specifically 
associated with HLA-A*02:01, while HLA restrictions were not reported for the remaining 91 epitopes. Each of 
the 154 peptides from our dataset overlapping with the 95 epitopes reported in IEDB were each predicted to 
bind a median of 4 class I HLA proteins (range 1-49) and 35 class II HLA proteins (range 1-5,694), suggesting 
these experimentally validated epitopes may be relevant in multiple HLA contexts.  

Grifoni et al. recently used the homology between the SARS-CoV and SARS-CoV-2 proteomes and existing 
annotated epitopes of SARS-CoV from IEDB to infer T cell epitopes derived from SARS-CoV-2 (Grifoni et al., 
2020b). This pool of peptides was assessed in samples derived from COVID19 patients, resulting in the 
identification of SARS-CoV-2-associated CD4 and CD8 T cell responses in 100% and 70% of convalescent 
COVID19 patients, respectively (Grifoni et al., 2020a). Our dataset identified 271 nine-mer peptides and 331 
fifteen-mer peptides that either overlapped or were nested in 241 CD8 and 628 CD4 T cell epitopes from this 
study, derived from 9 SARS-CoV-2 genes (Table S1). Still, there were 793 nine-mer and 2,139 fifteen-mer 
peptides in our dataset not included in the megapools experimentally evaluated in this study. Including these 
additional peptides in experimental validation may increase the sensitivity of detection of T cell responses in 
patients with SARS-CoV-2. 
Accounting for regional and global relevance of predicted class I pMHCs 
To address the regional and global relevance of our predicted class I pMHCs, we aggregated class I HLA 
frequency data from the Allele Frequency Net Database (AFND) (Gonzalez-Galarza et al., 2020), representing 
77 countries from 11 global regions (Table S2). Simulated populations (n=100,000 individuals) were created 
for each individual country, as well as an additional “global” population, constructed by the weighted 
population frequency of HLA types across countries. Each simulated individual was mapped to their predicted 
epitope profile by matching their HLA types to their corresponding predicted pMHCs.  
Restricting our analysis to HLA alleles with at least 5% frequency in each country-genepool, we observed that 
the set of predicted pMHCs differed greatly across countries. Per country, there was a median of 47 (range 1-
127) predicted pMHCs, including a median of 6 (range 1-11) HLA alleles and a median of 45.5 (range 1-119) 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 29, 2020. . https://doi.org/10.1101/2020.03.30.016931doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.016931
http://creativecommons.org/licenses/by-nc-nd/4.0/


unique peptides (Table S3). Still, we identified 20 nine-mer peptides shared by common HLA types across 30 
of 77 countries (18 of these peptides correspond to HLA types prevalent in the United States) (Figure 2). These 
peptides spanned 5 genes, including ORF1ab (ORF1ab polyprotein, n=14), S (Spike glycoprotein, n=2), M 
(membrane protein, n=1), N (nucleocapsid protein, n=1), and ORF3a (Protein 3b, n=1). Notably, this approach 
excluded countries in Latin America (such as Brazil and Nicaragua) and in Africa (such as Rwanda and Libya), 
as HLA types prevalent in these countries do not correspond to this filtered list of peptides.  
To improve the global reach of a putative peptide-based vaccine, we utilized a set cover algorithm to determine 
the smallest set of predicted antigens that covered the maximum number of individuals in each country's 
population. An individual was considered “covered” if their simulated class I HLA type was involved in at least 
one predicted pMHC, and these sets of peptides were denoted as the set cover solutions (SCSs) for the 
associated population. SCSs were calculated for 77 individual countries and for a “global” population, 
generated by pooling together the sample populations from all countries, and sampling from this combined pool 
(n=100,000) without replacement (Figure S2, Table S3).  
Based upon our simulated presentations, SCSs were capable of summarizing predicted pMHCs in at least 90% 
of the population in 57 countries. Furthermore, in 45 of these 57 countries, SCSs included 30 or fewer peptides 
(Figure 3A). When we evaluated which viral genes were associated with peptides in SCSs, Orf1ab contributed 
the largest number of peptides across all countries. (Figure 3B). We filtered peptides to those included in SCSs 
for at least 30 countries, and identified 19 predicted peptides, spanning 9 genes (Figure 3C).  

The constructed SCSs were also used to prioritize peptides of interest across geographic regions. Peptides were 
ranked within each SCS, based upon those associated with the largest cumulative percentage of the population. 
Evaluating the top ten ranked peptides within each SCS (n=95 unique peptides), each was associated with a 
mean of 7.73 country SCSs (range 1 - 63) (Figure 3C).  Furthermore, 19 out of 95 top-ranked peptides were 
associated with SCSs for countries from at least 5 out of 11 global regions (Figure 4D). These peptides are of 
particular interest, as they may be relevant across disparate populations. 
We compared the SCSs established from our predicted pMHCs to SCSs generated from a “reference” set of 
published peptide vaccine candidates ((Grifoni et al., 2020a; Smith et al., 2020; Weiskopf et al., 2020b) based 
upon highly prevalent HLA types in the United States and overlapping epitopes derived from both CD4 T cell, 
CD8 T cell, and B cell epitope predictions. The SCSs derived from the reference peptides were relevant in at 
least 90% of the population across 30 countries, including the United States (Figure 4A). Notably, the 14 
epitopes that comprised these SCSs were associated with 15 HLA types that were prevalent (at least 5% allelic 
frequency) across an average of 25 country populations, including HLA-C*03:04, B*35:01, A*11:01, and 
A*2:01 (Figure 4B). In contrast, the SCSs from our dataset were relevant in at least 90% of the population for 
57 countries (Figure 4C) by including 164 additional predicted peptides associated with 823 additional HLA 
types (Table S3). Thus, the inclusion of these additional HLA types or peptides in development may broaden 
the global applicability of vaccines. 
Deployment of a user interface to explore the epitome of SARS-CoV-2 
To make the predictions generated in this study publicly available and accessible to facilitate experimental 
validation, we established a user interface to explore the predicted SARS-CoV-2 epitopes in this dataset 
(https://rstudio-connect.parkerici.org/content/13/). Predicted T cell epitopes can be filtered by features described 
in this study, including viral gene or protein, peptide length, peptide sequence, HLA gene or specific type, and 
country (population) HLA allelic frequency. Furthermore, filtered predictions are mapped to other published 
datasets, including those validated or reported by other groups (Grifoni et al., 2020b; Smith et al., 2020). SCSs 
generated for this study are also made available through this interface. This tool will serve as a resource for the 
development of virus specific T cell assays or vaccine design, by considering the global landscape of HLA 
susceptibility in SARS-CoV-2. 
Discussion  
Our study was designed to evaluate the predicted epitope landscape with respect to the SARS-CoV-2 viral 
proteome across a globally representative set of HLA alleles. We aimed to establish a resource for the scientific 
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community, and have made the entirety of these data publicly available and accessible. This work expands upon 
recent studies that inferred the epitope landscape of SARS-CoV-2 to either interrogate T cell responses in 
infected individuals or develop vaccines (Chour et al., 2020; Grifoni et al., 2020a, 2020b; Smith et al., 2020; 
Weiskopf et al., 2020a). Our pan-HLA approach enabled identification of new HLA contexts for previously 
proposed and validated peptides, as well as the identification of additional peptides from less prevalent HLA 
types. Furthermore, the overlap between class I and II predicted pMHCs suggests that some epitopes may be 
presented to both CD4 and CD8 T cells.  
The pan-HLA approach, the inclusion of the entire SARS-CoV-2 proteome, and integration of HLA frequency 
data from AFND allowed unique evaluation of the regional and global relevance of our predicted pMHC 
dataset. We establish a set-cover based approach to explore the relevance of our predicted pMHCs across 
distinct global populations, and use this to construct sets of predicted pMHCs that have putative relevance 
across 90% of the population in 57 countries. These set cover solutions were superior using our dataset, 
compared to previously published datasets of peptide-based vaccine candidates, due to the breadth of predicted 
pMHCs and HLA subtypes.   

This dataset and analysis have limitations. Our analysis was restricted to pMHC complexes with predicted 
binding affinities of less than 500nM. Subsequent analysis did not treat the predicted binding affinities as a 
continuous variable (i.e. predicted values of 5nM and 400nM were treated similarly in the remaining analysis). 
In the absence of experimental validation, we did not try to over delineate the association between HLA 
diversity and the predicted binding affinity. Furthermore, utilizing a threshold of 500nM may result in 
underestimating the number of alleles associated with the predicted antigenic peptides. Our predictions were 
limited to 9-mers and 15-mers, which represent most but not all reported HLA class I and class II binding 
peptides. Our data also does not account for either the quantity or timing of viral protein expression in a host 
cell, both of which can impact the immunogenicity of predicted epitopes (Croft et al., 2019). Finally, analysis of 
global population frequencies was restricted to a limited number of HLA alleles and countries. While AFND is 
the most comprehensive database summarizing the population frequencies of HLA haplotypes, it is far from 
complete. Frequencies are reported for 73, 73, and 49 countries for genes HLA-A, -B, and -C, respectively. In 
addition, the number of alleles reported for each gene is variable across countries, ranging from 1-1,498.  
In summary, our resource provides a pan-HLA tool for those seeking to study SARS-CoV-2 or vaccine-induced 
T cell responses. In addition, our strategy enables the identification of sets of class I peptides either within or 
across countries, an important consideration for vaccine design. For these reasons we have made our 
calculations available in full and have also developed a user-friendly web-app to enable exploration of these 
data at https://rstudio-connect.parkerici.org/content/13/. SARS-CoV-2 is an ongoing pandemic and these 
resources will be updated as further peptide validation becomes available. 
Author Contributions 
K.M.C., G.S., and A.K. conceived experiments. K.M.C. and A.K. supervised the study. K.M.C., G.S., D.K.W., 
A.R., and A.K. designed the experiments. K.M.C. and G.S. performed data processing and analysis. K.M.C., 
G.S., and A.K. wrote the manuscript, and all authors contributed to final revisions of the manuscript. 
Acknowledgments 
We are grateful to John Wherry (University of Pennsylvania, Philadelphia, PA) and Bonaventura Clotet, Julia 
Garcia Prado and Christian Brander (IrsiCaixa Foundation, Barcelona, Spain) for valuable feedback on the 
manuscript. The computational resources for this study were provided by the Parker Institute for Cancer 
Immunotherapy (PICI). K.M.C. is supported by the UCLA Tumor Immunology Training Grant (NIH 
T32CA009120) and the Cancer Research Institute (CRI) Irvington Postdoctoral Fellowship Program. A.K. is 
supported by the UCLA CTSI KL2 Award (NCATS TR001882) and Sarcoma Alliance for Research Through 
Collaboration Career Enhancement Program. A.R. is supported by R35 CA197633 and The Ressler Family 
Fund, and is a member researcher at PICI.  

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 29, 2020. . https://doi.org/10.1101/2020.03.30.016931doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.016931
http://creativecommons.org/licenses/by-nc-nd/4.0/


Declaration of Interests 
K.M.C is a shareholder in Geneoscopy LLC. D.K.W. is a founder, equity holder and receives consulting fees 
from Immunai. A.R. is supported by the National Institute of Health (R35 CA197633), the Ressler Family 
Fund, the Agilent Thought Leader Award, a Stand Up to Cancer- Bristol-Meyer Squibb Catalyst Research 
Grant (Grant Number: SU2C-AACR-CT06-17). This research grant is administered by the American 
Association for Cancer Research, the scientific partner of SU2C. A.R. is a member researcher at the Parker 
Institute for Cancer Immunotherapy. 
  

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 29, 2020. . https://doi.org/10.1101/2020.03.30.016931doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.016931
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures and Figure Legends 

 
Figure 1. Peptide binding predictions for SARS-CoV-2 
A. Overview of the analysis strategy. Class I and II HLA alleles, combined with 9-mer and 15-mer peptides 
spanning the viral proteome were used as inputs for an aggregated peptide binding prediction approach. A filter 
of peptides with a median score of 500nM was applied to summarise a set of peptide-MHC complexes 
(pMHCs) with predicted high binding affinity. B. The distribution of the number of HLA alleles (distinguished 
by Class I vs II) is shown, according to corresponding peptide, indicated by its starting position within the viral 
proteome (x-axis). Peptides are colored by their corresponding genes.  
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Figure 2. Peptide diversity in country pMHC profiles 
Overview of country pMHC profiles, reflecting HLA frequency distributions reported by AFND. Frequency 
data was filtered to only include alleles with at least 5% frequency for each country. The y-axis indicates the 
number of country pMHC profiles that included each peptide along the x-axis. Two groups of peptides are 
shown, according to corresponding SARS-CoV-2 gene: A) peptides that appeared at least once in any country 
pMHC profile, and B) those that appeared in a minimum of 30 country pMHC profiles. (*) indicates that the 
peptide was not included in the pMHC profile of the United States. 
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Figure 3. Set Cover Solution peptide summary 
A. Summary of SCS results for all 77 countries. The percent of the sample population covered and the number 
of peptides involved in each SCS is shown, annotated by each country’s corresponding region. The United 
States is also denoted by text. B. Overview of peptides comprising SCSs. The number of peptides each SARS-
Cov-2 protein contributed is shown (top), as well as the number of SCSs individual peptides contributed to 
(bottom), filtered to show peptides that contributed to a minimum of 10 SCSs. C. Peptides were ranked within 
each SCS, based upon those associated with the largest cumulative percentage of the population. There were 95 
unique peptides comprising the top 10 ranking of all SCSs, and are shown in this figure. The histogram (top 
panel) shows the number of SCSs associated with each of these peptides. The most recurrent peptides (present 
in over 30 SCSs) are further shown (bottom panel). D. Geographic distribution of top-ranked peptides, shown in 
C. Peptides were filtered to those associated with country SCSs spanning at least 5 regions are shown. Each tile 
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is colored by the number of SCSs (i.e. countries) within each global region (y-axis) corresponding to each 
peptide (x-axis).  

 

 
Figure 4. Smith et al. Set Cover Solution summary 
A. The Smith et al. dataset was summarized across countries by previously reported epitopes and corresponding 
HLA types. The number of peptides included and the percent of the sample population covered by each SCS is 
shown, colored by each country’s corresponding region. The United States is also denoted by text. B. The 
peptides comprising the Smith SCS are shown (top panel), along with the number of SCSs (y-axis) associated 
with each peptide and the corresponding SARS-CoV-2 gene (color). The HLA Alleles associated with these 
peptides is also shown (bottom), according to the number of pMHCs (i.e. peptides) predicted for the 
corresponding allele. C. The percent of each simulated country (x-axis) population covered by their respective 
SCSs is shown; SCS from this work is shown in blue, and the SCS results from Smith et al. is shown in green. 
A 90% cutoff is denoted by the horizontal, dashed line. 
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Tables 
Table 1. Previously validated T cell epitopes in SARS-CoV from IEDB 
*HLA Restriction and Experimental validation are taken from the annotation reported in IEDB. ICS: 
intracellular cytokine staining. 

 
Peptide Gene HLA 

Restriction* 
Predicted HLA types T cell assays 

(Experimental 
validation)* 

ALNTPKDHI N A*02:01 HLA-A*02:11 ELISPOT IFNg 
release 

AQFAPSASAFFGMSR N HLA class II DQA1*06:01, 06:02; DQB1*03:13, 06:03, 
06:11, 06:14, 06:28, 06:31, 06:40, 06:41, 
06:44 

ELISA or ICS IFNg 
release 

FIAGLIAIV S A2; A*02:01 A*02:03, 02:131, 02:150, 02:170, 02:179, 
02:187, 02:196, 02:205, 02:214, 02:228, 
02:238, 02:248, 02:257, 02:50, 02:69, 02:71, 
02:85, 02:95 

ELISA, ELISPOT, or 
ICS IFNg release; in 
vivo assay 
cytotoxicity; 
multimer/tetramer 
qualitative binding 

GMSRIGMEV N A*02:01 A*02:03, 02:50 51 chromium or in 
vitro cytotoxicity; 
ELISA, ELISPOT, or 
ICS IFNg release 

ILLNKHIDAYKTFPP N Mus 
musculus 
(BALB/c) 

DPA1*02:02; DPB1*05:01 ELISPOT IFNg 
release 

LLLDRLNQL N A*02:01 A*02:02, 02:03, 02:11, 02:13, 02:132, 
02:141, 02:150, 02:16, 02:173, 02:181, 
02:19, 02:196, 02:205, 02:214, 02:228, 
02:238, 02:25, 02:262, 02:54, 02:70, 02:71, 
02:73, 02:85, 02:95; B*08:22, 08:38, 08:41, 
08:56; C*03:71 

51 chromium or in 
vitro cytotoxicity; 
ELISA, ELISPOT, or 
ICS; in vivo pathogen 
burden after 
challenge 

LPNNTASWFTALTQH N Mus 
musculus 
(BALB/c) 

DQA1*01:01, 01:02, 01:03, 01:04, 01:05, 
01:06, 01:07, 01:08, 01:09, 02:01; 
DQB1*03:01, 03:03, 03:04, 03:07, 03:08, 
03:09, 03:10, 03:11, 03:12, 03:14, 03:15, 
03:16, 03:17, 03:18, 03:19, 03:20, 03:21, 
03:22, 03:23, 03:24, 03:26, 03:27, 03:28, 
03:29, 03:30, 03:31, 03:32, 03:33, 03:34, 
03:35, 03:36, 03:37, 03:38, 03:06, 03:13, 
03:25, 04:03, 06:01, 06:14, 06:15, 06:16, 
06:19, 06:32, 06:33, 06:35, 06:37, 06:43, 
06:02, 06:04, 06:07, 06:24, 06:03, 06:09, 
06:11, 06:22, 06:28, 06:29, 06:30, 06:31, 
06:40, 06:41, 06:44;  DRB1*14:01, 14:07, 
14:10, 14:11, 14:16, 14:24, 14:26, 14:39, 
14:45, 14:50, 14:54, 14:55, 14:58, 14:60, 
14:68, 14:71, 14:75, 14:76, 14:79, 14:82, 
14:86, 14:87, 14:88, 14:90, 14:93, 14:97 

ELISA IFNg release 

LQLPQGTTL N A*02:01 A*02:06, 02:14; B*15:01, 15:03, 15:103, 
15:113, 15:127, 15:132, 15:179, 15:62, 

ELISPOT IFNg 
release 
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15:69, 15:75, 15:98, 39:23, 39:49, 40:07, 
40:12, 40:13, 40:21, 40:46, 48:15, 48:21 

NLNESLIDL S A*02:01 A*02:02, 02:131, 02:141, 02:155, 02:16, 
02:186, 02:19, 02:209, 02:22, 02:69, 02:90 

51 chromium 
cytotoxicity; 
ELISPOT IFNg 
release 

RLNEVAKNL S A*02:01 A*02:03, 02:11, 02:128, 02:171, 02:196, 
02:230, 02:238, 02:253, 02:258, 02:99; 
B*27:20 

51 chromium 
cytotoxicity; 
ELISPOT or ICS 
IFNg release; 
multimer/tetramer 
qualitative binding 

SASAFFGMSRIGMEV N Mus 
musculus 
(BALB/c) 

DRB1*11:04 ELISA IFNg release 

SPRWYFYYLGTGPEA N Mus 
musculus 
(BALB/c; 
H2-d class II) 

DPA1*01:03, DPB1*03:01, 14:01, 140:01, 
141:01, 142:01, 143:01, 144:01, 145:01, 
147:01, 148:01, 149:01; DRB1*04:03, 
04:04, 13:03" 

ELISA or ELISPOT 
IFNg release; 
ELISPOT IL-10 
release; ELISPOT 
IL-2 release; 
ELISPOT IL-4 
release 

VLAWLYAAV Orf1ab A*02:01 A*02:11, 02:148, 02:22, 02:230, 02:253, 
02:258 

ICS IFNg release 

VLNDILSRL S A*02:01  A*02:03, 02:11, 02:13, 02:132, 02:148, 
02:151, 02:171, 02:186, 02:19, 02:196, 
02:209, 02:22, 02:230, 02:238, 02:253, 
02:258, 02:52, 02:54, 02:70, 02:71, 02:73, 
02:85, 02:99; C*05:04, 05:23, 05:33 

51 chromium 
cytotoxicity; 
ELISPOT IFNg 
release 

STAR METHODS 
Resource Availability 
Lead Contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled by the 
Lead Contact, Katie Campbell (katiecampbell@mednet.ucla.edu). 

Materials Availability 
Data and Code Availability 
The results of this study are available in a public Google bucket through the following link: 
https://console.cloud.google.com/storage/browser/pici-covid19-data-resources (gs://pici-covid19-data-
resources). This bucket contains all of the unfiltered peptide binding predictions and the Supplemental Tables 
corresponding to this document. The filtered peptide binding predictions and set cover solutions can be explored 
using the interactive Shiny app at https://rstudio-connect.parkerici.org/content/13/. All filtered data can be 
exported from this web interface. The code for this manuscript and the Shiny App is available in the public 
github repository https://github.com/kcampbel/neocovid-app.  
Method Details 
Data acquisition 
The NCBI Virus resource (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/) was used to obtain all annotated 
protein sequences for SARS-CoV-2 on March 15, 2020. This dataset spanned 166 genotypes, but protein 
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sequences were summarized by the corresponding UniProt annotation for the SARS-CoV-2 proteome 
(UP000464024). All possible 9-mer and 15-mer peptides were obtained from the entire viral proteome for Class 
I and Class II peptide binding predictions, respectively.  
Peptide-MHC binding predictions 
Peptide binding predictions were performed using the pVACbind tool from pVACtools and executed using the 
griffithlab/pvactools:1.5.7 (https://hub.docker.com/r/griffithlab/pvactools/) Docker image. Class I prediction 
algorithms included MHCflurry (v1.6.0) (O’Donnell et al., 2018), MHCnuggets (v2.3) (Shao et al., 2020), 
NetMHC (v4.0) (Andreatta and Nielsen, 2016), PickPocket (v1.1) (Zhang et al., 2009), SMM (v1.0) (Peters and 
Sette, 2005), and SMMPMBEC (v1.0) (Kim et al., 2009). Class II prediction algorithms included NetMHCIIpan 
(v4.0) (Reynisson et al., 2020), SMMalign (v1.1) (Nielsen et al., 2007), NNalign (v2.3) (Nielsen and Andreatta, 
2017), and MHCnuggets (v2.3) (Shao et al., 2020). 
HLA alleles were chosen by running the command `pvacseq valid_alleles` and filtering out any non-expressed 
or null HLA alleles (those ending with the “N” suffix), resulting in 9,360 Class I HLA proteins and 8,445 Class 
II HLA alleles. It is important to note that for Class II predictions, some algorithms include inputs of either 
individual HLA alleles (e.g. DPB1*01:01) or combinations of HLA alleles (e.g. DPA1*01:03-DPB1*01:01), 
since two HLA proteins pair together for Class II antigen presentation. All available individual (n=3,484) or 
combinations of (n=4,961) Class II HLA alleles were used for input. 
Class I predictions were performed using the following command:  

$ /opt/conda/bin/pvacbind/run ${fasta} ${hla} ${hla} MHCflurry MHCnuggetsI NetMHC PickPocket SMM 
SMMPMBEC tmp/ -e 9 --iedb-install-directory /opt/iedb --net-chop-method cterm --netmhc-stab 

Class II predictions were performed using the following command: 
$ /opt/conda/bin/pvacbind/run ${fasta} ${hla} ${hla} NetMHCIIpan SMMalign NNalign MHCnuggetsII tmp/ -
e 15 --iedb-install-directory /opt/iedb --net-chop-method cterm --netmhc-stab 
Where ${fasta} was the protein sequence fasta containing the SARS-CoV-2 proteome, obtained at NCBI Virus. 
The pVACbind tool was performed individually across the union of HLA alleles available for all algorithms, 
and each allele was specified by the ${hla} input in the command. The filtered results, containing peptide-MHC 
complexes with predicted Median Score (nM) less than 500nM, were aggregated for the final dataset. 
Population frequencies of HLA types 
Country Populations 
Population frequencies of HLA alleles were obtained from the Allele Frequency Net Database (Gonzalez-
Galarza et al., 2020). The database contains HLA Frequency data for Class I and Class II alleles across 1,028 
distinct populations. Populations whose net frequency data exceeded 1 at a given allele were excluded from this 
analysis, as well as populations that did not report frequencies for alleles with 2 or 3 fields. Because these 
populations are highly granular (i.e. “USA San Francisco Caucasian”), we aggregated them into 98 populations 
by country; 77 had data for Class I alleles. This was done by (1) assigning each population to a country using 
the first word from each population name, (2) calculating the country “sample size” by summing the sample 
sizes of distinct populations, and (3) calculating HLA frequencies within each country population using 
Formula 1. 
Formula 1. Country HLA Frequency Calculation 
 Country Frequency = sum(`Allele Frequency`*`Population Sample Size`)/(Country Sample Size) 
Sample populations were generated from this country-frequency data for 77 countries. This was done by 
sampling 2n alleles from each country gene pool for each Class I allele with reported data, where n represents 
the number of simulated individuals in the sample population (n = 100,000). The probability of selecting an 
allele for each sample population is equal to the frequency of that allele reported for each given country. The 
simulated populations used for analysis are available in the github repository 
(https://github.com/kcampbel/neocovid-app). These populations of simulated genotypes were then merged with 
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our Class I predictions to create a pMHC profile for each country, based on each country’s reported allele 
frequencies. 

Global Population 
A simulated “global population” was generated by first aggregating all 77 country sample populations, and then 
sampling from this pool 2n times to create a sample population of n individuals (n = 100,000). This ensured that 
each country would be represented in this global population with equal probability regardless of sample size, 
such that the global population was not further biased towards the United States and European countries. It 
should be noted that consequently, this global population does not reflect true global HLA frequencies, which 
would require consideration of true country size. 
Set Cover Solutions 
Given a universal set of n elements (U), a collection of subsets of U (S), and the associated cost of each subset 
in S, the set cover problem is to identify I , the minimal subcollection of S, whose union equates to U and 
minimizes the total cost (Karp, 1972). The greedy algorithm addresses this problem by iteratively adding 
elements of U to I until all subsets in S are covered (Vazirani, 2013).  This problem is NP-hard, so a logN 
approximate solution was used. 
That is, for a simulated population X,  

U = all individuals in X covered by at least one pMHC 
 S_i = all individuals in X covered by the pMHC with Epitope i 

 S = set of S_i whose union spans all individuals in U 
 cost(S_i) = 1 for all Epitopes i 

The solution (I) represents the smallest set of epitopes whose union covers the largest portion of population X. 
Quantification and Statistical Analysis 
Data analysis and visualization was performed in R using the tidyverse packages [REF]. The neoCOVID 
Explorer application was developed using the Shiny R package [REF] and deployed using RStudio-Connect. 

Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

SARS-CoV-2 viral proteome sequence NCBI Virus taxid:2697049 

SARS T cell epitopes IEDB taxid:694009 

T cell epitopes shared by SARS and 
SARS-CoV-2 (Grifoni et al., 2020b) Tables S3, S6 

SARS-CoV-2 vaccine candidates (Smith et al., 2020) Table S6 

Population frequencies of HLA types Allele Frequency Net 
Database 

http://www.allelefrequen
cies.net 

Software and Algorithms 

pVACtools v1.5.7 https://pvactools.readth
edocs.io/ 

https://hub.docker.com/r/
griffithlab/pvactools/  

 MHCflurry (v1.6.0) (O’Donnell et al., 
2018) 
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MHCnuggets (v2.3) (Shao et al., 2020)  

NetMHC (v4.0) (Andreatta and 
Nielsen, 2016) 

 

PickPocket (v1.1)  (Zhang et al., 2009)  

SMM (v1.0)  (Peters and Sette, 
2005) 

 

SMMPMBEC (v1.0)  (Kim et al., 2009)  

NetMHCIIpan (v4.0) (Reynisson et al., 
2020) 

 

SMMalign (v1.1)  (Nielsen et al., 2007),   

NNalign (v2.3)  (Nielsen and 
Andreatta, 2017) 

 

R v4.0.0 https://cran.r-
project.org/   

tidyverse v1.3.0 https://www.tidyverse.
org/  

Shiny v1.4.0.2 https://shiny.rstudio.co
m/  

Set Cover Solution This study https://github.com/kcamp
bel/neocovid-app 

neoCOVID Explorer Shiny App This study 
https://rstudio-
connect.parkerici.org/con
tent/13/ 
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