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Cytokines play essential roles in the control of 
immune systems; they not only act as growth 
factors but also regulate the diff erentiation, 
maintenance, and activation of naive, eff ector, 
and memory state of immune cells. Their cyto-
plasmic signal transduction pathways are well 
defi ned. Upon binding of cytokines to their re-
ceptors and subsequent receptor dimerization, 
receptor-associated JAKs become activated and 
phosphorylate tyrosine residues in the cytoplas-
mic domains of receptors, which serve as the 
binding sites for Src homology 2 (SH2) domain 
of STAT molecules. After phosphorylation of 
STATs by JAKs, STATs dimerize and translo-
cate into the nucleus to induce transcription of 
cytokine- responsive genes (1, 2).

The cytokine milieu and their intracellular 
signaling molecules are also involved in naive 

CD4+ Th diff erentiation. It is well established 
that IL-12/STAT4 and IL-4/STAT6 are nec-
essary for Th1 and Th2 diff erentiation, respec-
tively. In addition, IFN-γ–STAT1 pathway is 
also necessary for Th1 diff erentiation (3, 4). 
The molecular mechanism for generating Th3 
regulatory cells, which is a unique Th cell sub-
set that primarily secretes TGF-β1, is poorly 
understood. TGF-β1 secreted from Th3 cells 
provides help for IgA induction and has sup-
pressive properties for both Th1 and Th2 cells 
(5, 6). Because TGF-β1 KO mice exhibited se-
vere multiorgan infl ammations (7, 8), TGF-β1 
has been thought to be an important immune 
regulatory cytokine. TGF-β1 is also suggested 
to be involved in the regulatory function of 
CD4+ CD25+ regulatory T cells (9, 10), though 
the molecular mechanism of TGF-β1 induc-
tion in such regulatory-type T cells remains to 
be elucidated. Because production of TGF-β1 

Loss of SOCS3 in T helper cells 
resulted in reduced immune responses 
and hyperproduction of interleukin 10 
and transforming growth factor–β1

Ichiko Kinjyo,1 Hiromasa Inoue,2 Shinjiro Hamano,3 Satoru Fukuyama,1,2 
Takeru Yoshimura,1 Keiko Koga,1 Hiromi Takaki,1 Kunisuke Himeno,3 
Giichi Takaesu,1 Takashi Kobayashi,1 and Akihiko Yoshimura1

1Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, 2Research Institute for Diseases 

of the Chest, Graduate School of Medical Sciences, and 3Department of Parasitology, Faculty of Medical Sciences, 

Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan

Suppressor of cytokine signaling (SOCS)3 is a major negative feedback regulator of signal 

transducer and activator of transcription (STAT)3-activating cytokines. Transgenic mouse 

studies indicate that high levels of SOCS3 in T cells result in type 2 T helper cell (Th2) 

skewing and lead to hypersensitivity to allergic diseases. To defi ne the physiological roles of 

SOCS3 in T cells, we generated T cell–specifi c SOCS3 conditional knockout mice. We found 

that the mice lacking SOCS3 in T cells showed reduced immune responses not only to 

ovalbumin-induced airway hyperresponsiveness but also to Leishmania major infection. 

In vitro, SOCS3-defi cient CD4+ T cells produced more transforming growth factor (TGF)-𝛃1 

and interleukin (IL)-10, but less IL-4 than control T cells, suggesting preferential Th3-like 

differentiation. We found that STAT3 positively regulates TGF-𝛃1 promoter activity de-

pending on the potential STAT3 binding sites. Furthermore, chromatin immunoprecipitation 

assay revealed that more STAT3 was recruited to the TGF-𝛃1 promoter in SOCS3-defi cient 

T cells than in control T cells. The activated STAT3 enhanced TGF-𝛃1 and IL-10 expression 

in T cells, whereas the dominant-negative form of STAT3 suppressed these. From these 

fi ndings, we propose that SOCS3 regulates the production of the immunoregulatory cyto-

kines TGF-𝛃1 and IL-10 through modulating STAT3 activation.

CORRESPONDENCE

Akihiko Yoshimura: 

yakihiko@bioreg.kyushu-u.ac.jp

Abbreviations used: ChIP, chro-

matin immunoprecipitation; 

cKO, conditional KO; LIF, leu-

kemia inhibitory factor; SH2, 

Src homology 2; SBE, STAT3-

binding element; SOCS, sup-

pressor of cytokine signaling.

The online version of this article contains supplemental material.



1022 SOCS3 REGULATES IL-10 AND TGF-β1 PRODUCTION | Kinjyo et al.

is greatly enhanced by IL-4 and IL-10 in Th cells, while sup-
pressed by IFN-γ (11), cytokine signals may play critical roles 
in the induction and regulation of TGF-β1 production.

In the physiologic condition as well as in pathological 
conditions, functions of cytokines are strictly controlled. Cy-
tokine signaling pathways are negatively regulated by the 
family of proteins called suppressors of cytokine signaling 
(SOCSs), which are characterized by the presence of an SH2 
domain and a COOH terminal conserved domain termed 
the SOCS-box. Several reports have indicated that SOCS 
proteins are necessary for regulation of normal immune re-
sponses (12). Among them, SOCS3, which associates with 
the tyrosine kinase Lck, calcineurin, and CD28, has been 
shown to inhibit IL-2 production during T cell activation 
(13–16). During Th diff erentiation, SOCS3 is selectively ex-
pressed in Th2 cells, whereas SOCS1 expression is higher in 
Th1 than in Th2 cells (17, 18). In the analysis of Lck pro-
moter-driven SOCS3-transgenic mice, the high expression 
of SOCS3 in Th cells led to skewing to Th2-type diff erentia-
tion. This is probably because SOCS3 binds to IL-12Rβ2 
and inhibits IL-12–mediated STAT4 activation, thereby 
blocking Th1 development (18, 19). Importantly, SOCS3 
levels were high in T cells from allergic disease patients (18). 
These observations implied that SOCS3 might be crucial for 
Th cell diff erentiation and activation. However, as most of 
these conclusions have been drawn by overexpression studies 
or in pathological conditions such as asthma and atopy, analy-
sis of SOCS3-defi cient mice has been necessary to clarify the 
physiological function of SOCS3 in T cells more precisely. 
Because mice lacking SOCS3 die during embryogenesis as 
the result of a placental defect by an enhanced activation of 
the leukemia inhibitory factor (LIF) signaling pathway (20, 
21), we generated T cell–specifi c SOCS3-defi cient (condi-
tional KO [cKO]) mice by a conditional gene targeting ap-
proach using Cre-loxP system (22). We showed that not only 
Th2-type responses in OVA-induced asthma model but also 
immune responses against Leishmania major infection were re-
duced in cKO mice. In vitro analysis of T cells demonstrated 
that SOCS3-defi cient CD4+ T cells produced more TGF-
β1 and IL-10, but less IL-4 than WT T cells, suggesting a 
preferential Th3-like diff erentiation. We found that STAT3 
bound to the TGF-β1 promoter and elevated the promoter 
activity, and SOCS3 deletion enhanced STAT3 recruitment 
to the promoter. It has been shown that STAT3 also binds to 
the IL-10 promoter and elevates IL-10 gene expression (23). 
In conclusion, we propose that STAT3 and SOCS3 recipro-
cally regulate Th cell function and diff erentiation by control-
ling the induction of the immunosuppressive cytokine, 
TGF-β1, and IL-10.

RESULTS

Generation of T cell–specifi c SOCS3-defi cient mice

To delete the SOCS3 gene in a T cell–specifi c manner, 
proximal p56Lck promoter-cre transgenic mice were crossed 
with SOCS3-fl ox/fl ox mice (22) (Fig. 1 A). Resulting 
SOCS3-fl ox/fl ox: Lck-cre Tg mice are designated as cKO 

mice. SOCS3 WT alleles, fl oxed alleles, and the Lck-cre trans-
gene were determined by PCR using genomic DNA from 
tails and CD4+ T cells. A 380-bp product corresponding to 
the nondeleted fl oxed alleles was amplifi ed by primer set of a 
and b from tail DNA of SOCS3-cKO and WT-fl ox/fl ox 
mice (C57BL/6 showed a 280-bp fragment because of the 
lack of fl oxed alleles). An approximately 1.2-kbp fragment 
was amplifi ed from DNA isolated from CD4+ T cells of 
WT-fl ox/fl ox mice by the primer set of a and c, whereas a 
250-bp fragment corresponding to the deleted allele was am-
plifi ed from SOCS3-cKO mice CD4+ T cells (Fig. 1 B). 
Deletion of the SOCS3-fl ox gene was specifi c to T cells, and 
no deletion was observed in B cells and DCs in cKO mice 
(Fig. 1 C). Next, to confi rm the deletion of mRNA, we per-
formed RT-PCR analysis in IL-6–stimulated splenic CD4+ 
T cells from SOCS3-cKO mice. Although SOCS3 was 

Figure 1. Generation of T cell–specifi c SOCS3-defi cient mice. 

(A) Schema of SOCS3 fl oxed and deleted loci. Exon 2 was fl anked by two 

LoxP sites (arrowheads). (B) PCR genotyping of fl oxed alleles using the 

primer set of a and b against tail genome and deleted alleles using the 

primer set of a and c against genomic DNA of CD4+ T cells from indicated 

mice. (C) PCR detection of undeleted and deleted fl oxed alleles using 

primer set a and c against genomic DNA from B cells, DCs, and CD4+ 

T cells. (D) RT-PCR analysis for mRNA expression of SOCS3, IL-6R, and 

 glyceraldehydes-3-phoshate dehydrogenase (G3PDH) in IL-6–stimulated 

MACS purifi ed splenic CD4+ T cells from cKO and WT mice. (E) Western 

blotting analysis for SOCS3 and phosphorylated STAT3 in splenic CD4+ T cells.
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 induced after IL-6 stimulation in WT CD4+ T cells and the 
expression of IL-6 receptor was at an almost equal level, 
SOCS3 mRNA was undetectable in CD4+ T cells from 
SOCS3-cKO mice (Fig. 1 D). Western blotting analysis us-
ing antibody specifi c for SOCS3 also confi rmed the absence 
of SOCS3 protein in CD4+ T cells from SOCS3-cKO mice 
(Fig. 1 E). Thus, we concluded that cre-mediated deletion of 
SOCS3 occurred effi  ciently and specifi cally in T cells in 
SOCS3-cKO mice.

We examined IL-6–mediated STAT3 activation in 
SOCS3-defi cient T cells. As shown in Fig. 1 E, IL-6–induced 
STAT3 activation was enhanced and prolonged in SOCS3-

defi cient CD4+ T cells. This confi rmed a negative regulatory 
function of SOCS3 for the gp130–STAT3 pathway. As in 
macrophages (22), SOCS3 defi ciency in T cells did not much 
aff ect IL-10–induced STAT3 activation (unpublished data).

Next, we examined development of T cells in SOCS3 
cKO mice. Total mononuclear cell numbers of lymphoid or-
gans such as thymus, spleen, and lymph nodes in SOCS3-cKO 
mice were almost the same as those in WT mice. Flow cyto-
metric analysis revealed that the ratio of CD4+ or CD8+ SP 
cells was not altered in SOCS3 cKO mice,  although the num-
bers of CD4− CD8− DN cells were slightly higher in SOCS3-
cKO mice (unpublished data). T cell numbers, the CD4/CD8 

Figure 2. Reduced Th2 responses of SOCS3-defi cient T cells in 

OVA/alum immunized mice. (A) Analyses of serum OVA-specifi c IgG1, 

IgG2a, and IgE titers in cKO and WT mice. Plasma samples were taken from 

mice (n = 5) at indicated days after immunization with OVA/alum on days 

0 and 14. Ab titers were measured by ELISA and endpoint analysis. Data 

indicate mean ± SD. (B) Mice (n = 9 for each group) immunized with 

OVA/alum were aerosol challenged with OVA. Airway responsiveness was 

determined by the acetylcholine-dependent change in airway pressure in 

saline-treated control and OVA-sensitized/challenged WT and SOCS3-cKO 

mice. Provocative concentration 200 (PC200), the concentration 

at which airway pressure is 200% of its baseline value. Data indicate 

mean ± SD. (C) Cell counts in bronchoalveolar lavage fl uid. *, P < 0.05 by 

analysis of variance with Bonferroni correction. Data indicate mean ± SD. 

(D) Cytokine profi les of Th1 type (IFN-γ), Th2 type (IL-4 and IL-5), and 

TGF-β1 and IL-10. Splenic CD4+ T cells isolated from OVA-immunized mice 

were restimulated with or without OVA ex vivo for 48 h. Cytokine levels 

were determined by ELISA. Data indicate mean ± SD in one representative 

experiment with fi ve mice per group out of three independent experiments.
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ratio, and other T cell markers (TCRβ, CD25, CD69, 
CD62L) were not altered in the spleen and lymph node of 
cKO mice (unpublished data). Therefore, we concluded that 
SOCS3 does not play an  essential role in T cell development.

Reduced Th2-type response in SOCS3-cKO mice

Previously, we reported that constitutive expression of SOCS3 
in T cells causes preferential Th2 diff erentiation of CD4+ T 
cells, resulting in hyper IgE production and enhanced OVA-
induced airway hypersensitiveness (18). Thus, we investigated 
the eff ect of SOCS3 deletion in T cells on OVA immuniza-
tion. After mice were immunized with OVA and alum as an 
adjuvant on days 1 and 14, we examined the Ig levels and 
 cytokine production. Total IgG1 and IgG2a levels before 
 immunization were almost the same between WT and cKO 
mice (unpublished data). As shown previously (24), OVA/
alum immunization signifi cantly enhanced Th2-mediated Ig 
(IgG1 and IgE) production (Fig. 2 A). Interestingly, SOCS3-
cKO mice produced lower levels of IgG1 and IgE than WT 
mice did, although Th1-mediated IgG2a production was sim-
ilarly low between WT and cKO mice (Fig. 2 A). Refl ecting 
reduced IgE levels, SOCS3-cKO mice exhibited lower sensi-
tivity to airway responsiveness and reduced eosinophil infi ltra-
tion in BAL fl uids in cKO mice after OVA challenge compared 
with WT mice (Fig. 2, B and C). These data confi rmed that 
SOCS3 levels in Th cells alter type 2 responses in vivo.

Next, cytokine production by OVA restimulation from 
splenic CD4+ T cells was examined. When CD4+ T cells 
from OVA/alum-immunized mice were restimulated with 
OVA in vitro, the Th2-type signature cytokines such as IL-4 
and IL-5 were highly produced, whereas in the Th1-type 
signature cytokine, IFN-γ levels were very low (Fig. 2 D). 
Levels of these Th2-type cytokines from CD4+ T cells were 
not signifi cantly diff erent between WT and SOCS3 cKO 
mice (Fig. 2 D). However, in several separate experiments, 
we always observed that T cells from cKO mice immunized 
with OVA/alum produced a slightly lower amount of IL-4 
than those from WT mice (Fig. 2 D). We did not observe 
enhanced IFN-γ production in T cells from SOCS3-cKO 
mice, suggesting that loss of SOCS3 in Th cells did not en-
force Th1 skewing. In contrast with Th2-type cytokines, 
TGF-β1 and IL-10 levels were higher in SOCS3-cKO mice 
than in WT mice (Fig. 2 D). We also confi rmed high mRNA 
expression levels of TGF-β1 and IL-10 by RT-PCR (un-
published data). During in vitro restimulation, no signifi cant 
diff erence in the proliferation was observed between WT 
and SOCS3-defi cient T cells (unpublished data). These re-
sults indicate that loss of SOCS3 expression in T cells resulted 
in lower Th2-type immune responses, which was accompa-
nied with reduced IL-4 levels; however, production of TGF-
β1 and IL-10, but not IFN-γ, was enhanced.

Altered immune responses to L. major infection 

in SOCS3-cKO mice

To further determine the role of SOCS3 in Th cell diff erentia-
tion and function, we compared the immune responses against 

L. major, the intracellular protozoan parasite infection, the res-
olution of which is strictly dependent on Th1-type immune 
responses (25, 26). Because genetic background of both WT 
and cKO mice was 129 × C57BL/6 mixed, these mice are 
generally expected to be resistant to L. major compared with 
susceptible BALB/c mice. Mice were infected subcutaneously 
in the right hind footpad with 107 L. major promastigotes, and 
lesion development was monitored for 8 wk. Both WT and 
cKO mice were resistant to L. major, which was judged by 
footpad swelling (Fig. 3 A). However, the number of parasites 
remaining in the lesion at 6 wk after infection was higher in 
cKO mice than in WT mice (Fig. 3 B). Moreover, serum an-
tibody levels after L. major infection were lower in cKO mice 
than in WT mice after infection (Fig. 3 C), suggesting that im-
mune responses against L. major were reduced in cKO mice.

We examined cytokine production in CD4+ T cells from 
right popliteal LN at 4 wk after L. major infection (Fig. 3 D). 
After in vitro stimulation with L. major antigen, the IFN-γ 
level from SOCS3-defi cient CD4+ T cells was comparable 
to that of WT CD4+ T cells, suggesting that eff ective Th1 
diff erentiation occurred in cKO mice. IL-4 levels were too 
low to compare between WT and cKO mice. Next, we 
measured IL-10 and TGF-β1 levels in the same supernatant. 
As shown in Fig. 3 D, enhanced production of IL-10 and 
TGF-β1 was observed in CD4+ T cells from SOCS3-cKO 
mice. Similar higher expression of IL-10 and TGF-β1 in the 
CD4+ T cells of SOCS3-cKO mice than in WT T cells was 
confi rmed by RT-PCR (Fig. 3 E). These data support our 
notion that SOCS3-defi cient T cells possess higher potential 
to produce IL-10 and TGF-β1 than WT T cells.

Cytokine production from in vitro–differentiated 

SOCS3-defi cient T cells

To elucidate the reason why IL-10 and TGF-β1 were ele-
vated in CD4+ T cells from SOCS3-cKO mice, we analyzed 
in vitro Th cell diff erentiation. Purifi ed CD4+ T cells were 
stimulated under Th0, Th1, and Th2 skewing conditions for 
7 d and restimulated with plate-bound anti-CD3ε and anti-
CD28 antibodies. TCR-mediated tyrosine phosphorylation 
of cellular proteins and ERK activation in T cells were not 
signifi cantly altered in cKO mice (Fig. S1, available at http://
www.jem.org/cgi/content/full/jem.20052333/DC1). Fur-
thermore, there was no signifi cant diff erence in proliferation 
between WT and SOCS3-defi cient CD4+ T cells after TCR 
stimulation (unpublished data). Neither IFN-γ nor IL-4 was 
detected in the culture supernatant of both SOCS3-defi cient 
and WT T cells under Th0 conditions. Under Th1 diff eren-
tiating condition, the IFN-γ level was slightly reduced in 
SOCS3-defi cient T cells compared with WT T cells (Fig. 
4 A). In Th2 diff erentiating condition, IL-4 from SOCS3-
defi cient T cells was also signifi cantly lower than that of WT 
T cells (Fig. 4 A). In contrast, IL-10 and TGF-β1 levels were 
higher in SOCS3-defi cient CD4+ T cells than in WT CD4+ 
T cells (Fig. 4 B). In Th0 and Th1 conditions, IL-10 and 
TGF-β1 levels were very low in both WT and SOCS3-
 defi cient T cells (Fig. 4 B and not depicted).
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We next examined Th3 diff erentiation, which has been 
induced in vitro by culturing CD4+ T cells in the presence of 
IL-4, IL-10, and TGF-β1 (11, 27). As previously described, 
TGF-β1 levels were especially enhanced in the Th3 condi-
tion compared with the Th2 condition (Fig. 4 B). Under this 
Th3 condition, SOCS3-defi cient CD4+ T cells produced 
higher levels of IL-10 and TGF-β1 than WT CD4+ T cells 
(Fig. 4 B). Collectively, SOCS3 defi ciency caused enhanced 
production of TGF-β1 and IL-10, but reduced production 
of IL-4 in CD4+ T cells not only in vivo but also in vitro.

STAT3 elevates TGF-𝛃1 promoter activity

The inhibitory eff ect of SOCS3 is relatively specifi c to STAT3 
among six STATs. Therefore, we next investigated whether 
STAT3 could directly regulate the TGF-β1 promoter activ-
ity. The 4.1-kb fragment of the 5′-fl anking region of the 
 murine TGF-β1 gene was fused to the luciferase expression 
vector, and promoter activity was examined in HEK293 cells 
by transient transfection. Luciferase gene expression was in-
duced not only by high glucose and TGF-β1 itself as de-
scribed previously (28) but also by LIF, suggesting that this 
4.1-kb 5′-fragment of the TGF-β1 gene contained STAT3 
responsive elements (Fig. 5 A). Co-expression of exogenous 

Figure 3. Reduced Th1 responses of SOCS3-defi cient T cells in 

L. major infection. (A) Footpad swelling after L. major infection. BALB/c 

(a susceptible strain), WT, and SOCS3-cKO mice were inoculated in the right 

hind footpad with L. major promastigotes and the size of the footpad lesion 

was monitored. Data shown are mean ± SD and are representative of three 

independent experiments. BALB/c mice were killed at 4 wk for ethical 

reasons. (B) The number of parasites remaining in the footpads 6 wk after 

infection. (C) Serum IgG1, IgG2a, and IgE levels against L. major antigen in 

infected mice. Samples were collected from WT (open squares) and cKO 

(closed squares) mice 4 wk after infection. Total IgG1, IgG2a, and IgE titers 

were determined by ELISA. (D) Cytokine production by CD4+ T cells of the 

right popliteal LN from WT and cKO mice 4 wk after L. major infection. CD4+ 

T cells were cultured with irradiated naive WT splenocytes with (black bar) or 

without (gray bar) L. major antigen for 70 h. Concentrations of IFN-γ, IL-4, 

IL-10, and TGF-β1 in the culture supernatant were measured by ELISA. Data 

indicate mean ± SD of triplicate samples from fi ve mice per group in one 

representative experiment out of three independent experiments. (*, P < 

0.01). (E) IFN-γ, IL-10, and TGF-β1 mRNA levels determined by RT-PCR 

 using total RNA from CD4+ right popliteal LN 4 wk after L. major infection.

Figure 4. Cytokine production from in vitro–differentiated CD4+ 

T cells. IFN-γ and IL-4 production from in vitro–differentiated Th0/Th1/

Th2 cells (A), and IL-10 and TGF-β1 production from Th0/Th2/Th3 cells (B). 

Naive CD4+ T cells were cultured under various differentiation conditions 

for 7 d as described in Materials and methods. After restimulation with 

anti-CD3ε mAb and anti-CD28 mAb for 24 h for IFN-γ, and with IL-4 and 

IL-10 for 72 h for TGF-β1, culture supernatants were collected and ana-

lyzed by ELISA. Data indicate mean ± SD of triplicate cultures in one rep-

resentative experiment out of three independent experiments. *, P < 0.01.
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WT STAT3 enhanced LIF-mediated TGF-β1 promoter ac-
tivity in a dose-dependent manner (Fig. 5 A). Furthermore, 
constitutive active form of STAT3 (STAT3c) (29) also en-
hanced TGF-β1 promoter activity similar to LIF stimulation 
(Fig. 5, A and B), suggesting that STAT3 positively regulates 
TGF-β1 promoter. We also confi rmed that STAT3 elevated 
TGF-β1 promoter activity in the lymphoid cell line by using 
Jurkat cell (unpublished data).

As shown in Fig. 5 B, a reporter assay using a series of 
5′-deletion mutants revealed that the LIF-responsive elements 
were present upstream of −1755. By searching for potential 
STAT3-binding sites with the consensus sequences, TTC/
A(N)3G/TAA (30), two candidates of STAT3-binding sites 
were identifi ed in the 4.1-kb TGF-β1 5′-fl anking region. 
The two sites were at positions −3155 and −2515 upstream 
of the transcription initiation site in the TGF-β1 promoters 
designated STAT3-binding element (SBE)-1 and SBE-2, re-
spectively. To determine the signifi cance of these elements, 
mutations were introduced into the SBE-1 and/or SBE-2 
sites. A mutant promoter lacking both SBE-1 and SBE-2 
did not respond to LIF stimulation anymore, whereas con-
structs containing a single SBE site still responded to STAT3 
(Fig. 5, B and C). These results indicate that the two SBE 
sites of the TGF-β1 promoter are important for STAT3-
dependent activation.

To confi rm STAT3 binding to the TGF-β1 promoter in 
T cells, chromatin immunoprecipitation (ChIP) assay was 
performed (Fig. 5 D). The chromatin–DNA complex was 
immunoprecipitated with anti-STAT3 antibody; then, 
STAT3 binding to the TGF-β1 promoter was analyzed using 
pairs of specifi c primers spanning the STAT3 binding sites. 
The SBE site of the c-fos promoter was used as a positive 
control of STAT3 recruitment (31). As shown in Fig. 5 D, 
STAT3 was actually bound to the TGF-β1 promoter region 
containing SBE-1 site in T cells in an IL-6–dependent man-
ner. These data indicate that TGF-β1 is a direct downstream 
target of STAT3.

STAT3 positively regulates TGF-𝛃1 and IL-10 induction 

in CD4+ T cells

To address whether STAT3 is critical for IL-10 and TGF-β1 
production in CD4+ T cells, we introduced a constitutive 
active form of STAT3 (STAT3c) or a dominant negative 
STAT3 (dNSTAT3) (32) into CD4+ T cells using a bicis-
tronic retroviral vector pMX carrying IRES-GFP (33) (Fig. 
6 A). The retrovirus vectors were infected into nonpolar-
ized CD4+ T cells, which were stimulated with plate-bound 
anti-CD3ε mAb and anti-CD28 mAb, and on day 4, GFP-
positive cells were sorted. The expression of myc-STAT3 
in the sorted GFP-positive CD4+ T cells was confi rmed by 
Western blotting (Fig. 6 B). These cells were cultured under 
Th0 or Th3 diff erentiating condition for 7 d and analyzed 
for cytokine production upon restimulation. We found 
that introduction of STAT3c into CD4+ T cells resulted in 
higher TGF-β1 and IL-10 production (Fig. 6 C). In con-
trast, dNSTAT3-GFP introduced to CD4+ T cells showed 

less production of TGF-β1 and IL-10 (Fig. 6 C). These data 
indicate that STAT3 activation is positively involved in the 
production of TGF-β1 and IL-10 in CD4+ T cells.

Next, STAT3 recruitment to the TGF-β1 promoter was 
compared between WT and SOCS3-defi cient CD4+ T cells 
using the ChIP assay. As shown in Fig. 6 D, STAT3 was 
 recruited to the TGF-β1 promoter region under the Th3, 
but not Th0, diff erentiating conditions. Importantly, more 
STAT3 was recruited to the TGF-β1 promoter in SOCS3-
defi cient CD4+ T cells than in WT CD4+ T cells under the 
Th3 diff erentiating condition. These data suggest that SOCS3 
probably regulates the production of TGF-β1 through ap-
propriate tuning of STAT3 activation in CD4+ T cells.

D I S C U S S I O N 

Previously, we reported that forced expression of SOCS3 in 
T cells resulted in Th2 skewing. SOCS3 expression levels are 
high in T cells from patients with asthma and atopy. There-
fore, we concluded that high SOCS3 levels are related to 
pathological conditions, especially Th2-type diseases (18). 
However, the role of SOCS3 in physiological conditions 
has not been clarifi ed. Here, we generated T cell–specifi c 
SOCS3-cKO mice and found that the Th2 immune re-
sponses in SOCS3-cKO mice were actually reduced. How-
ever, this is not the result of higher Th1 responses. Our 
SOCS3-defi cient CD4+ T cells showed higher TGF-β1 and 
IL-10 production compared with control WT CD4+ T cells. 
Thus, we suspect that reduced Th2 responses in SOCS3-
cKO mice may be the result of immunosuppression by these 
two immunoregulatory cytokines.

We proposed that SOCS3 inhibits Th1 diff erentiation by 
suppressing IL-12–mediated signaling (18). We found that 
IL-12–induced STAT4 phosphorylation was actually en-
hanced in SOCS3-defi cient T cells compared with WT 
T cells (unpublished data). However, similar or only slightly 
reduced IFN-γ production occurred in CD4+ T cells from 
SOCS3 cKO mice compared with WT mice (Figs. 3 D and 
4 A). Furthermore, delay of parasite clearance and reduced 
production of antibodies were observed in cKO mice during 
L. major infection (Fig. 3, B and C). This may be the result of 
immunosuppressive eff ect of TGF-β1 and IL-10 produced 
from T cells during infection. Regulatory roles of SOCS3-
defi cient T cells in other immune reactions should be defi ned 
in future studies.

Recently, regulatory functions of Th cells have been ex-
tensively studied. CD4+ CD25+ regulatory T (T reg) cells 
are recognized as naturally occurring T reg cells and exhibit 
immunosuppressive abilities by a mechanism that is depen-
dent on cell-to-cell contact through the interaction of 
CTLA-4 with CD86 (34). Though TGF-β1 is shown to be 
one of the mechanisms of the immunosuppressive eff ects of 
T reg cells (10) and Foxp3 has been shown to be an essential 
transcription factor in the generation and function of T reg 
cells (35), we did not fi nd any change in the number of CD4+ 
CD25+ T reg population or Foxp3 expression between 
SOCS3-defi cient and WT T cells (unpublished data). 
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 However, regulatory function of SOCS3-defi cient T reg 
cells remains to be investigated.

Previous studies have identifi ed another subset of T reg 
cells; Tr1 cells (T reg cell 1), which are induced in vitro by 

repeated antigen stimulation of T cells in the presence of IL-
10 (36, 37). Tr1 cells produce high levels of IL-10 rather than 
TGF-β1 (38). The additional subset of T reg cells is Th3, 
which is induced by orally administered antigens. Th3 cells 

Figure 5. STAT3 directly enhances TGF-𝛃1 promoter activity. 

(A) HEK293 cells were transfected with 0.2 μg of pTGF4.1-luc, a reporter 

gene containing �4.1 kb TGF-β1 promoter region, and 0.1 μg of β-

 galactosidase expression vector (β-gal) together with 0, 0.2, 0.6 μg WT-

STAT3 or STAT3c expression vector. 1 d after transfection, cells were 

stimulated with 10 ng/ml LIF or 10 ng/ml TGF-β1 and luciferase activity 

was measured after 8 h. Luciferase activities were normalized by β-gal 

activities and expressed as fold induction to control cultures defi ned as 

1.0. STAT3 expression levels determined by Western blotting analysis as 

shown (bottom). (B) Localization of the STAT3 responsive elements in the 

TGF-β1 promoter. HEK293 cells were transiently transfected with 0.2 μg 

of plasmid containing various fragments of TGF-β1 promoter region and 

0.1 μg of β-gal expression vector. 1 d after transfection, cells were 

 stimulated with 10 ng/ml LIF or 10 ng/ml TGF-β1 for 8 h and harvested. 

(C) Effects of point mutations introduced into the SBE-1 and SBE-2 

 elements. HEK293 cells were transiently transfected with WT or mutant 

pTGF4.1-luc plasmids and β-gal plasmid. Cells were stimulated with 

10 ng/ml LIF and luciferase activities were measured. Luciferase activities 

were normalized by β-gal activities and expressed as fold induction to 

control cultures defi ned as 1.0. (D) ChIP assay was performed using chro-

matin from WT CD4+ T cells treated with IL-6 for 3 h and immunopre-

cipitated with antibody against STAT3. The fi nal DNA extractions were 

amplifi ed using pairs of primers that cover the STAT3 binding site (SBE-1) 

in the TGF-β1 or c-fos promoter region. G3PDH levels were determined 

by PCR using samples before immunoprecipitation as input control. 

 Luciferase activities normalized by β-gal activity are shown as the 

means ± SD of three to fi ve experiments.
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can be distinguished from Th2 cells by cytokine profi les; Th3 
cells produce much more TGF-β1 and IL-10 and less IL-4 
than Th2 cells (11, 39). Because SOCS3-defi cient CD4+ T 
cells produce more TGF-β1 and IL-10, they are more likely 
to exhibit a Th3-like phenotype.

In this study, we demonstrated that STAT3 directly binds 
to the promoter region of TGF-β1 and elevates TGF-β1 
production in T cells. It has already been shown that IL-10 is 
up-regulated by STAT3 (23). We showed that constitutive 
active form of STAT3 enhanced TGF-β1 and IL-10 produc-
tion in T cells. Furthermore, we showed that a dominant 

negative STAT3 suppressed TGF-β1 production (Fig. 6 C). 
Therefore, STAT3 could be a positive regulator of Th3-type 
diff erentiation. STAT3 being required for Th3 is unlike 
STAT4 and STAT6 being required for Th1 and Th2, respec-
tively, because basal transcription of TGF-β1 and IL-10 is 
not completely dependent on STAT3. However, STAT3 is 
an important regulatory factor for Th3 diff erentiation because 
STAT3 is essential for the immunosuppressive function of 
IL-10 in macrophages (40) and IL-10 is usually necessary for 
induction of Th3 in vitro. Collectively, STAT3 seems to 
positively regulate induction and/or diff erentiation of Th3.

A question that remains unsolved is what kind of cyto-
kines are regulated by SOCS3 during Th3-like phenotype 
induction. Previously, IL-4 has been shown to induce SOCS3 
expression in Th2 cells (17). However, IL-4–induced STAT6 
phosphorylation levels were not aff ected in SOCS3-defi cient 
T cells (unpublished data). Therefore, it is unlikely that 
SOCS3 directly regulates IL-4 signaling. Because STAT3 is 
strongly activated by IL-10, we compared IL-10–induced 
STAT3 activation between WT and SOCS3-defi cient T cells. 
In SOCS3-defi cient T cells, however, IL-10–mediated 
STAT3 activation was not much aff ected (unpublished data). 
This is probably because SOCS3 does not bind to the IL-10 
receptor (22). In contrast, we observed stronger and pro-
longed STAT3 activation in response to IL-6 and IL-27 in 
SOCS3-defi cient T cells (Fig. 1 E and not depicted). 
 Furthermore, STAT3 recruitment to the TGF-β1 promoter 
under Th3 diff erentiation condition was enhanced in SOCS3-
defi cient CD4+ T cells. Although we could not conclude 
that IL-6 is responsible for the Th3-like phenotype of 
SOCS3-defi cient CD4+ T cells, these results suggest that 
STAT3 is hyperactivated in SOCS3-defi cient T cells during 
T cell diff erentiation, and this is the result of the hypersensi-
tivity to autocrine or paracrine cytokines that activate STAT3. 
Identifi cation of these cytokines other than IL-10, which 
modulate TGF-β1 and IL-10 production, will be important 
for understanding of the regulation of Th3 diff erentiation.

Another possibility for answering the unsolved question 
is that SOCS3 aff ects TCR signaling. SOCS3 has been shown 
to be able to interact with tyrosine kinase Lck, calcineurin, 
and CD28 (13–16). The level of SOCS3 expression is signifi -
cantly high in resting CD4+ T cells and rapidly decreased af-
ter TCR stimulation (unpublished data). Some reports have 
shown that the strength of TCR stimulation is an important 
factor for Th diff erentiation. Although we could not detect 
apparent diff erences in proliferation, tyrosine phosphoryla-
tion of cellular proteins, and ERK activation between 
SOCS3-defi cient and WT T cells in response to TCR stimu-
lation (Fig. S1 and not depicted), the absence of SOCS3 in 
naive CD4+ T cells may permit some stronger TCR signal-
ings, which might lead to higher IL-10 and TGF-β1 secre-
tion at an early stage of T cell activation, thereby leading to 
large diff erences at later stages of T cell diff erentiation.

Although the more detailed molecular basis of the hyper-
production of TGF-β1 and IL-10 in SOCS3-defi cient T 
cells has remained elusive, our biochemical analyses suggest 

Figure 6. Retroviral transduction of STAT3 mutants modulates 

TGF-𝛃1 and IL-10 production. (A) Schematic structure of the retroviral 

pMX vectors containing mutant STAT3, either myc-STAT3c (constitutive 

active form) or myc-dNSTAT3 (dominant negative form). (B) GFP-positive 

cells were sorted from infected T cells and the expression levels of exoge-

neous myc-STAT3 were examined by Western blotting. (C) IL-10 and 

TGFβ1 production from infected CD4+ T cells after Th3 differentiation. 

GFP-positive cells were cultured in the presence of IL-4, IL-10, and TGF-

β1 for 7 d and restimulated with anti-CD3ε mAb and anti-CD28 mAb and 

cytokines in the culture supernatants were measured by ELISA. Data 

shown are mean ± SD of triplicate samples from four independent exper-

iments. (D) ChIP assay to compare STAT3 recruitment to TGF-β1 promoter 

(SBE-1 site) between Th0 and Th3 differentiated T cells from WT and cKO 

mice. Anti-STAT3 Ab immunoprecipitates were used as templates for PCR 

cells. A non-SBE region near the transcription initiation sites was ampli-

fi ed as a negative control. Ratios of the bands intensity of SBE-1 PCR 

products and those of control (G3PDH) in two independent experiments 

are plotted (right).
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that SOCS3 regulates TGF-β1 and IL-10 production by 
 suppressing STAT3 activity. Thus, we propose that STAT3 
and SOCS3 reciprocally regulate Th2/Th3 diff erentiation. 
Therefore, suppression of SOCS3 expression in T cells may 
possibly be one of the ways to introduce tolerance for auto-
immune diseases or to ameliorate allergic diseases.

MATERIALS AND METHODS
Generation of T cell–specifi c SOCS3-disrupted mice. SOCS-3 fl ox/

fl ox mice (22), and Lck-cre transgenic mice (41) have been described else-

where. Lck-cre transgenic mice (C57BL/6 background) were bred with 

SOCS3 fl ox/fl ox mice (129 × C57BL/6 background) to generate mice in 

which SOCS3 was deleted in a T cell–specifi c manner. Genotypings were 

performed by PCR as described previously (22). Off spring carrying both lck-

cre and fl oxed SOCS3 genes (Lck-Cre:SOCS3 fl ox/fl ox; cKO) and the fl oxed 

SOCS3 gene (SOCS3 fl ox/fl ox; WT) were used for intercrossing and further 

analyses. Littermate controls were used for all experiments. CD4+ T cells, 

splenic B cells, and DCs were isolated by MACS sorting as described previ-

ously (42). Mice were kept in specifi c pathogen-free facilities in the Collab-

orative Station Animal Facility of Kyushu University. All experiments using 

these mice were approved by and performed according to the guidelines of 

the Animal Ethics Committee of Kyushu University, Fukuoka, Japan.

OVA/alum immunization and assay for airway hyperresponsiveness. 

Alhydrogel (alum; Al(OH)3gel) (LSL) was mixed with a predetermined quan-

tity of OVA grade V (Sigma-Aldrich) and incubated at room temperature for 

20 min. After centrifugation of the mixture at 14,000 g for 10 min, superna-

tants were used for immunization as described previously (24). Mice (8–12 

wk old) were immunized with 0.1 ml of OVA (10 μg) in PBS and absorbed 

to alum. Boosting inoculations were performed in the same fashion 2 wk 

later. For airway hyperresponsiveness (AHR) and eosinophil infi ltration as-

say, mice received aerosol challenge containing either saline or 1% OVA for 

20 min/d on days 26–28 (18, 43). On day 30, 36 h after the last aerosol chal-

lenge, mice were ventilated and AHR to acetylcholine aerosol was measured. 

Serum levels of total and OVA-specifi c Ig was analyzed by ELISA with rat 

anti–mouse Ig (Serotec Ltd.). Ab titers were determined by endpoint analysis. 

For cytokine assays, splenocytes from immunized mice on day 28 were cul-

tured ex vivo in the presence of OVA. Culture supernatants were harvested 

after 48 h and analyzed for IL-4, IFN-γ, TGF-β1, and IL-10 by ELISA.

L. major infection and cytokine assay. Infection of L. major was performed 

as described previously (44). Mice were infected s.c. in the right footpad 

 lesion with 107 stationary phase of L. major (MHOM/SU/73-5-ASKH). 

Footpad swelling was monitored weekly by a vernier caliper and compared 

with the thickness of the uninfected left footpad. 6 wk after infection, the 

footpad parasite burdens were quantifi ed by homogenizing tissue in 3 ml of 

medium 199 supplemented with 10% FCS containing 2 mM glutamine, 10 

mM Hepes, and 100 μl/ml gentamicin. Aliquots were diluted serially across 

96-well plates and scored at 1 wk for the presence of motile promastigotes. 

4 wk after L. major infection, CD4+ T cells (5 × 105/200 μl/well) from the 

right popliteal LN were stimulated with or without L. major antigens (equiv-

alent to 5 × 105 promastigotes) in the presence of irradiated (30 Gy) spleno-

cytes for 70 h. Culture supernatants were collected and analyzed for IL-4, 

IFN-γ, TGF-β1, and IL-10 by ELISA. Total RNA was prepared from 

MACS-purifi ed CD4+ T cells of popliteal LN 4 wk after L. major infection, 

and the expression level of G3PDH was fi rst evaluated as an internal control. 

The pair of primers for TGF-β1 was forward, 5′-T G A C G T C A C T G G A G T-

T G T A C G G -3′ and reverse, 5′-G G T T C A T G T C A T G G A T G G T G C -3′. 
The expression levels of IFN-γ and IL-10 were assessed using appropriate 

pairs of primers described previously (44).

In vitro T cell diff erentiation assay. For in vitro T cell diff erentiation as-

says, CD4+ T cells (106 cells/ml) purifi ed by MACS columns (Miltenyi Bio-

tec) from splenocytes after depletion of red blood cells were cultured in 

RPMI 1640 containing 10% FCS and stimulated with 1 μg/ml of plate-

bound anti-CD3ε mAb, 1 μg/ml anti-CD28 mAb, and 1 ng/ml mIL-2 

(PeproTech) supplemented with anti–IFN-γ and anti–IL-4 antibodies for 

Th0 diff erentiation, 10 ng/ml mIL-12 (PeproTech) for Th1 diff erentiation, 

10 ng/ml mIL-4 (PeproTech) for Th2 diff erentiation, or 10 ng/ml mIL-4, 

10 ng/ml mIL-10 (PeproTech), and 10 ng/ml hTGF-β1 (PeproTech) for 

Th3 diff erentiation (11). Cells were collected after 7 d and washed, and an 

equal numbers of viable cells (106 cells/ml) were restimulated with plate-

bound anti-CD3ε mAb and 1 μg/ml anti-CD28 mAb in the absence of any 

additional cytokines. Supernatants were collected 24 h later, and the produc-

tion of cytokines was measured in duplicate by ELISA (Genzyme). For mea-

surement of TGF-β1 production, secondary stimulation was done in a 

serum-free medium in which Nutridoma SP (Roche Diagnostic) was substi-

tuted for FCS. Supernatant was collected 72 h after secondary stimulation for 

TGF-β1 measurement using mTGF-β1 ELISA kit (Promega).

Construction of reporter plasmids. PCR was done to generate the 

TGF-β1 promoter plasmid by using mouse genomic DNA as a template. 

The nucleotide sequence of the mTGF-β1 promoter has been submitted to 

GenBankTM/EBI Data Bank under accession no. L42456.1. A 4.1-kb 

XhoI–EcoRI fragment corresponding to nucleotides from −3245 to +845 

relative to the determined transcriptional start site of TGF-β1 gene was sub-

cloned into a pGV-basic2 vector (TOYOINKI), pTGF4.1-luc. Reporter 

plasmids, including a series of deletion mutants of the TGF-β1 promoter, 

were generated by excision at restriction enzyme recognition sites as follows: 

−2977 (NcoI), −1755 (HindIII), −1072 (SmaI), −585 (NcoI). To con-

struct SBE-1mt, SBE-2mt, and SBE-1mt/2mt, point mutations were intro-

duced to the two STAT binding elements (SBE-1/SBE-2) by PCR using 

the KOD-plus polymerase (TOYOBO) and the sequences are as follows: 

SBE-1mt, 5′-G C A G A C G C T G G G A C T G A -3′ and SBE-2mt, 5′-T T C T C-

T G A C C G G G A C C A T T T T -3′ (mutated sites are underlined). The sub-

cloned PCR products were sequenced to confi rm that the products were the 

authentic promoter fragments.

Transfection and luciferase assay. HEK293 (105 cells) were seeded on 

six-well plates, cultured for 24 h, and transfected with various amounts of an 

expression vector of WT-STAT3-pCDNA3 or STAT3c-pRcCMV along 

with 0.2 μg of TGF-β1-pGVbasic2 and 0.1 μg of β-galactosidase (β-gal) 

plasmid by the calcium phosphate coprecipitation method. Some of them 

were stimulated with LIF (10 ng/ml) or TGF-β1 (10 ng/ml) for 8 h. Cells 

were harvested in 40 μl lysis buff er. Luciferase assay was performed using a 

luciferase substrate kit (Promega) and luciferase activity was read in Packard 

luminometer. Luciferase activity was normalized by the internal control 

β-gal activity, and shown as the means ± SD of three to fi ve experiments.

ChIP assay. ChIP assay was performed in 107 mouse T lymphocytes. Cells 

were fi xed with 1% formaldehyde at 37°C for 10 min after IL-6 stimula-

tion as described previously (31). Cells were washed, suspended in SDS 

lysis buff er, and sonicated for 30-s pulses four times using a sonicator (Bi-

oruptor; Cosmo Bio Co.). Samples were incubated with 5 μg anti-STAT3 

antibody (C-20; Santa Cruz Biotechnology, Inc.) overnight at 4°C. After 

adding salmon sperm DNA and protein A–Agarose Slurry (UBI), the im-

munoprecipitates were sequentially washed with low-salt buff er, high-salt 

buff er, LiCl buff er and twice with TE buff er. The DNA–protein complex 

was eluted into elution by heating at 65°C for 6 h. Proteins were digested 

by proteinase K and RNA was removed by addition of 10 μg of RNase A.

DNA was recovered by extraction with phenol and chloroform and ethanol 

precipitation and subjected to PCR analysis. To estimate the DNA  content 

in the soluble chromatin samples, DNA was similarly extracted from 

sonicated samples and used as a template for G3PDH gene amplifi cation. 

Promoter-specifi c primers were as follows; mTGF-β1, SBE-1 forward: 

5′-T G A C T A A C G G C A C T G A G G A G G C T G C -3′, SBE-1 reverse: 5′-T G G-

A A A C A G G T C T A T C T T C T A C C T A -3′, which amplify 311-bp fragments 

fl anking the STAT3 binding element. For negative control, 5′ franking 

region close to the transcription initiation site was amplifi ed by forward: 
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5′-G T G C C T C C T T G T A T C C G C T A A A G C T C T C -3′ and reverse: 5′-A C-

T A C T A A A G C C G G T G A C C A A C C A A A G -3′. The mouse c-fos primers for 

the positive control of STAT3-ChIP are forward: 5′-T C T G C C T T T C C C-

G C C T C C C C -3′ and reverse: 5′-G G C C G T G G A A A C C T G C T G A C -3′.

Retroviral constructs and transduction to primary T cells. The 

STAT3c-IRES-GFP-pMX, dNSTAT3-IRES-GFP-pMX, and empty GFP-

pMX plasmids (a gift from T. Kitamura, Tokyo University, Tokyo, Japan) 

were transfected into a packaging cell line, Plat-E (33), using FuGENE6 

(Roche Diagnostic), and after incubation for 48 h, the culture supernatant 

were harvested. CD4+ enriched T cells were stimulated with 1 μg/ml anti-

CD3ε mAb and 1 μg/ml anti-CD28 mAb for 24 h and infected with the vi-

ruses by adding the viral containing supernatants in the presence of 0.6 

μg/ml polybrene (Sigma-Aldrich). The infected CD4+ T cells were ex-

panded in the medium supplemented with 100 U/ml rIL-2 for 4 d. GFP-

positive cells were collected by a cell sorter (EPICS ALTRA; Beckman 

Coulter) and restimulated with 1 μg/ml anti-CD3ε mAb and 1 μg/ml anti-

CD28 mAb or Th3-inducing condition for 72 h. Culture supernatants were 

harvested after 48 h to analyze TGF-β1 and IL-10 production by ELISA.

Online supplemental material. Fig. S1 shows tyrosine phosphorylation 

of cellular proteins (anti-pY blot) and ERK activation in CD4+ T cells from 

WT and cKO mice after TCR stimulation. Online supplemental material is 

available at http://www.jem.org/cgi/content/full/jem.20052333/DC1.
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