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Experimental simulation of 
decoherence in photonics qudits
B. Marques1,2, A. A. Matoso1, W. M. Pimenta1, A. J. Gutiérrez-Esparza1, M. F. Santos1 & 
S. Pádua1

We experimentally perform the simulation of open quantum dynamics in single-qudit systems. 
Using a spatial light modulator as a dissipative optical device, we implement dissipative-dynamical 
maps onto qudits encoded in the transverse momentum of spontaneous parametric down-converted 
photon pairs. We show a well-controlled technique to prepare entangled qudits states as well as to 
implement dissipative local measurements; the latter realize two specific dynamics: dephasing and 
amplitude damping. Our work represents a new analogy-dynamical experiment for simulating an 
open quantum system.

In most cases, when a quantum system interacts with its environment it undergoes decoherence1, to wit, 
the system-environment interaction “spoils” the state of the system by decreasing its capacity for quan-
tum interference, which is essential for standard quantum information processing. Decoherence is so far 
one of the major obstacles for implementing quantum computation processes in real systems. Despite 
such nuisance, recent works have shown procedures to manipulate the system-environment interaction 
or the information leaked to the environment in suitable ways depending on the specific goal: e.g., esti-
mation of quantum noise2, protection of coherence and/or entanglement3, universal quantum computa-
tion4, quantification of entanglement5–7 and entanglement concentration8.

An interesting study for exploring quantum devices is the experimental simulation of complex 
dynamics on controllable quantum systems of simple implementation9. These simulations allow for a 
better control and, therefore, understanding of the details leading to decoherence as well as the mecha-
nisms underneath the system-environment exchange of excitation and/or information. Recent works on 
dynamics simulations have been performed in diverse quantum systems such as optical interferometers 
with polarization-entangled photon pairs generated by spontaneous parametric down-conversion 
(SPDC)10–12, spin-1

2
 nuclear states of carbon atoms accessed by magnetic nuclear resonance13, and trapped 

ions14–17.
In particular, the simulation of open system dynamics for qubits (two-level quantum systems) has 

already been observed in many different experiments and has been connected to the observation of 
phenomena such as entanglement sudden death10 and Non-Markovian dynamics18–20, to name a few. 
The extension of a similar analysis to qudits (d-level quantum systems) presents both a wider range of 
phenomena to observe and possible applications to explore ranging from full local protection of entan-
glement to dynamical precursors of entanglement sudden death that are not present in pair of qubits. 
However, the simulation of quantum open systems in qudits is not as easy to implement as in qubits 
which justifies the rarity of such results in the literature.

In this paper we report an experimental technique for simulating decoherence in the the dynam-
ics of a qudit. Our qudits are encoded in the transverse component of the linear momentum of pho-
ton pairs generated by SPDC. The quantum system is defined in terms of the path entangled photons, 
namely, down-converted photons propagated through paths outlined by optical diffractive elements 
(multi-slits)21. In particular, we simulate two types of decoherence mechanisms namely dephasing22 and 
amplitude damping23, by means of a spatial light modulator (SLM) employed to implement operations 
on the qudit states. A wide variety of applications extend the use of SLMs for controlled manipulation 
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of photonic quantum systems encoded, for instance, in polarization24, in orbital angular momentum25,26 
or in transverse momenta of the photons27–33.

This article is organized as follows: in the next section we summarize the concepts of open system 
dynamics; after the state preparation and the dephasing and amplitude damping implementation are 
discussed. Then, we summarize and conclude the article.

Open quantum systems
In this section we present a brief review of the theory of open quantum systems in order to outline this 
work. A system (S) interacting with an environment (E) is described by the Hamiltonian11

= ⊗ + ⊗ + , ( )H H I I H H 1S E S E int

where HS and HE are the system and environment Hamiltonian operators, respectively; Hint is the 
system-environment coupling Hamiltonian, and IS (IE) is the system (environment) identity operator. 
We can describe only the system evolution by the equation of motion given by

ρ ρ= − , , ( )

ħ
i HTr [ ] 2S E SE

where ρSE is the total (S +  E) density operator.
The system evolution for the system-environment coupling can always be expressed as an unitary 

evolution and the total density matrix can be written as

ρ ρ= ( ) ( ) ( ), ( )†U t U t0 3SE SE SE SE

where ( ) = (− / )ħU t exp iHtSE  and ρ ( )0SE  is the density matrix of the initial state. In the particular case 
where we consider the initial state as a product state between the system and the environment, 
ρ ρ( ) = ( ) ⊗0 0 0 0SE S E E

, the effective evolution of the system is given by:
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where { } form an orthonormal basis for the environment. This evolution can be expressed only in 
terms of operators acting on S in the following form


 ∑ρ ρ( ) = ( ) ( ) ( ),

( )
†t K t K t0

5S S

where the operators

( ) = ( ) ( )K t U t 0 6E SE E

are the so-called Kraus operators34 and define a trace preserving positive map:  ( ) ( ) >†K t K t 0, 
  ∑ ( ) ( ) =†K t K t 1, ρ( ( )) =T r t 1S S . Note that the Kraus operators are not uniquely defined because 

there are many bases for describing the environment. As a consequence, we deal with the equivalent 
operators from different sets, which originate different decompositions of the same resulting density 
matrix.

Under certain well established circumstances known as the Born-Markov approximations, the evo-
lution of the system can also be expressed in terms of a time continuous Master equation, given by35

∑ρ ρ γ ρ ρ ρ= − , +

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

, ( )=

−



ħ
† † †i H A A A A A A[ ] 1

2
1
2 7S S S

j

N

j j S j S j j j j S
1

12

where ρS is the system density operator, A j are the so-called Lindblad operators and γ j is a non-negative 
quantity which has dimensions of the inverse of time if A j is dimensionless. The first term on the right 
side of the master equation represents the unitary part of the dynamics generated by the Hamiltonian 
H S. In this case, an intuitive set of Kraus operators is given by = − − ∑

γ †K iH dt A A1 S j
dt

j j0 2
j  and 

γ=K dt Aj j j where γ dt 1j  and terms of the order of dt2 are ignored. This so-called unravelling of 
the Master equation is associated to the Quantum Trajectories method where K 0 and K j are respectively 
known as the No-Jump and Jump operators. This method is connected both to an alternative way to 
calculated the evolution of the system on average as well as a direct way to infer its evolution at any single 
realization where a sequential measurement of the state of the environment is performed.

In this work, as mentioned above, we focus on two types of open quantum system evolution: dephas-
ing and amplitude-damping. In the following sub-sections we outline such evolutions.
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Dephasing
In a dephasing dynamics the system loses coherence due to the system-environment interaction without 
any population exchange. This occurs when a noisy environment couples to a system22. We can describe 
this dynamics for a system with dimension d using the Kraus operators

= , ( )K I 8d d

∑= ,
( )

πδ

=

−

K e i i
9j

i

d
i

0

1
ij

where ≤ ≤ −j d0 1 and Id is the identity operator for a system of dimension d. The system evolution 
in a dephasing dynamics can be obtained from

∑ρ ρ( ) = ,
( )=

†p p K K{ }
10S i

i

d

i i S i
0

where p{ }i  is the set of time dependent parameters that represent the weight of each Kraus operator. 
Writing the system density operator in a matrix form such that ρ ρ=i j ij, the dynamics for each 
matrix density element can be obtained. The diagonal elements are constant,

ρ ρ′ = , ∀ , ( )i 11ii ii

and the off-diagonals elements evolve as

ρ ρ′ = ( − − ) ∀ ≠ , ( )p p i j1 2 2 12ij i j ij

showing the system decoherence. The experimental implementation can be simplified if we consider the 
particular case = /p p 4i  for ≤ ≤ −i D0 1, inducing a single-parameter dependence in the system 
evolution. Thus, the off diagonals elements are

ρ ρ′ = ( − ) ∀ ≠ . ( )p i j1 13ij ij

Dephasing dynamics implementation is presented in its section.

Amplitude Damping
Damping dynamics represents the dissipative interaction between the system and its environment. 
A common example is the loss of photons from a cavity into a zero-temperature environment of 
electromagnetic-field modes36. This dynamics can be described using the master equation

ρ γ ρ γρ γ ρ= − − , ( )


† † †a a a a a a2 14

where a ( )†a  is the operator annihilation (creation) of a photon inside the cavity and γ is the decay rate 
inside the cavity.

One approach to describe the system dynamics is based on the theory of quantum trajectories37–39, 
which consist in monitoring the system’s environment. Environmental monitoring during a time interval 

δ, +t t t{ } indicates whether or not a loss of excitation (a quantum jump) can occur. If no loss of excita-
tion occurs, the system evolves without a quantum jump; thus, this evolution is given by

ρ δ ρ( + ) = ( ) , ( )δ δ− ħ ħt t e t e 15S
i H t

S
i H teff eff

where γ= /ħ †H i a a 2eff . On the other hand, if the system loses an excitation, the system evolves with a 
quantum jump

ρ δ
δ
δ
ρ( + ) = ( ) ,

( )
†t t t

p
a t a

16s s

where δ δ γ ρ= ( ) †p t a t aTr[ ]s  is the probability that a quantum jump occurs within the time interval. 
Note that, the higher the excitation in the cavity, the greater the chance of a quantum jump occurs, 
δ δ γ δ γ= =†p t a N N a t NTr[ ] , where N  is the photon number state inside the cavity.

it is demonstrated a partial dynamics of this open system: the no-jump trajectories. Such interesting 
dynamics occurs when the evolution exhibits no jump at all.
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Experimental setup
In this section we describe the setup for simulating experimentally dephasing and damping dynamics on 
qudits. The experimental setup is illustrated in Fig. 1. A 100 mW solid state laser operating at λ  =  355 nm 
pumps a 5 mm thick type I BiBO crystal (BiB3O6) and creates degenerate non-collinear photon pairs with 
horizontal polarization. A dichroic mirror placed after the crystal reflects the pump beam out of the 
setup and transmits the photon pairs. Signal (s) and idler (i) photons (λ s,i =  710 nm) are transmitted 
through a polarizing beam splitter (PBS) before crossing a multi-slit array placed perpendicularly to the 
propagation axis of the pump beam at a distance of 250 mm from the crystal. Taking the pump beam 
direction as the z longitudinal axis, the multi-slit plane lies in the x −  y transverse plane. The slits are 
0.1 mm wide and have a center-to-center separation of 0.25 mm. A 300 mm focal length lens L p placed 
50 mm before the crystal is used for focusing the pump beam at the multi-slit array plane. When the 
beam waist at this plane is smaller than the separation between the slits, the spatial part of the two-photon 
state after crossing the aperture will be given by21,29,40–45

∑ψ = − ,
( )=−

 

 



d
1

17s i
d

d

where = ( − )/ d 1 2d , D is the number of slits, and ( ) s i
 is the so-called signal (idler) slit state or 

photon path state. At this point, a maximally path entangled state is prepared.

Figure 1.  Experimental setup for implementing dephasing and damping dynamics for qudits encoded in 
transverse path states of the twin photons. The lens Lp focuses the pumping beam at the multi-slit plane, 
generating the state given by equation 17 after the multiple slit40. The SLM1, together with a PBS and the 
multi-slit can generate partially entangled states. To perform the dephasing dynamics, a spherical lens Lc is 
placed in the configuration −f f2 2 , creating a multi-slit image on the SLM2 plane. A beam splitter (BS) 
depicted in dotted line is not used for this implementation. On the amplitude damping dynamics, a 
cylindrical lens is used to project the image at an infinite distance, instead of the lens Lc. In order to realize 
the damping operations, we place the BS (dotted line) to construct a Sagnac interferometer. The lenses Li 
and Ls are used to create an image or interference pattern according to their positions at the focal plane. We 
use a half wave plate (HWP) to rotate the polarization of signal photons because the SLM2 modules only 
horizontal polarization.
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Now, we describe how we prepare a path state with any degree of entanglement. A Holoeye LC-R 2500 
spatial light modulator, depicted as SLM1 in Fig. 1, is positioned just behind the multi-slit array, at a dis-
tance of ~1 mm, to prevent diffraction. The SLM1 display is split horizontally into two sections, one for 
signal and the other for idler photon; independently, each section is addressed with a multi-slit aperture 
with different gray levels (see the lower inset of Fig. 1). A particular gray level is associated with a specific 
change in the polarization of the incoming photons. When the photons are reflected back by the SLM1, 
a PBS is used to filter them, selecting only their vertical polarization components. At the vertical output 
port of the PBS, the photon states get different modulation in each slit as they reach different gray levels 
at the SLM1 display. Thus, the SLM1 can be used to produce a partially entangled state, accordingly to 
the required application31. In the following sections, we present the dynamics implementation.

Dephasing implementation
We characterize a ququart photonic path state under the dephasing dynamics. Ququart states are pre-
pared by placing a four-slit in front of SLM1, perpendicular to the photon pair path (Fig.  1). In this 
particular dynamics, the SLM1 does not change the initial ququart state which is given by equation 17. 
On the idler arm, the idler photon passes through the lens Li, with a focal length of 200 mm, that projects 
the interference pattern at the detector 2 plane. On the signal arm, the signal photon passes through Lc, 
with a focal length of 125 mm, which is positioned in the configuration −f f2 2  with the SLM2 plane. 
This configuration allows to create the multi-slit image on the SLM2 screen. The SML2 model is a 
Hamamatsu LCOS-SLM X10468 which is used to perform the dephasing. The SLM2 display is addressed 
with four rectangular regions (see upper inset of Fig.  1), each one matching a given slit  from the 
four-slit array. Each gray level region modulates a phase φ



 and performs the dephasing operations K i 
independently. Under this implementation, the BS is not present. The lens Ls, with a focal length of 
200 mm projects the interference pattern on the detector 1 plane. Any operation required to implement 
the dephasing dynamics is performed by the SLM2.

Let us consider the state ρS that describes an ensemble with N components. When the dephasing 
occurs, the constituent N pi evolves according to the operator K i (see eq. 10), with = , , , ,i 0 1 2 3 4. In order 
to implement this dynamics in our experimental setup, we explore a way to divide the ensemble described 
by ρS. This novel technique makes partitions over the acquisition time where different operators K i acts 
on each time division. Instead of using a single static image on the SLM2, we use a film, which are kinetic 
images related to the operations K i. During a certain time interval which corresponds to a single kinetic 
image, the four rectangular regions at SLM2 will have different gray levels but constant at this time divi-
sion. The gray levels are chosen such that the path phases added by the SLM2 implement the Kraus 
operators K i (eqs. 8 and 9). A sequence of 32 of these gray levels patterns changing at each time division 
constitutes what we call a film. The time duration of a film is equal to the acquisition time. Because the 
SPDC process generates randomly photon pairs, on average the same number of down-converted pho-
tons are generated at equal intervals. So, our ensemble is formed by twin-photons generated over equal 
time intervals.

Therefore the acquisition time is partitioned into 32 equal time intervals and the parameter p is 
implemented over a whole acquisition time. Also, the parameter p varies according to each film. In Fig. 2 
illustrates the implementation of the dephasing dynamics for distinct values of parameter p. For param-
eter = .p 0 000, the film is composed by 32 equal consecutive images that perform 32 times the operator 

Figure 2.  The graphic shows how the films with the SLM patterns are formed to produce the dephasing 
dynamic. The different shades of gray represent different Kraus operators. The Kraus operators are 
implemented by the SLM2, which is divided in four rectangular regions corresponding to the four paths 
available to the signal photon in a ququart state.
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K4 (identity). For parameter = .p 0 125, the film is composed by 28 equal consecutive images (operator 
K4), followed by four consecutive images related to operators K i, with = , , ,i 0 1 2 3, respectively. For 
= .p 1 000, the film is composed by 4 sets of 8 equal consecutive images which perform the operators 

K0, K1, K2 and K3 exposed at equal time intervals, while the image related to operator K4 is not included 
in the slides sequence. Repeating the formerly procedure, a dephasing dynamics was performed varying 
the parameter p in steps of 0.125 within the interval [0, 1].

Dephasing dynamics can be characterized through the two-photon conditional interference patterns. 
Such patterns allow us to obtain the experimental values for the parameters p. The conditional pattern 
on the detection plane46 is described by the equation below

∑
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where k is twin-photon wave number, = .a mm2 0 1  is the slit width, = .d mm0 250  is the distance 
between the slits, =f mm200  is the focal length of a convergent lens placed at a distance f from the 
detectors plane, = .b mm2 0 1  is the detectors width, A is a normalization constant and ρ ψ ψ( ) =0  
is the initial state given by equation 17. The scale factor β has a dimensionless value of 0.62 and appears 
due to the combination of the lens Lc and Ls.

To obtain a single value of parameter p, we measure two interference patterns by varying the idler 
detector’s position along the x-direction while the signal detector is positioned at =x 0s  and = πx xs  

β π( / = )πkdx f . Figure 3 shows the interference patterns and their fits, which are performed by fixing all 
parameters, except p. As expected, the interference pattern visibilities decrease when the parameter p 
increases. In Table 1, we report the experimental (obtained from conditional interference patterns) and 
the predicted (calculated from time duration of slides at the film) values of p.

Amplitude damping implementation
The damping dynamics is performed in spatial qutrit states using a three-slit for defining the photon 
paths. At the SLM1, each slit region is modulated differently to get a specific amplitude and, as we 
mentioned above at the beginning of this section, we prepare a different two-qutrit state with the state 
coefficients modified. In this way, we prepare a partial entangled qutrit state of the form

ψ( ) = − , + , + , − , ( )a b c0 1 1 0 0 1 1 19s i s i s i

with + + =a b c 12 2 2 . This qutrit system behaves like a truncated harmonic oscillator, where the rela-
tion between the states , ,{ 0 1 2 } and the slits are shown in Fig.  4. The no-jump trajectory of this 
amplitude damping dynamic is implemented only in the path states of the signal photon and the 
two-qutrit state evolution is described by

ψ ψ| ( )〉 = | ( )〉

=
( )
( | 〉 + | 〉 + | 〉),

( )
γ γ

− ( ⊗ )

− −

ħt e

N t
a be ce

0
1 0 2 1 1 2 0

20

i H I t

s i
t

s i
t

s i
2

eff

where ( )N t  is a normalization factor and γ is the analogous constant decay rate present in the treatment 
of cavity loss.

To implement the no-jump operations, we placed a cylindrical Lc lens for projecting the image of the 
three-slit array at infinity. This image is propagated along the signal arm to detector 1, passing into a 
Sagnac interferometer whose input and output ports are defined by a 50/50 beam-splitter (dotted BS 
showed in Fig. 1). Inside the Sagnac interferometer there is a HWP which changes vertical polarization 
into horizontal and vice-versa. This interferometer introduces phase differences φ( )



 between transmitted 
and reflected paths inside the Sagnac interferometer since the SLM2 modulates phases only for horizon-
tally polarized photons. So, this modified Sagnac interferometer performs modulation in each slit state 
described by the unitary operation
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Figure 3.  Ququart interference pattern when the idler detector is scanned and the signal photon is fixed 
in xs = 0 (closed squares) and xs = xπ (open circles) for all p values measured. To find the p value for 
each pattern, we fitted the graphs using the equation 18 with D = 4.
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Comparing the above Sagnac operation expression with the state evolution (equation 21), it is pos-
sible to find a correspondence between to analogous physical systems: the photon decay rate inside a 
cavity and the phase modulation given by the interferometer (Fig.  1). Therefore, the amplitude damp-
ing (no-jump) dynamics can be performed by introducing the following phase differences between the 
reflected and transmitted photon path states at the interferometer

φ

φ

φ

( ) = ,

( ) = ( ),

( ) = ( ). ( )
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−

−

t

t e

t e

0

arcsin

arcsin 22

t

t

0

1

2
2

State evolution is obtained by detecting coincidence counts of the three-slit aperture at the image 
plane. On the idler arm, a lens Li is used to project the three-slit image at the plane of detector 2. Both 
detectors 1 and 2, considered as point-like detectors Fig. 1, are fixed at the positions corresponding to 
the slit image l s and mi (with , = − , , )l m 1 0 1 , respectively. Coincidence counts are recorded for the nine 
measurement combinations, and by normalizing them we obtain the absolute values of amplitudes for 
all nine states of the slit-state basis l m{ }s i

. The experimental results from the measurements described 
above are shown in Table  2 and Fig.  5. Such measurements alone can not fully characterize the state, 
however they do show the population change which is the main effect generated by the damping 
dynamics.

Furthermore, another interesting feature of this dynamics is the increase of entanglement in the sys-
tem according to the initial state. In this implementation, we generate a initial state with the constraint 
( < < )a b c . In Fig. 6 it is shown the entanglement dynamics of the system. To quantify the entangle-
ment we used the normalized I-concurrence47 defined as

px=0 π=
px x

ppredicted

0.000 ±  0.063 0.000 ±  0.044 0.000

0.101 ±  0.066 0.113 ±  0.055 0.125

0.234 ±  0.071 0.248 ±  0.054 0.250

0.359 ±  0.071 0.369 ±  0.052 0.375

0.489 ±  0.066 0.490 ±  0.053 0.500

0.603 ±  0.073 0.617 ±  0.058 0.625

0.737 ±  0.062 0.753 ±  0.051 0.750

0.871 ±  0.050 0.869 ±  0.061 0.875

0.982 ±  0.069 0.94 ±  0.10 1.000

Table 1.   Experimental and predicted values of p for dephasing dynamics on ququarts. Experimental 
parameter px=0 ( )= π

px x  is obtained by fitting the interference pattern curves measured by detecting the 
photons in coincidence, keeping fixed the signal detector (det. 1) at x =  0 (x =  xπ) and scanning the idler 
detector (det. 2). Predicted values ppredicted are the parameters we attempt to implement.

Figure 4.  Schematic representation of the correspondence between the photon path states defined by 
slits and the harmonic oscillator. 
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ψ ρ ρ( ( )) =
Ω

− ( ) =
Ω

− ( ) , ( )C t Tr Tr1 2[1 ] 1 2[1 ] 23i s
2 2

where ρ i ρ( )s  is the reduced state of idler (signal) and Ω = ( − )/d d2 1 . I-concurrence can be used to 
quantify the entanglement for this system because this no-jump dynamic does not decrease the system 
purity, as shown in equation 21. Note that the experimental error of the I-concurrence calculated from 
the experimental measurements increases over time. This happens due to the decrease in coincidence 
counts, as shown in Table  2. From the above results we can infer from the decrease of the total 

γt = 0.0 γt = 0.1 γt = 0.3 γt = 0.5 γt = 0.7 γt = 1.0 γt = 1.3 γt = 1.5 γt = 1.7

,0 0 24 ±  5 21 ±  5 19 ±  4 28 ±  5 16 ±  4 17 ±  4 33 ±  6 12 ±  3 22 ±  5

,0 1 0 ±  0 2 ±  1 6 ±  3 1 ±  1 10 ±  3 1 ±  1 0 ±  0 4 ±  2 0 ±  0

,0 2 249 ±  16 220 ±  15 262 ±  16 252 ±  16 273 ±  17 232 ±  16 248 ±  16 245 ±  16 252 ±  16

,1 0 4 ±  2 0 ±  0 12 ±  3 20 ±  4 1 ±  1 6 ±  2 9 ±  3 3 ±  2 7 ±  3

,1 1 953 ±  31 814 ±  29 775 ±  28 517 ±  23 465 ±  22 339 ±  18 345 ±  19 227 ±  15 125 ±  11

,1 2 10 ±  3 4 ±  2 1 ±  1 7 ±  3 4 ±  2 0 ±  0 0 ±  0 2 ±  1 1 ±  1

,2 0 2042 ±  45 1490 ±  39 1222 ±  35 635 ±  23 476 ±  22 290 ±  18 265 ±  16 98 ±  10 120 ±  11

,2 1 10 ±  3 4 ±  2 11 ±  3 0 ±  0 3 ±  2 5 ±  2 1 ±  1 0 ±  0 3 ±  1

,2 2 11 ±  3 0 ±  0 5 ±  2 2 ±  1 2 ±  1 0 ±  0 4 ±  2 0 ±  0 0 ±  0

ψ γ( ( ) )C te 0.862 ±  0.007 0.895 ±  0.008 0.905 ±  0.009 0.942 ±  0.012 0.962 ±  0.014 0.971 ±  0.016 0.958 ±  0.016 0.928 ±  0.021 0.926 ±  0.021

ψ γ( ( ) )C tp 0.864 0.881 0.914 0.942 0.960 0.972 0.962 0.945 0.919

Table 2.   Coincidence counts between photons transmitted by different slit states for different values of 
γt. The I-concurrence ψ γ( ( ) )C te  is calculated from the measured states and compared with the predicted 
I-concurrence ψ γ( ( ) )C tp .

Figure 5.  System population measurement over time. As expected, the slit populations related to higher 
energy level decrease and the lower energy levels increase.
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coincidence counts that when the system evolves fewer ensemble components have no jump trajectories, 
as expected.

Summary
In this work we experimentally demonstrated simulations of dissipative dynamics on quantum systems 
in a simple implementation. Our quantum systems are spatial qudits encoded in the transverse paths 
of photons pairs generated by SPDC. The dissipative operators for simulating dephasing and amplitude 
damping dynamics were realized by means of a spatial light modulator. Dephasing dynamics was per-
formed completely and amplitude damping dynamics was implemented partially, in which we performed 
only the no-jump trajectory. In the dephasing dynamics we measured the interference patterns to calcu-
late the parameter p, related to coherence loss. Besides, in the amplitude damping dynamics we measured 
the population which allows us to identify population changes from higher to lower levels. To identify 
the implementation success we used a parameter that represents the principal characteristic of the evo-
lution: coherence loss for dephasing and population changes for amplitude damping. Spatial photonic 
states are interesting systems to make quantum computation using qudits. The implemented dissipative 
dynamics are general and do not depend on the initial state and can also be extended to different system 
dimensions. Moreover, the experimental technique using films instead of images can be manipulated to 
implement other types of operations, increasing the SLM uses.

References
1.	 Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003).
2.	 Chiuri, A. et al. Experimental realization of optimal noise estimation for a general pauli channel. Phys. Rev. Lett. 107, 253602 

(2011).
3.	 Carvalho, A. R. R. & Santos, M. F. Distant entanglement protected through artificially increased local temperature. New J. Phys. 

13, 013010 (2011).
4.	 Santos, M. F., Cunha, M. T., Chaves, R. & Carvalho, A. R. R. Quantum computing with incoherent resources and quantum jumps. 

Phys. Rev. Lett. 108, 170501 (2012).
5.	 Carvalho, A. R. R., Busse, M., Brodier, O., Viviescas, C. & Buchleitner, A. Optimal dynamical characterization of entanglement. 

Phys. Rev. Lett. 98, 190501 (2007).
6.	 Vogelsberg, S. & Spehner, D. Average entanglement for markovian quantum trajectories. Phys. Rev. A 82, 052327 (2010).
7.	 Mascarenhas, E., Cavalcanti, D., Vedral, V. & Santos, M. F. Physically realizable entanglement by local continuous measurements. 

Phys. Rev. A 83, 022311 (2011).
8.	 Mascarenhas, E., Marques, B., Cunha, M. T. & Santos, M. F. Continuous quantum error correction through local operations. 

Phys. Rev. A 82, 032327 (2010).
9.	 Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

10.	 Farías, O. J., Latune, C. L., Walborn, S. P., Davidovich, L. & Ribeiro, P. H. S. Determining the dynamics of entanglement. Science 
324, 1414–1417 (2009).

11.	 Salles, A. et al. Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous 
monitoring of the environment. Phys. Rev. A 78, 022322 (2008).

12.	 Farías, O. J. et al. Experimental investigation of dynamical invariants in bipartite entanglement. Phys. Rev. A 85, 012314 (2012).
13.	 Baugh, J., Moussa, O., Ryan, C. A., Nayak, A. & Laflamme, R. Experimental implementation of heat-bath algorithmic cooling 

using solid-state nuclear magnetic resonance. Nature 438, 470–473 (2005).
14.	 Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).
15.	 Schindler, P. et al. Quantum simulation of dynamical maps with trapped ions. Nature Phys. 9, 361–367 (2013).
16.	 Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commun. 2, 337 (2011).
17.	 Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).
18.	 Jin, J. et al. All-optical non-markovian stroboscopic quantum simulator. Phys. Rev. A 91, 012122 (2015).
19.	 Orieux, A. et al. Experimental on-demand recovery of entanglement by local operations within non-markovian dynamics. Sci. 

Rep. 5, 8575 (2015).
20.	 Haseli, S. et al. Non-markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 

(2014).
21.	 Neves, L., Pádua, S. & Saavedra, C. Controlled generation of maximally entangled qudits using twin photons. Phys. Rev. A 69, 

042305 (2004).

Figure 6.  Entanglement dynamics for no-jump trajectory of amplitude damping acting on the qutrit 
system. I-concurrence is calculated from experimental data (red dots) showed in the Table 2 and the 
theoretical prediction (black line).



www.nature.com/scientificreports/

1 1Scientific Reports | 5:16049 | DOI: 10.1038/srep16049

22.	 Leibfried, D., Blatt, R., Monroe, C. & WIneland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 
(2003).

23.	 Weisskopf, V. & Wigner, E. Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie. ZZ. für Phys. 63, 54 
(1930).

24.	 Lemos, G. B., de Almeida, J. O., Walborn, S. P., Ribeiro, P. H. S. & Hor-Meyll, M. Characterization of a spatial light modulator 
as a polarization quantum channel. Phys. Rev. A 89, 042119 (2014).

25.	 Vaziri, A., Pan, J.-W., Jennewein, T., Weihs, G. & Zeilinger, A. Concentration of higher dimensional entanglement: Qutrits of 
photon orbital angular momentum. Phys. Rev. Lett. 91, 227902 (2003).

26.	 Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement 
and violations of generalized bell inequalities. Nature Phys. 7, 677–680 (2011).

27.	 Marques, B. et al. Double-slit implementation of the minimal deutsch algorithm. Phys. Rev. A 86, 032306 (2012).
28.	 Pimenta, W. M. et al. Minimal state tomography of spatial qubits using a spatial light modulator. Opt. Express 18, 24423–24433 

(2010).
29.	 Gutiérrez-Esparza, A. J. et al. Experimental characterization of two spatial qutrits using entanglement witnesses. Opt. Express 20, 

26351–26362 (2012).
30.	 Lima, G. et al. Experimental quantum tomography of photonic qudits via mutually unbiased basis. Opt. Express 19, 3542 (2011).
31.	 Lima, G., Vargas, A., Neves, L., Guzmán, R. & Saavedra, C. Manipulating spatial qudit states with programmable optical devices. 

Opt. Express 17, 10688–10696 (2009).
32.	 Cialdi, S., Brivio, D. & Paris, M. G. A. Demonstration of a programmable source of two-photon multiqubit entangled states. Phys. 

Rev. A 81, 042322 (2010).
33.	 Paul, E. C., Hor-Meyll, M., Ribeiro, P. H. S. & Walborn, S. P. Measuring spatial correlations of photon pairs by automated raster 

scanning with spatial light modulators. Sci. Rep. 4, 5337 (2014).
34.	 Kraus, K. States Effects and Operations: Fundamental Notions of Quantum Theory (Lecture Notes in Physics) (publisherSpringer-

Verlag, 1983).
35.	 Lindblad, G. On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48, 119–130 (1976).
36.	 Abdalla, M. S., Obada, A.-S., Mohamed, A.-B. & Khalil, E. Purity and correlation of a cavity field interacting with a sc charge 

qubit with a lossy cavity. Int. J. Theor. Phys. 53, 1325–1336 (2014).
37.	 Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, pp, 

101–144 (1998).
38.	 Nha, H. & Carmichael, H. J. Entanglement within the quantum trajectory description of open quantum systems. Phys. Rev. Lett. 

93, 120408 (2004).
39.	 Mascarenhas, E., Cavalcanti, D., Vedral, V. & Santos, M. F. Physically realizable entanglement by local continuous measurements. 

Phys. Rev. A 83, 022311 (2011).
40.	 Neves, L. et al. Generation of entangled states of qudits using twin photons. Phys. Rev. Lett. 94, 100501 (2005).
41.	 Lima, G. et al. Propagation of spatially entangled qudits through free space. Phys. Rev. A 73, 032340 (2006).
42.	 Taguchi, G., Dougakiuchi, T., Iinuma, M., Hofmann, H. F. & Kadoya, Y. Reconstruction of spatial qutrit states based on realistic 

measurement operators. Phys. Rev. A 80, 062102 (2009).
43.	 Neves, L., Lima, G., Fonseca, E. J. S., Davidovich, L. & Pádua, S. Characterizing entanglement in qubits created with spatially 

correlated twin photons. Phys. Rev. A 76, 032314 (2007).
44.	 Peeters, W. H., Renema, J. J. & van Exter, M. P. Engineering of two-photon spatial quantum correlations behind a double slit. 

Phys. Rev. A 79, 043817 (2009).
45.	 Carvalho, M. A. D. et al. Experimental observation of quantum correlations in modular variables. Phys. Rev. A 86, 032332 (2012).
46.	 Solís-Prosser, M. A. & Neves, L. Measurement strategy for spatially encoded photonic qubits. Phys. Rev. A 82, 055801 (2010).
47.	 Rungta, P., Bužek, V., Caves, C. M., Hillery, M. & Milburn, G. J. Universal state inversion and concurrence in arbitrary dimensions. 

Phys. Rev. A 64, 042315 (2001).

Acknowledgements
This work is part of Brazilian National Institute for Science and Technology for Quantum Information 
and was supported by the Brazilian agencies CNPq, CAPES, and FAPEMIG. We acknowledge the EnLight 
group for very useful discussions. 

Author Contributions
B.M. and M.F.S. proposed the experiment; S.P. supervised the work, B.M., A.A.M., W.M.P. and A.J.G.E. 
assembled the experimental setup and acquired experimental data; B.M. and A.A.M. analyzed the data; 
B.M., A.J.G.E., M.F.S. and S.P. wrote the main manuscript text. All authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Marques, B. et al. Experimental simulation of decoherence in photonics 
qudits. Sci. Rep. 5, 16049; doi: 10.1038/srep16049 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Experimental simulation of decoherence in photonics qudits

	Open quantum systems

	Dephasing

	Amplitude Damping

	Experimental setup

	Dephasing implementation

	Amplitude damping implementation

	Summary

	Acknowledgements

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Experimental setup for implementing dephasing and damping dynamics for qudits encoded in transverse path states of the twin photons.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ The graphic shows how the films with the SLM patterns are formed to produce the dephasing dynamic.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Ququart interference pattern when the idler detector is scanned and the signal photon is fixed in xs = 0 (closed squares) and xs = xπ (open circles) for all p values measured.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Schematic representation of the correspondence between the photon path states defined by slits and the harmonic oscillator.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ System population measurement over time.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Entanglement dynamics for no-jump trajectory of amplitude damping acting on the qutrit system.
	﻿Table 1﻿﻿. ﻿  Experimental and predicted values of p for dephasing dynamics on ququarts.
	﻿Table 2﻿﻿. ﻿  Coincidence counts between photons transmitted by different slit states for different values of γt.



 
    
       
          application/pdf
          
             
                Experimental simulation of decoherence in photonics qudits
            
         
          
             
                srep ,  (2015). doi:10.1038/srep16049
            
         
          
             
                B. Marques
                A. A. Matoso
                W. M. Pimenta
                A. J. Gutiérrez-Esparza
                M. F. Santos
                S. Pádua
            
         
          doi:10.1038/srep16049
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep16049
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep16049
            
         
      
       
          
          
          
             
                doi:10.1038/srep16049
            
         
          
             
                srep ,  (2015). doi:10.1038/srep16049
            
         
          
          
      
       
       
          True
      
   




