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A B S T R A C T

The SARS-CoV-2 virus has spread across the world, testing each nation’s ability to understand the state of the
pandemic in their country and control it. As we looked into the epidemiological data to uncover the impact
of the COVID-19 pandemic, we discovered that critical metadata is missing which is meant to give context to
epidemiological parameters. In this review, we identify key metadata for the COVID-19 fatality rate after a
thorough analysis of mathematical models, serology-informed studies and determinants of causes of death for
the COVID-19 pandemic. In doing so, we find reasons to establish a set of standard-based guidelines to record
and report the data from epidemiological studies. Additionally, we discuss why standardizing nomenclature
is be a necessary component of these guidelines to improve communication and reproducibility. The goal of
establishing these guidelines is to facilitate the interpretation of COVID-19 epidemiological findings and data
by the general public, health officials, policymakers and fellow researchers. Our suggestions may not address
all aspects of this issue; rather, they are meant to be the foundation for which experts can establish and
encourage future guidelines throughout the appropriate communities.
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1. Introduction

The virus causing the Coronavirus Disease 2019 (COVID-19) pan-
demic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
was first identified in December 2019 and has now infected people
worldwide. We observe significant differences in the risk of dying from
COVID-19 when comparing the numbers of cases and deaths reported
in different cities, states and countries. For example, at the end of May
2020, the proportion of total deaths in the age group of ≥80 years was
73.4% in the UK, 43.8% in Ireland, and 8.3% in Mexico [1]. Does this
mean the virus is more deadly for elders in one place than another?

The reported headline figures are affected by several factors that
vary from one specific location to another. These factors include the
number of people tested for the virus, the access to healthcare, local
social distancing guidelines, how a COVID-19 death is defined and the
proportion of the population who are especially vulnerable to the virus,
among others. Understanding the differences in COVID-19 fatality rates
between regions and countries requires careful interpretation of how
seroprevalence, the percent of the population positive for infection, is
estimated and how healthcare providers record and report the numbers
of cases and deaths.

The case fatality rate (CFR), given by the ratio of deaths divided
by the number of documented infections, was 12.2% in Italy, 4.9%
in Spain, 3.0% in Brazil, and 3.0% in the US as of September 17,
2020 [2]. Just two months later on November 12, 2020, these num-
bers converged. The CFR for each was 4.9%, 2.8%, 2.9%, and 2.3%,
respectively. How do we determine which numbers accurately assess
the danger and risk this virus poses? To have a reasonable estimate of
the actual risk of death, we need to understand the difference between
the CFR and the infection fatality rate (IFR). As opposed to the CFR,
the IFR is given by the ratio of deaths divided by the total number of
actual infections by SARS-CoV-2 in the population. In an ideal world,
every individual would be tested, and the CFR and IFR would converge
to the same number. Without this information, we lean on estimates for
the total number of infections.

The CFR has the benefit of being calculated with raw data and
can be useful to determine how well hospitals treat COVID-19 cases.
Therefore, what might explain the decline in CFR mentioned above are
the large strides we have made in the treatment of the disease and
protection of those who are vulnerable. Yet, because the CFR does not
consider the portion of asymptomatic and mild undocumented infec-
tions, it still underestimates the total number of people infected and
overestimates the disease’s actual mortality in broader applications.
Despite this shortcoming, CFR has been the most commonly used value
when referring to the COVID-19 pandemic’s mortality risk.

The IFR, in contrast, estimates the disease mortality by considering
the total number of infected individuals. As such, it is essential to have
trustworthy estimates of the IFR, so policymakers on local, state, and
federal levels can make informed decisions. The challenge is that it
is very difficult to determine the total number of infected individuals
unless systematic sampling and sophisticated statistical inferences are
carried out.

The question now is how exactly do we make reliable IFR estimates?
Studies that attempt to tackle this problem use fundamental assump-
tions to carry out fatality rate estimations. These assumptions must
be identified and documented to adjust for their effects on the field’s
output measurements. Thus, when different results emerge for studies
aimed at measuring the same phenomena, the reasons they differ can be
identified. When done properly, diligent reporting of a study’s assump-
tions, methods and results can lead to a better understanding of the
origins of the study’s findings and how they might be applied to other
circumstances. Accordingly, for a pandemic as widespread as COVID-
19, reporting the critical assumptions, variables and contextual details
– metadata – is critical. Every value, from IFR to hospitalization rate,
describing the state of the pandemic has several different estimates,
each showing COVID-19 in a different light. Not being able to properly

interrelate and apply this data can cost lives.
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Our analysis dissects epidemiological studies related to COVID-
19 and brings to light the key determinants of how the SARS-CoV-2
virus spreads and causes deaths. Based on this analysis, we identify
factors that contextualize the fatality rate estimates. These factors are
critical to fully understanding the origin of the rate’s qualitative value.
The idea of reporting the metadata for estimates can be extended
to other epidemiological parameters. We believe the implementation
of core metrology principles in epidemiology can help explain the
discrepancies between reported pandemic values and improve how
policymakers, the media and the general public use the data measured
by healthcare providers and epidemiologists. First, we will delve into
the uncertainties of the pandemic’s spread as we understand it today.

2. The problem lies in documenting and estimating infection

While the number of deaths is relatively concrete, the large number
of infections with mild or no symptoms can leave many infections
hidden from data banks. Thus, estimations of the seroprevalence are
both important and complex. Yet, when attempting to decipher the
number of infections in a population, the impact of more minute
details is often overlooked. It is important to first understand the
characteristics of a population before deliberating on the many studies
that estimate the virus’s total spread. Then, one can more objectively
assess how the metadata of a study has affected the results. Since
the start of the pandemic, serology-informed studies have been used
to estimate seroprevalence. With information from serology studies,
virus transmission, and deaths, models can estimate or forecast the
seroprevalence and pandemic dynamics. Serology-informed studies and
models have differences and similarities in how they must be analyzed
to maximize their applicability and accuracy within a given context.
We will begin with mathematical models.

2.1. How are models utilized to estimate the infection fatality rates?

Parameters are critical for the analysis of models intended to esti-
mate and forecast the dynamics of any pandemic. The parameter types
and values are intrinsically linked to the contextual and environmental
details of a lab or field study. It can be difficult to ensure the accuracy
of parameters; nevertheless, the source of the parameter derivation can
and should be reported. Implementing this reasoning is critical not only
for those creating the model but also for those looking to apply the
model. It is not lost on us that models and their assumptions come with
their inherent variability and complexity. It is our goal to help diminish
uncertainty and expand the number of well-informed predictions.

A study by Ioannidis, et al. [3] reviewed the state of COVID-19
models as of late August 2020 and identified factors that lead to poor
forecasting. Table 3 in the paper by Ioannidis, et al. [3] lists potential
reasons for the failure of COVID-19 forecasting and most are rooted
in the quality of the parameters. Included in the table are examples
of poor data input on key features of the pandemic (such as inflated
mortality and transmission rates), incorrect assumptions regarding the
demographic heterogeneity of populations, lack of incorporation of epi-
demiological features (such as age structure and comorbidities), poor
use of past evidence on the effects of current interventions (using ob-
servational data of questionable quality and applicability to the current
pandemic circumstance) and examining only one or a few dimensions
of the problem (no consideration of other potential conflicting factors).
Models must be informed on the key determinants of the pandemic and
provide transparency on the parameter derivations to ensure accurate
interpretation by readers.

Awareness of the various determinants playing into the pandemic is
a critical first step for those forecasting and estimating values. Values
can be cherry-picked from studies without reporting the metadata that
supports these parameter values, and long-term consequences can arise
from hasty and uninformed decision-making by readers of those pub-

lished findings. In epidemiology and public health, forecasting models
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are often published without supporting metadata for their parameters.
As a précis, models [4–8] used earlier in the pandemic to make forecasts
lacked critical metadata. We must encourage accountability and rigor
in models to minimize the potential for negative health impacts on
populations.

2.2. How are serology studies utilized to estimate the infection fatality
rates?

While models give insight into the pandemic’s general dynamics, ac-
curately estimating seroprevalence is essential for the implementation
of forecasting models. The challenge is that seroprevalence estimates
are difficult to obtain as they have many variables that come into
play. The goal of serology studies is to provide a better look at the
pandemic’s spread by sampling directly from the population. Ideally,
those conducting this type of study collect blood samples from a large
set of people, representative of the broader population, and test for
antibodies against the disease pathogen.

One example is a serology-based study in Spain [9], which tested
35,883 households in the non-institutionalized population (i.e., exclud-
ing people in hospitals, prisons, convents, nursing homes and other
collective residencies) for antibodies against the SARS-CoV-2 spike
protein. This study was conducted in late May 2020, when Spain had
strict social distancing guidelines and had its steepest rise in cases
before the recent resurgence seen throughout the world. The study
reported an estimated seroprevalence of 5.0% for the entire Spanish
population of 46.9 million. With a death count of 26,920 as of May 11,
2020, the IFR was 1.15% [10]. This describes a broad overview of how
a serology study will estimate the IFR of a population.

2.3. How do we determine the accuracy of IFR estimates?

Meta-analyses of seroprevalence studies exhibit a range of values
for the IFR. Over time, the portion of the population that is infected
can increase and decrease, as well as spread into new groups that vary
in vulnerability. This results in a dynamic mortality rate. Many studies
have been conducted in different countries, sometimes even multiple
in one region. If the goal is to determine what causes variability in
the IFR estimates, whether it is the study’s methods, location, time or
population demographics, then we must be aware of these details for
each study. Here we will focus on two meta-analyses.

Meyerowitz-Katz & Merone [11] collected and sorted through arti-
cles using data from February to April 2020 and arrived at 13 total
estimates (8 modeled estimates and 5 observational estimates). The
overall IFR estimate was 0.75% (95% CI: 0.49%–1.01%), and there
was no detectable pattern among the locations of the studies, the dates,
or types of study. Additionally, they reported a high heterogeneity (I2
xceeding 99%) within the data, suggesting the point estimates for IFR
sed may not be reliable. Meyerowitz-Katz & Merone [11] mention the
ack of age-stratified data and the variability of methods across the
tudies as possible reasons for skewing the data either higher or lower.

Ioannidis [10] also performed a meta-analysis of 36 seroprevalence
tudies from across the globe published from early April to early July
020. There are just two articles [12,13] used in both the Meyerowitz-
atz & Merone [11] and Ioannidis [10] studies. The Ioannidis [10]
eta-analysis extracted the location, recruitment and sampling strat-

gy, dates, sample size, types of antibody (IgG, IgM, IgA), estimated
rude seroprevalence and adjusted seroprevalence. Additionally, the
aper extracts the reasons for adjusting the seroprevalence to vent for
he factors that cause uncertainty. Only studies with a sample that
pproximates the general population and with a size of at least 500
ere included. The paper also corrected the IFR estimates based on the
umber of antibodies tested for by dividing each estimated IFR by 1.1
or every antibody they did not test for. The seroprevalence estimates
aried widely, ranging from 0.222% in Rio Grande do Sul, Brazil [14]

o 47% in Brooklyn, New York [15]. IFR estimates converged to a
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tighter range of 0.02% in Kobe, Japan [16] to 1.63% in Louisiana,
USA [17], excluding the four 0.00% IFR estimates where deaths were
insignificant or zero. The median IFR estimate across the 32 locations
was 0.27%. With the large range of seroprevalence and IFR estimates,
readers and experimentalists require a way to filter for inaccuracies and
robustness. The next section of this article will assist by investigating
the factors we believe to be causing the uncertainty.

3. Determining the cause for inconsistency in fatality rates. . . Is
it geography or serology?

The answer is yes to both. There are innate differences in the
population concerning the spreading event, population health and de-
mographics that lead to the wide range of seroprevalence estimates
and slightly smaller, yet significant, range of IFR estimates. If one
serology study takes samples from healthy blood donors, one from the
general population and another from outpatients at the local hospital,
how can we be sure these geographical differences are the sole cause
for the difference in the mortality rate of COVID-19. Ioannidis’ meta-
analysis does well to include each study’s methods of recruitment,
sample population demographics, test performance and how the virus
spread in the study location. With this information, we can properly
assess the significance of each estimate and form a more complete
picture of the risk involved with the COVID-19 pandemic.

For example, 7 [18–24] of the 36 studies in the Ioannidis [10] meta-
analysis use blood samples exclusively taken from blood donors. Blood
donors are often required to be healthy and can exclude those who have
had any signs of illness in the past two weeks. This sample is biased
towards healthier individuals, who are not representative of the general
population, resulting in an underestimation of seroprevalence and an
overestimation of the location’s IFR. Two-hundred blood donors in
Oise, France [25] gave a seroprevalence estimate of 3% while students,
siblings, parents, teachers and staff in the same area recorded a sero-
prevalence of 25.9%. Thus, the sampling methodology can distort IFR
estimates. Additionally, 5 [12,17,26–28] of the 36 studies focused on
locations with a death count much higher than other locations within
their respective countries. Locations with these discrepant numbers of
deaths will lead to an overestimation of IFR. Most studies recognize the
faults in their sample population and perform corrections to the data
to account for the defect; however, these corrections are conjectures.
There is no exact measure of the extent these factors have changed
the results. More importantly, the factor(s) accounted for vary between
studies. This inconsistency makes conducting a meta-analysis difficult,
and it is at the root of the problem of putting IFR estimations into
action. It also poses challenges in determining the best parameters to
introduce in mathematical models in order to make epidemiological
forecasts or investigate outcomes for different interventions.

3.1. What factors limit the accuracy of IFR estimations?

The following sections explore some of the important determi-
nants and how they affect the IFR estimation. For estimations to be
interpreted in the correct context and accurately generalized, the envi-
ronment and method of analysis of the study must be discussed. Few
studies, if any, acknowledge and account for the many elements that
shape their results. This is understandable, as there are many factors
and they come from different angles. The goal of the following sections
is to elucidate the degree to which these factors can affect the IFR. By
doing so, we hope to make it clear why they are important to consider
and report.



J. Cavataio and S. Schnell Mathematical Biosciences 333 (2021) 108545
3.1.1. How does the IFR vary based on age, comorbidities, and demograph-
ics?

It is well known that SARS-CoV-2 has a steep gradient in risk of
death when it comes to age, demographics and comorbidities. More
specifically, the mortality risk increases for the elderly (age >65),
those with underlying conditions and those of lower socioeconomic
status. By now, the vulnerability of the above groups in this pandemic
is common knowledge; however, less well-known is the degree to which
each affects COVID-19 numbers. Below we will discuss each topic and
their numbers to help clarify their respective effects on the COVID-19
pandemic.

Evidence of how the IFR can change depending on age is also
found in the serology-informed article by Ioannidis [10]. Among the
study’s lowest IFR estimates, at 0.08%, was Iran [27], which despite
a seroprevalence of 33%, maintained a low IFR due to its very young
population, with only slightly more than 1% above the age of 80. IFR
estimates for the <70 age group were lower than 0.1% in all but seven
locations (Belgium, Wuhan, Italy, Spain, Connecticut, Louisiana, New
York), where all seven were hotbed cities of the virus at the time. There
was a median of 0.05% across all locations for the <70 age group,
significantly lower than the overall median of 0.27%. Additionally, a
serology study in Geneva [26] estimated the overall IFR to be 0.64%,
yet for ages <50 years was <0.01%, for ages 50–64 years was 0.14%,
and for ages >65 years was 5.6%. As of December 2020, the Centers
for Disease Control and Prevention (CDC) Pandemic Planning Scenarios
[29] sources the Hauser et al. study [30] as its best IFR estimates per
age group: 0–19 years = 0.003%, 20–49 years = 0.02%, 50–69 years =
0.5%, 70+ years = 5.4%. The observed trends suggest that the mortality
risk increases exponentially with age. The study by Ioannidis [1] looks
at the COVID-19 deaths within eight European countries and the US
confirms this exponential increase in death rate for both males and
females. This increase with age can also be seen in Figure 1 of the
article by Guilmoto [31]. When the virus finds ways to attack the older
population, the number of deaths in elder populations will far surpass
the younger and the resulting overall, age-unadjusted IFR will begin to
lose quality.

The significant age-related difference in mortality risk is reinforced
by the sizeable portion of COVID-19 deaths coming from long-term
care facilities (or nursing homes) relative to the total portion of in-
fections the facilities contribute. In association with the International
Long-Term Care Policy Network, Comas-Herrera et al. [32] gathered
evidence on long-term care facilities as they relate to COVID-19 from
26 countries where official sources made the data available. After
considering the many different methods each country has taken in
defining a COVID-19 death, a COVID-19 long-term care facility death
and long-term care facilities themselves, the study estimates that 46%
of all COVID-19 deaths have come from long-term care facilities res-
idents based on data from 21 countries. In the US, long-term care
facilities contributed to 41% of the total COVID-19 deaths as of late
September 2020. This trend is relatively common in the study across
countries with more than 5000 total deaths that range from 39% of
deaths in Germany to 80% in Canada, and anomalies to this trend
are found only in countries with less than 1000 total deaths. The
disproportionate contribution of long-term care facilities to COVID-19
deaths is reasonable considering the fragility of these residents’ lives.
The average length of stay in nursing homes is 2 years and people who
die in nursing homes die in a median of 5 months [33]. This suggests
that the deaths of people in nursing homes largely affects the COVID-19
fatality.

In the meta-analysis by Ioannidis [10], three studies taking place
in New York [15,34,35] show high overall IFR values of 0.4% [15],
0.68% [34], and 0.65% [35]. A possible explanation for this high
mortality risk would be the decision by the New York governor to
allow excess COVID-19 patients to find care in nursing homes. It is
not unexpected that people in nursing homes, who are there typically

due to poor health conditions, would be more susceptible to this
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virus. Given their major contribution to the total amount of COVID-
19 deaths in most countries, their under-representation throughout
the majority of serology-informed studies is cause for concern. Age-
specific calculations of the IFR can minimize the effect of neglecting
nursing homes, but if seroprevalence in this institutionalized population
is higher than in the general population, it could lead to overestimation
of the IFR. Already mentioned in this paper was a large study that does
not include this group of individuals, the Spain study [9]. This study
addresses many of the factors we discuss in this review, yet its inability
to include institutionalized individuals may be affecting the accuracy of
their results more than they initially perceive.

Underlying health conditions, such as cardiovascular disease, hy-
pertension, diabetes, chronic obstructive pulmonary disease, severe
asthma, kidney failure, severe liver disease, immunodeficiency and
malignancy [1] have been linked to an increased fatality risk when
infected with COVID-19. These comorbidities create another at-risk
group, in addition to the elderly, that must be treated with caution.
The comorbidity factor contributes significantly to the interpretation of
deaths that occur in the <65 age group. The age-stratified analysis on
COVID-19 mortality risk by Ioannidis [1] in the early pandemic on 11
European countries, Canada, Mexico, India and 13 US states showed a
small fraction of total deaths attributable to non-elderly people with no
underlying conditions. A range of 4.5% to 11.2%, in European countries
and Canada, and 8.3% to 22.7%, in US locations, was identified as
the percent of total COVID-19 deaths in people below the age of 65.
In Mexico and India, however, non-elderly individuals constitute the
majority of the population. A noteworthy result regarding the impact
of underlying diseases is that the study showed the proportion of
total COVID-19 deaths linked to non-elderly people without underlying
conditions ranged from just 0.65% to 3.6%, where data was available
(France, Italy, Netherlands, Sweden, Georgia, and New York City).
Additionally, these numbers were calculated while considering only
cardiovascular disease, hypertension, diabetes and pulmonary disease
as comorbidities. While these diseases contribute to the bulk of the
<65 years old comorbidity population, studies still leave out other
underlying diseases linked to COVID-19 with unknown contributions
to this comorbidity population. Many countries and states vary in
their definitions of underlying conditions as it pertains to COVID-
19. Partitioning COVID-19 data according to the major comorbidities
could prove beneficial to the analysis of the reported data, given the
significant number of deaths that group contributes to the deaths in
the <65 age group.

SARS-CoV-2 also disproportionately affects people by socioeco-
nomic status, most notably in urban areas. Yet, the following paragraph
will instead evaluate the mortality rate through race and ethnicity
rather than socioeconomic status. The reason for this is not to suggest
there is a natural vulnerability to the virus based on race. Rather,
the reason is because it is well-established in the US that minor-
ity groups are disproportionately represented in lower socioeconomic
statuses [36]. Additionally, socioeconomic status is not reported as
often as race/ethnicity in most studies. Therefore, the association
between socioeconomic status and race can be useful when considered
appropriately.

The antibody survey conducted by the New York [37] government
in late April provided seroprevalence estimates of 8.9–9.1% in White
populations, 22.5–32.0% in Latino/Hispanic populations, 16.9%–22%
in Black populations, and 11.7–14.6% in Asian populations. The APM
research lab has independently compiled up-to-date data [38] regard-
ing COVID-19 deaths by race across the US and has identified that Black
people, representing 12.4% of the population, have suffered 19.9%
of reported COVID-19 deaths. Additionally, compared to the White
population, the latest U.S. age-adjusted COVID-19 mortality rate for the
Black populations are 3.0 times as high, the Indigenous people are 3.2
times, the Latino populations are 3.0 times, and the Pacific Islanders
are 2.3 times. If there is a direct association between these demographic

groups and socioeconomic status in a population, as is the case in major
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cities in the US, then studies can use this demographic measure to assess
how these factors affect the mortality rate. Social factors are affecting
disadvantaged groups and low-income countries which contributes to
anomalies and inaccurate interpretation of the data. With higher rates
of underlying conditions, less access to healthcare and more frontline
jobs, among other factors, people of lower socioeconomic status are
another group to carefully consider in the context of this pandemic.
More awareness of this issue can help with public health measures
like an increased availability of antibody and RT-PCR testing, increased
awareness of disease symptoms, and more strict guidelines on personal
protective equipment to help control the spread and mortality of this
disease within these groups.

3.1.2. Is the sample population representative of the general population?
First and foremost are the uncertainties with the sample popula-

tion. While some serosurveys are deliberately unrepresentative of the
larger population, such as those using blood donors as samples, others
that aim for mixed, random sampling within a population can still
have variability. When recruiting individuals, certain subpopulations
where COVID-19 is particularly widespread, such as among nursing
homes, disadvantaged communities, people experiencing homelessness
and people in prisons may be under-represented in the studies. The
serosurveys do not exclude these groups, rather their method of re-
cruitment inherently makes it difficult for these groups to participate.
For example, many studies were household-based, recruiting from out-
patient clinics, or contacting participants via Facebook [10]. Institu-
tionalized populations will have a more difficult time accessing these
studies as well as disadvantaged communities who do not have regular
access to healthcare or technology. Recruiting fewer people from these
subgroups may underestimate seroprevalence and overestimate IFR.

3.1.3. How do information delays affect the timestamp of COVID-19 data?
Many delays occur over the course of SARS-CoV-2 exposure and

infection. Awareness of each delay can ensure that each documented
case, seroconversion, hospitalization and death is properly associated
with the date it represents. Overall, studies must account for the delay
between exposure and symptoms (incubation period), symptom onset
and documented infection, exposure and seroconversion (formation of
antibodies), symptom onset and death, and finally, death and reporting.
The delay between infection and seroconversion is roughly 1 to 3
weeks [39]. The incubation period has a median time of 4–5 days,
where 97.5% of people with COVID-19 who show symptoms will do so
before 11.5 days after infection [40]. The time between symptom onset
and documented infection is roughly 5 days [41]. The delay between
symptom onset to death usually falls in the range of 13 to 19 days [42].
The delay between death and reporting is roughly 1 to 8 weeks, where
roughly <25% of deaths are reported within the first few weeks and
generally 75% are reported by 8 weeks [43]. In summary, it takes
roughly 1.5 to 2 weeks for a rise in infections to reflect in documented
cases, one to three weeks for a population’s antibodies to represent
the seroprevalence, and one month or more for reported deaths to
reflect the mortality of past cases. These delays can cause incorrect
associations between values of seroprevalence, cases and deaths if not
appropriately considered.

3.1.4. What is the accuracy of SARS-CoV-2 testing?
There are two types of tests used to test the presence of antibodies

in individuals, the lateral flow immunoassay (LFIA) device and the
enzyme-linked immunoassay (ELISA). Each test has a different way
of analyzing a serum sample for IgG and IgM antibodies against a
certain part of a virus, in this case, the SARS-CoV-2 spike protein.
As mentioned above, seroconversion, or creating anti-spike protein
antibodies, can take one to three weeks. Therefore, a serology-based
study will calculate the seroprevalence of the population roughly two

weeks before the study date.
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LFIA devices are used as point-of-care tests, providing results in
a matter of 10 min while the ELISA can take hours and requires lab
equipment, yet there is a trade-off in quality as the ELISA is typically
more sensitive and specific. The sensitivity of a test refers to the
likeliness of giving a true positive result. The specificity of a test refers
to the likeliness of giving a true negative. The sensitivity of the LFIA
and ELISA devices is assessed by calculating the percent positive results
against known positive samples confirmed by the RT-PCR test, the
gold-standard. 100% in this case is considered perfectly sensitive. The
specificity is usually tested against pre-SARS-CoV-2 outbreak samples
where 100% negativity of tested samples means perfectly specific.

To assess the quality of each test, a report from the National COVID
Scientific Advisory Panel [44] tested for SARS-CoV-2 IgM and IgG an-
tibodies using ELISA and 9 different LFIA devices. The ELISA detected
IgG in 34/40 PCR-positive samples, a sensitivity of 85% (95%CI 70%–
94%), where all 6 false negatives were from samples taken within
at least nine days from symptom onset. It detected IgG in 0/50 pre-
pandemic controls, a specificity of 100%, and in 31 of 31 positive
samples taken greater than 10 days after symptom onset, a sensitivity
of 100%. IgM sensitivity was lower at 70%, and all IgG false negatives
were also IgM false negatives. This confirms that the accuracy of ELISA
tests improves when detecting IgG antibodies in samples taken greater
than 10 days after symptom onset. The ELISA OD ratio can often be re-
fined according to the study’s preferences to prioritize either sensitivity
or specificity. LFIA devices, on the other hand, ranged from 55%–70%
in sensitivity and 95%–100% in specificity. Higher sensitivities for LFIA
devices are reported by manufacturers, but the seroepidemiological
study in Spain [9] performed their own validation of the LFIA device
they used. They reported an IgG sensitivity of 82.1%, an IgM sensitivity
of 69.6% and specificities of 100% and 99.0%, respectively. Therefore,
exact sensitivities of LFIA devices are variable, but IgG antibodies seem
to be more reliable than IgM.

The lower sensitivity of LFIA devices may result in unreliable and
insufficient screening of SARS-CoV-2 infection. The National COVID
Scientific Advisory Panel study [44] considers the best-case scenario
for an LFIA test to be 70% sensitivity and 98% specificity. Even if
the sensitivity of the device were to improve without compromising
the specificity, after 1000 tests there would be roughly 19 false pos-
itive documented infections. In a population of 5% seroprevalence,
this would mean 35% of the tests are wrong. As the seroprevalence
increases to 20%, 10% of results would be wrong, and at 50% sero-
prevalence, 3% would be wrong. This is concerning given the range of
seroprevalence estimates in the meta-analysis study by Ioannidis [10],
where only 9 of 36 studies recorded a seroprevalence ≥10% and only 4
were ≥15%. Despite this apparent flaw in the LFIA devices, the point-
of-care and ELISA tests used in the Spain study [9] still recorded similar
seroprevalence estimates, 5.0% (95% CI 4.7–5.4) and 4.6% (4.3–5.0),
respectively. This suggests that for large serology-informed studies,
such as the one in Spain, the LFIA test could be useful as it makes for
greater uptake, lower cost and easier implementation.

There is more to call into question regarding testing individuals for
SARS-CoV-2 infection using the reverse transcriptase–polymerase chain
reaction (RT-PCR) swab test. This test uses swabs to take a sample of
the subject’s upper respiratory tract and, if SARS-CoV-2 RNA is present,
will use the RT-PCR technique to replicate the RNA to detectable levels.
While it would be rare to see a false-positive RT-PCR test excluding
instances of cross-contamination, false-negatives can occur due to poor
quality or timing of the test. A study on the temporal dynamics of viral
shedding and transmissibility of COVID-19 [45] showed that viral loads
in the upper respiratory tract peak at and soon after symptom onset,
then decline quickly within 7 days until they reach the detection limit
at around 21 days. Infectiousness, however, may decline significantly
after 8–10 days of symptoms, as live virus could no longer be cultured
in a study by Wölfel, et al. [46]. Therefore, there may be a significant
amount of time where individuals test positive for RT-PCR tests despite

no longer being infectious to others.
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3.1.5. What is known about the IgG and IgM antibody kinetics in Humans?
There may also be significant differences in post-infection anti-

body kinetics between asymptomatic, mild and severe infections. In
a clinical and immunological assessment of 37 asymptomatic and 37
symptomatic SARS-CoV-2 infections [47], the study found significant
differences in IgM detection, where 62.2% asymptomatic were positive
and 78.4% of symptomatic individuals were positive. Additionally,
whereas 81.1% and 83.8% of asymptomatic and symptomatic individu-
als, respectively, tested positive for IgG 3–4 weeks after exposure, only
40.0% of asymptomatic and only 12.9% of symptomatic individuals
became seronegative for IgG in the early convalescent phase, 8 weeks
after being discharged from the hospital. Therefore, to maximize the
accuracy of serosurveys, conclusions made from the data must be
associated with the period of time they most accurately represent.

3.1.6. How are COVID-19 deaths defined?
Across nations and states, the answer to the question ‘‘What is a

COVID-19 death and what isn’t?’’ is serious and important, but also
inconsistent. In general, there are three methods of defining and quan-
tifying COVID-19 deaths. First is the method of recording a death as
due to COVID-19 only for those who test positive, either before or after
death. This method could be uniformly implemented if every person
could get tested, however, there are many countries and states that are
unable to do so. This results in deaths from exacerbation of chronic
conditions due to COVID-19 and deaths not counted due to lack of
testing. Therefore, this method can miss people with atypical symptoms
and deaths not linked to the pandemic, such as limited access to health
care services due to overcrowded hospitals. It could also incorrectly
count those dying from unrelated causes, such as a car crash, after
testing positive. Second is the method of counting deaths of people
who test positive and those who are not tested but suspected of hav-
ing COVID-19. Several countries, such as Belgium, Canada, England,
France, Ireland, Scotland, and some regions of Spain, have used this
approach [32]. With this method comes a risk of incorrectly associated
deaths to COVID-19, but it may help in providing timely data as to
the scale of the pandemic’s mortality without requiring COVID-19 tests
for every hospitalized individual. Unsurprisingly, these countries report
higher proportions of COVID-19 deaths [32]. The third method of quan-
tifying COVID-19 deaths is by measuring excess deaths. This method is
best for quantifying the number of deaths both directly and indirectly
associated with COVID-19, capturing the full effect the pandemic has
had on the public’s health. This method works by comparing the total
amount of deaths that are over the expected number of deaths based
on the past five years. This method will be reliable, but not for months
or possibly years due to the time it takes to officially process death
certificates. There may also be variability in excess deaths caused by
confounding factors, such as a bad flu season, less driving accidents or
decreased utilization of healthcare during the pandemic. It is important
to acknowledge the different ways that COVID-19 deaths are recorded
to recognize the possible underestimation, by the first method, and
overestimation, by the second method, of IFR values. The third method
will inherently underestimate the recent mortality rate, as deaths are
being processed and documented. Over time, the overall impact of the
pandemic on deaths can be evaluated, yet one will have to consider the
many confounding factors in play to estimate the mortality rate of the
disease itself.

3.1.7. What is the state of hospital COVID-19 cases, deaths and patient
data?

COVID-19-Associated Hospitalization Surveillance Network (COVID-
NET) [48] is a population-based surveillance system run by the CDC
that collects data on laboratory-confirmed COVID-19-associated hos-
pitalizations among children and adults through a network of over
250 acute-care hospitals in 14 states, covering 10% of the entire
US population. This surveillance system acquires information about

each case’s age group, sex, ethnicity and underlying health conditions.
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Cases are identified in COVID-NET if they test positive for SARS-
CoV-2 and are hospitalized within 14 days of the positive test, and
the data is collected using a standardized method of reporting by
trained surveillance officers. Therefore, this database has the potential
to present patients in a complete context. It is a prime example of how
hospital data can be used to inform the public on the risk of COVID-19
in their area, providing data that gives both specific and generalized
data points. For example, it can give the weekly hospitalization rate
by age and can also give the proportion of cases resulting in death
or release by race/ethnicity. COVID-NET also shows that 89.3% of all
hospitalizations are in patients with some underlying health condition,
the most common being hypertension 58.9% [48]. While promising,
there are limitations to the application of this data. First, the network
was able to perform a detailed analysis of comorbidity and ethnicity
only for hospitalizations in March due to the large amount of time
needed to process this data. There were 1,482 hospitalizations in their
system for that month, and just 180 (12.1%) contained data regarding
comorbidities. The only cases reported on the COVID-NET surveil-
lance system website are from cases where the healthcare provider
specifically called for laboratory testing for SARS-CoV-2, leading to
an under-ascertainment of COVID-19 cases as each provider practices
differently. Moreover, all results are provisional as each chart must
be reviewed once the patients have a discharge disposition. The in-
efficient transfer of information is limiting this website’s ability to
present a more holistic and true evaluation of the COVID-19 pandemic
throughout the country. The difficulty of communicating critical data,
like ethnicity/race and underlying conditions, is closely linked to the
main issue addressed in this paper, providing context around COVID-19
cases.

A system like COVID-NET needs to be established much more widely
throughout the US. It is critical that the flow of information from
hospitals to organizations, like the CDC and Human Health & Services,
is streamlined for policymakers and the public to be aware of the situ-
ation in their local area. Despite this issue, the COVID-NET interactive
website [49] continues to publish current, weekly hospitalization data
stratified by age which can still be very helpful for those looking to
make decisions based on hospitalization data.

4. Using metrology principles for reporting epidemiological pa-
rameters

In this review we looked at the variety of factors affecting COVID-
19 fatality rate estimates. To improve our understanding, modeling
and decision-making regarding the COVID-19 pandemic or any other
pandemic, epidemiological studies require standardization for report-
ing data. It is essential to develop a definition of minimum information
(metadata) needed to correctly describe fatality rates, but also all other
critical epidemiological parameters.

There are many factors associated specifically with the COVID-19
fatality rate and generally to seroepidemiological studies that must be
considered for a proper contextual understanding of published data.
While these factors and limitations are well-known throughout the
epidemiological field, there is a habit of not including them in pub-
lished work. By including this metadata, epidemiologists will better
understand the provenance of parameters, and how the results of
one study in a specific setting can be generalized and applied more
broadly to other situations. It will allow public health officials to
make more substantiated and knowledgeable decisions. At the same
time, it will improve communication between epidemiologists inves-
tigating diseases and possibly reveal novel insights about previously
unexplainable differences between models and studies.

This manuscript aims at sparking a conversation that considers
how to create standardized guidelines for reporting epidemiological
parameters in the literature. We believe this can be accomplished by
applying metrology principles, which help experimentalists thoroughly
dissect each aspect of their study to find where uncertainties can lie.
In turn, this dissection not only leads to increased awareness of these
factors and limitations but can help people understand why they are so

critical to include.
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4.1. The COVID-19 pandemic management showcases the urgent need for
standardization

This standardization dilemma has also manifested in the disparate
handling of COVID-19 across the US. There are inconsistent recom-
mendations for social-distancing and business and institution closings
across the US. While some situations require more or less action than
others, disparate messaging can make it extremely difficult to coordi-
nate a unified response when one is needed. A study conducted by the
organization Resolve to Save Lives [50] demonstrates that this issue
extends to their reporting of COVID-19 data. The study reviews all
50 US states’ COVID-19 data dashboards to assess their consistency
and robustness. Uniform indicators across all 50 states’ data regarding
COVID-19 spread, mortality and response is critical not only to ensure
accountability and risk of this pandemic but also to ensure the data can
be utilized accurately and to its fullest extent. The review discovered
a lack of consistency that is startling across all domains of critical
pandemic-related data, except for deaths. Syndromic surveillance, or
the reporting of COVID-like illness and influenza-like illness, in patients
who present themselves to healthcare facilities was reported in only
37% of states for COVID-like illness and 18% for influenza-like illness.
The immediate reporting of these numbers’ new daily counts is critical
for predicting potential upcoming virus spread. The type of COVID-
19 case indicators, such as new confirmed, probable, and per-capita
rates, are not clearly defined in 40% of states, apart from all the states
displaying either new or cumulative cases. Only 64% of states report
data for nursing homes, correctional facilities, homeless shelters and
other facility-specific data. The number of tests performed is reported
in >90% of states, but only 75% report PCR test positivity and 5%
report the average time from symptom onset to PCR test result, which
is important to be no more than two days as this is the period of peak
infectivity. Slightly more than 80% of states report COVID-19-specific
hospitalizations but vary between reporting cumulative or daily new,
less than 50% report intensive care unit bed admissions. Also, they
present numbers in counts, rather than per-capita, which does not allow
for comparison of the data with other locations. Only 15% of states
report occupational healthcare worker infections. Finally, only 8 states
report data on the source of exposure for cases, which reflects on the
region’s ability to control COVID-19 via awareness of where outbreaks
occur.

Aside from the type of data reported, there are significant variations
in the display of data, performance targets and what data is considered
important. For example, while 92% of states report COVID-19 cases,
some states report the case date as the date of specimen collection,
some the date of illness onset, and some the date reported. Some states
include data for both nursing home staff and residents, while others
report only for residents. Among the >90% of states reporting testing,
they vary in reporting either cumulative or weekly numbers and the
type of test being reported. Some report PCR positivity for the day,
while others require users to calculate it themselves. While all but three
states include data on demographics, they vary greatly in the type of
information reported (cases, deaths, hospitalizations) and the type of
stratification (age, sex, race/ethnicity, or a combination).

Granted, establishing websites to inform the public and policymak-
ers is unprecedented, but there are major flaws in the way it was
carried out. The state-to-state dissimilarities considerably hinder the
ability to compare the situation in one state with another. It can result
in the misuse and misunderstanding of the data. It can be the cause
of inconsistent public health safety guidelines. It can cost the lives
of people who are affected by the absence of demographic data and
blindness to the risk of the disease in their area.

4.2. Epidemiology and public health can learn an important lesson from
other fields in the biomedical sciences

The rigor and reproducibility crisis in the biomedical sciences has
moved scientists across different fields to establish and develop guide-

lines for reporting data and methods with rigor and robustness. In
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enzymology, there are often key measurements, reagents, temporal
data, and other critical information left out leading to irreproducible
studies and unreliable results. The lack of consensus within the com-
munity results in inconsistent reporting of data throughout studies.
Experiments are conducted in different environments and in a variety
of ways without consideration of the weight each variation carries.
This has led to discrepancies in the reporting of physical constants,
leading to irreproducible scientific findings. In an effort to gain control,
the Standards for Reporting Enzymology Data guidelines [51] have
been created to inform enzymologists on what data is critical to report
for their experiments. These guidelines ensure that the identity of
the enzyme, preparation, storage conditions, assay conditions, enzyme
activity, methodology and any other critical information is clearly
stated in order to standardize studies in their field.

Groups of experts in other fields of biology have come together in
an attempt to resolve this growing issue. To encourage the reporting
of critical information, these groups established guidelines such as
the Minimum Information About Microarray Experiment (MIAME) and
Minimum Information about a Biomedical or Biological Investigation
(MIBBI). According to the metrologists in Plant et al. [52], establishing
consensus requirements such as these is the first step to bringing back
validity and reproducibility to published results in their respective
scientific fields. Plant et al. discuss three core aspects that are vital to
identifying confounding variables and assessing uncertainty within a
study. First, characterizing the experimental system, such as specify-
ing instrumentation, characteristics of the subjects and computational
tools, will make results robust. Second, immutable reference materials
and reference data, like including calibration of instruments and type
of software, will make results reproducible and comparable between
laboratories. An example is the OD level used in ELISA tests or the
type of specimen used in the validation of COVID-19 test quality. Third,
valid interpretation of data given the known truth and limitations of the
experiment.

4.3. What are the next steps for epidemiology and public health?

There has been a promising development in the standardization of
reporting figures, context, and terminology on the CDC website [53].
On this page, the CDC outlines how diagnostic and screening testing
sites must be accredited, how they report their data and to which
organizations (regional, state, and federal public health departments),
what data elements should be reported (age, race, sex, test ordered,
date, etc.) and the standard terminology that should be used. However,
there are many other areas where more work is required.

For example, in the case of fatality rates, we suggest the reporting
of seven categories of metadata (see, Table 1) in studies estimating
the seroprevalence and/or the IFR of a population. Included are top-
ics concerning both seroepidemiology and modeling, which have the
potential to cause significant uncertainties and variations in data, as
we have discussed. Again, these suggestions should be considered as a
starting point for experts in the field to ensure a complete picture of
how each COVID-19 epidemiological study is painted. While this table
can be used by epidemiologists in their studies, the Resolve to Save
Lives study [50] similarly includes a table of 15 essential COVID-19
indicators that should be reported by each county, state, and country
and example data dashboards that can be used more generally by serol-
ogists, policy makers and government officials. We also recommend
looking at Table 1 of another study by Plant et al. [54] that provides
general guidelines to kick start the conversation of identifying any other
uncertainties within serology studies that have yet to be identified.
This table was created by summarizing the sources of uncertainty as
described by the Guide to Expression of Uncertainty in Measurement.

The next critical step is setting in motion a discussion within the
epidemiological field to standardize the measuring and reporting of
data. To do this effectively, we suggest an international committee

of epidemiological experts to come together and establish minimum
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Table 1
Details each category of contextual and experimental details to be included in a study that estimates seroprevalence and/or infection fatality rate.

Causes of Uncertainty
and Variation

Metadata Why is this important? How it shows up in a study. . .

Demographics

Sex Males have a slightly higher mortality risk. The proportion of men vs women is not
representative of the population.

Age Mortality risk increases exponentially with age. The ages of samples are not representative of the
population.

Socioeconomic status Groups of lower socioeconomic status have a
higher seroprevalence and risk of mortality.

The proportion of minorities is not representative
of population.

Underlying Conditions Cardiovascular disease,
hypertension, diabetes, chronic
obstructive pulmonary disease,
severe asthma, kidney failure,
severe liver disease,
immunodeficiency, and
malignancy

Certain underlying conditions will result in a
higher risk of mortality.

A high proportion of individuals with underlying
conditions in the population where the death
count is taken from.

Sample Subpopulation People in long term care homes,
homeless shelters, in prison,
occupation

People in institutions and certain occupations risk
higher exposure/spread of the virus leading to
higher seroprevalence. People in long term care
homes have a higher risk of mortality and can
disproportionately contribute to the number of
deaths within a population.

Institutionalized individuals and healthcare
workers are not represented in the sample
population. A low proportion of individuals in a
long-term care home in population.

Information Delays Documented infection to death &
death to reporting

Delays in the transfer of information need to be
considered when deciding which date to use for
the death count.

An incorrect date is chosen for the death count.

SARS-CoV-2 Test

Type: LFIA, ELISA, RT-PCR Different types of tests have different sensitivities,
specificities, and timing.

A lower sensitivity & specificity resulting in an
inappropriate number of false positives/negatives.

Specifics: Antibodies tested,
specificity and sensitivity
according to validation tests

IgG, IgM, and IgA antibodies have different
accuracies at different points of time.

One study tests only IgM, another IgM and IgG,
and another IgM, IgG, and IgA.

Antibody Kinetics Delay from infection to
seroconversion and from
seroconversion to seronegative

Delays between infection and developing
antibodies and then the subsequent loss of those
antibodies can affect the seroprevalence.

A larger time between infection and testing.

Population’s Methods
of Quantifying a
COVID-19 Death

Lab-tested only Can miss deaths from causes not associated with
COVID-19 or who were asymptomatic

Concerns with the death count the study
uses for the target population.

Tested + Suspected Can overestimate death count by counting patients
with COVID-like symptoms without test
confirmation

Excess deaths Inaccuracies in reporting and the delay between
death and reporting can affect recent death counts.
reporting guidelines in epidemiology and public health. This group
could be coordinated by both the CDC and the National Institute of
Standards and Technology (NIST), which are in the position of guiding
the initiative effectively. The previously mentioned page on the CDC
website does well to consider our concerns as they relate to lab-reported
data, however, these guidelines could also be extended to all serology
studies.

It will be very beneficial to establish an international committee
analogous to or within The Bureau International des Poids et Mesures.
This is an international body that aggregates all state members of NIST
and other countries around the world to help more broadly establish
what needs to be standardized within certain fields of science and what
fundamental definitions of quantities people should adopt. Without an
international committee and encouragement by higher institutions, it
will be difficult, if not impossible, to establish global guidelines to be
prepared for the next pandemic. In addition to the epidemiology field,
the expectation to standardize methods of reporting COVID-19 related
data will hopefully be implemented in all government health agencies
across the United States, as this is the most direct way to improve the
quality of data presented to the public and policymakers. While much of
this data may not be immediately available in all states, instituting a set
of indicators to be reported, such as those in the Resolve to Save Lives
study [50], will begin this critical process. The benefits of investing
resources into properly gathering this data will certainly outweigh the
costs to our economy, social lives, and public health.

While we have used the current pandemic as our case for stan-
dardizing the methods of data collection and reporting, we hope that
8

the concepts presented in this paper will become well established in
the epidemiological communities. This issue is easily overlooked and
is more prevalent than one might think. Fixing the problem for the
current and future pandemics begins with increasing the awareness of
how one’s research works with the research of others in the same field.
Establishing this perspective will serve to reveal the many connections
between the extensive amount of research published on any singular
topic and improve our ability to utilize each and every finding. Our
goal is to add this perspective on experiment design and data reporting
to the arsenal of the epidemiological scientist. We believe that doing
so will help further develop an already robust field and enhance the
real-time impact of epidemiological research on public health.
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