
Systems biology

PyDREAM: high-dimensional parameter

inference for biological models in python

Erin M. Shockley1, Jasper A. Vrugt2,3 and Carlos F. Lopez1,*

1Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN 37212, USA, 2Department

of Civil and Environmental Engineering, University of California Irvine, 4130 Engineering Gateway, Irvine, CA 92697-

2175, USA and 3Department of Earth System Science, University of California Irvine, 3200 Croul Hall St, Irvine, CA

92697-2175, USA

*To whom correspondence should be addressed

Associate Editor: Alfonso Valencia

Received on February 7, 2017; revised on September 4, 2017; editorial decision on September 28, 2017; accepted on October 3, 2017

Abstract

Summary: Biological models contain many parameters whose values are difficult to measure

directly via experimentation and therefore require calibration against experimental data. Markov

chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model

parameter distributions, but these methods may exhibit slow or premature convergence in high-

dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-

Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter

Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex,

parameter-rich models and takes full advantage of distributed computing resources, facilitating

parameter inference and uncertainty estimation of CPU-intensive biological models.

Availability and implementation: PyDREAM is freely available under the GNU GPLv3 license from

the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM.

Contact: c.lopez@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mechanistic models of biological processes are widely used to study

and explain observed cellular behaviors and generate testable

hypotheses for experimental validation (Chylek, 2015; Eydgahi,

2013; Janes and Lauffenburger, 2013; Neumann, 2010; Shankaran,

2012; Suderman and Deeds, 2013). As model complexity increases,

the number of unknown parameters may increase manyfold making

their calibration against experimental data increasingly challenging

(Eydgahi, 2013; Klinke, 2009). Although several authors have advo-

cated the use of ensemble methods for parameter estimation pur-

poses (Brown and Sethna, 2003; Klinke, 2009), optimization

methods remain widely used in quantitative biology, largely due to

the computational challenges associated with parameter inference in

commonly available computing environments (Neumann, 2010;

Thomas et al., 2015). In recent years, Bayesian methods have found

widespread application and use for ensemble parameter estimation

in fields including systems biology (Eydgahi, 2013), hydrology

(Schoups and Vrugt, 2010), astrophysics (Bovy, 2012) and many

others (Vrugt, 2016). These methods rely on Bayes’ theorem to de-

termine the posterior density of the model output and use Markov

chain Monte Carlo (MCMC) simulation to approximate the poster-

ior parameter distribution. The earliest MCMC approach is the ran-

dom walk Metropolis (RWM) algorithm which generates a random

walk through the parameter space and successively visits solutions

with stable frequencies stemming from a stationary distribution.

The sampled points are collected in a Markov chain and used to

summarize the posterior parameter distribution and related mo-

ments. The MCMC approach has led to useful biological insights

(Eydgahi, 2013; Klinke, 2009) but is difficult to execute in practice

as the number of samples required to achieve convergence may be

prohibitive, particularly when the chain’s transition density (pro-

posal distribution) poorly approximates the actual target distribu-

tion. In the past decades, many different adaptation strategies of the

VC The Author 2017. Published by Oxford University Press. 695

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(4), 2018, 695–697

doi: 10.1093/bioinformatics/btx626

Advance Access Publication Date: 4 October 2017

Applications Note

http://github.com/LoLab-VU/PyDREAM
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx626#supplementary-data
Deleted Text: <xref ref-type=
Deleted Text: ; Brown, 2003
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: &hx2019;s
https://academic.oup.com/


proposal distribution have been developed to enhance the conver-

gence rate of the sampled chain(s) (Andrieu and Thoms, 2008;

Vrugt, 2016).

Here we present PyDREAM, a Python toolbox of two MCMC

methods of the DiffeRential Evolution Adaptive Metropolis

(DREAM) family of sampling algorithms (Laloy and Vrugt, 2012;

Vrugt, 2009, 2016; Vrugt and ter Braak, 2008). In particular, our

package includes the DREAM(ZS) (Vrugt, 2016; Vrugt and ter

Braak, 2008) and the MT-DREAM(ZS) (Laloy and Vrugt, 2012)

MCMC algorithms, and considerably simplifies parameter inference

for complex biological systems. Both methods use a common multi-

chain architecture and create (multivariate) candidate points in each

chain on the fly via differential evolution, (Price, 2005; Storn and

Price, 1997) using a multiple of the difference between one or more

pairs of past states of the joint chains as a jump vector (ter Braak,

2006). Periodically, this parallel direction jump is replaced by a

snooker jump to diversify the candidate points (Vrugt and ter Braak,

2008). Both these steps equate to a discrete and adaptive proposal

distribution with scale and orientation of the jump vector that con-

forms rapidly to the target distribution en route of the sampled

chains to their stationary distribution (ter Braak, 2006). By accept-

ing each multivariate jump (candidate point) with the Metropolis

ratio, a Markov chain is obtained whose stationary distribution is

equivalent to the target distribution, maintains detailed balance, and

shows increased performance in multimodal search problems. The

MT-DREAM(ZS) algorithm is an extension of the DREAM(ZS) algo-

rithm designed to accelerate the chains’ convergence rate for CPU-

demanding parameter-rich models. This scheme generates multiple

different candidate points in each chain using a parallel direction

and snooker jump implementation of the so-called MTM(II) variant

of Liu (2000). It has been successfully applied to models with hun-

dreds of parameters in fields such as hydrology (Laloy and Vrugt,

2012). We refer interested readers to Vrugt (2016) for a discussion

of adaptive single and multichain MCMC methods and for a de-

tailed review and MATLAB implementation of the DREAM family

of algorithms.

The DREAM(ZS) and MT-DREAM(ZS) algorithms are amenable

to a multi-threaded computing implementation in which the chain’s

candidate points are evaluated simultaneously in parallel using dis-

tributed architectures. This significantly reduces the required CPU

budget and makes high-dimensional parameter inference more tract-

able. Below, we detail our PyDREAM toolbox and illustrate its use

with a simple biological example. We refer readers to the

Supplemental Material for a more exhaustive introduction to

Bayesian inference and MCMC simulation, and detailed description

of our Python package, including several example applications.

PyDREAM is distributed under the GNU GPLv3 open-source li-

cense and is made freely available through GitHub and the Python

package Index (PyPI) for community development and general

access.

2 Implementation

PyDREAM has been implemented in the Python programming lan-

guage and takes full advantage of Python’s multiprocessing capabil-

ities to facilitate distributed multi-core evaluation of the candidate

points. Through the wider Python ecosystem, PyDREAM can access

many other packages and functionalities such as programmatic rule-

based model management (PySB) (Lopez et al., 2013), SciPy (numer-

ical simulation and analysis; http://www.scipy.org) and matplotlib

(graphics) (see Supplementary Material for examples). The

PyDREAM toolbox has been tested exhaustively to make sure that

the output of the Python implementation matches the results of the

MATLAB packages of DREAM(ZS) and MT-DREAM(ZS) (see

Supplementary Figures 7 and 8). PyDREAM can be installed by typ-

ing pip install pydream from the command line.

3 Results

3.1 Example problem
We now illustrate the application of PyDREAM to parameter esti-

mation of the COX-2 Reaction Model (CORM) (Mitchener, 2015).

A more detailed explanation of this case study with additional fig-

ures is provided in the Supplementary Material. CORM includes the

catalytic and allosteric interactions of the enzyme cyclooxygenase-2

(COX-2) with two of its substrates, arachidonic acid (AA) and 2-

arachidonoyl glycerol (2-AG). The two substrates are converted into

prostaglandin (PG) and prostaglandin-glycerol (PGG), respectively.

The model involves 13 species and 29 reactions. We assume the fol-

lowing to be known a priori: (i) the plausible biological interactions

in the system, (ii) experimentally measured rate constants for some

of these interactions, (iii) the amount of enzyme and substrate(s) pre-

sent in any given experiment, (iv) experimental measurements of the

products PG and PGG at a variety of initial substrate concentrations

and (v) biologically plausible ranges for the unmeasured rate param-

eters. We then wish to determine the values of the unknown rate

parameters that satisfy our stipulated prior knowledge. This equates

to inference of the posterior distribution of the rate parameters, and

involves three general steps with PyDREAM: (i) specification of the

prior parameter distribution, (ii) selection of an appropriate likeli-

hood function and (iii) MCMC simulation. An overview of each

step as applied to the CORM example is provided below with

greater detail available in the Supplementary Material. In addition

to the CORM example, the PyDREAM package includes three add-

itional case studies involving two multivariate statistical distribu-

tions and a simple biochemical model.

3.2 Parameter priors
In a Bayesian context, the prior distribution encodes all our ‘subject-

ive’ knowledge about the parameters, before collection of the experi-

mental data. This distribution, often simply called the prior,

expresses one’s beliefs about the parameters before the data (also

referred to as evidence) is taken into account. Because CORM is a

model of biochemical interactions, the prior parameter distribution

were selected based on expert knowledge about biologically plaus-

ible kinetic rate values. CORM contains two types of experimental

parameters: disassociation constants for the interactions of COX-2

with its substrates and catalytic constants for turnover of different

enzyme-substrate species. In the absence of detailed knowledge of

these disassociation and catalytic constants, we adopted marginal

normal priors that span millimolar to nanomolar affinity for disas-

sociation constants and from 0.01 s�1 to 100 s�1 for rate constants.

PyDREAM uses the SciPy (Jones, 2001) package to define a host of

different univariate and multivariate prior distributions (e.g. normal,

uniform). Other prior distributions can also be defined by the user

(Supplemental Material, Section 7.1).

3.3 Likelihood function
In a Bayesian context, the likelihood function summarizes in prob-

abilistic terms the distance between the experimental data and the

simulated results (of a given model parameter vector). In

PyDREAM, we use a separate Python function to compute the log-

likelihood of each multidimensional parameter vector. This function

696 E.M.Shockley et al.

Deleted Text: <xref ref-type=
Deleted Text: ; <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: Storn, 1997; 
Deleted Text: &hx2019;
Deleted Text: (
Deleted Text: -
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: PySB (
http://www.scipy.org
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx626#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx626#supplementary-data
Deleted Text: P
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx626#supplementary-data
Deleted Text: thirteen 
Deleted Text: twenty-nine
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: 4
Deleted Text: ,
Deleted Text: 5
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx626#supplementary-data
Deleted Text: P
Deleted Text: &hx201D;
Deleted Text: &hx201D;
Deleted Text: &hx2019;
Deleted Text: F


requires the measured experimental data as input, and may include

constraints or other ‘soft’ and hard data to better evaluate the likeli-

hood of each simulated model output. For CORM, the likelihood

function quantifies, in probabilistic terms, the agreement between

the observed and simulated concentrations of the products PG and

PGG, respectively. It is also assumed that the experimental measure-

ments are normally distributed with a standard deviation calculated

from multiple measurements. Furthermore, CORM’s likelihood

function promotes (via a constraint) energy conservation in all

thermodynamic cycles simulated by the model. The code for the

CORM likelihood function is included in the Supplementary

Material, along with other likelihood functions.

3.4 Sampling
After formulation of the prior parameter distribution and the likeli-

hood function, PyDREAM generates samples from the target distribu-

tion, carrying out MCMC parameter space exploration with the

(MT)-DREAM(ZS) algorithm. Sampling with PyDREAM requires call-

ing a single function and passing the defined parameter priors and

likelihood function as argument inputs. The function returns an array

of sampled states for each of the chains and the associated posterior

probability density of each parameter vector. Various convergence cri-

teria, which are needed to determine the necessary burn-in before the

joint chains reach a stationary distribution, can then be calculated.

Convergence of the sampled trajectories can also be assessed visually,

by inspecting the mixing of the individual chains, but this assessment

could be subjective, particularly in high-dimensional parameter spaces

with complex multivariate dependencies among the parameters. The

marginal, bivariate and joint posterior distributions can be plotted

using a Python package of choice such as matplotlib, or the stationary

samples may be exported in the CSV format for further analysis. For

example, Figure 1 presents histograms of the marginal posterior distri-

bution of two CORM parameters. Convergence was achieved within

ten thousand model evaluations, requiring less than an hour to com-

plete on a six-core processor. This is over one order of magnitude

faster than a single chain, non-adaptive, MCMC method.

4 Summary

We present PyDREAM, a Python, open-source implementation of

the DREAM(ZS) and MT-DREAM(ZS) sampling algorithms for effi-

cient inference of complex, high-dimensional, posterior parameter

distributions. The toolbox builds on the MATLAB DREAM pack-

age and is available at the Lopez lab GitHub repository (http://

github.com/LoLab-VU/PyDREAM).

Acknowledgements

We would like to thank: Dr Christopher Fonnesbeck for advice throughout

the implementation of this method; Dr Lawrence Marnett and Michelle

Mitchener for experimental data and insights; Dr Alexander L.R. Lubbock

for advice in the implementation of the code and the content of this manu-

script; Dr Blake A. Wilson for feedback regarding manuscript content.

Funding

This work was supported by the National Science Foundation under Grant

[MCB-1411482]; NIH Grant [5T32GM065086 to E.M.S.]. This research

used resources of the Oak Ridge Leadership Computing Facility, supported

by the Office of Science of the US Department of Energy under Contract DE-

AC05-00OR22725.

References

Andrieu,C., and Thoms,J. (2008) A tutorial on adaptive MCMC. Stat.

Comput., 18, 343–373.

Bovy,J. et al. (2012) The spatial structure of mono-abundance sub-populations

of the Milky Way disc. Astrophys. J., 753, 148.

Brown,K.S. and Sethna,J.P. (2003) Statistical mechanical approaches to mod-

els with many poorly know parameters. Phys. Rev. E, 68, 021904.

Chylek,L.A. et al. (2015) Modeling for (physical) biologists: an introduction

to the rule-based approach. Phys. Biol., 12, 4.

Eydgahi,H. et al. (2013) Properties of cell death models calibrated and com-

pared using Bayesian approaches. Mol. Syst. Biol, 9, 644.

Janes,K.A., and Lauffenburger,D.A. (2013) Models of signalling net-

works—what cell biologists can gain from them and give to them. J. Cell.

Sci., 126, 1913–1921.

Jones,E. et al. (2001) SciPy: Open Source Scientific Tools for Python.

Klinke,D.J. (2009) An empirical Bayesian approach for model-based inference

of cellular signaling networks. BMC Bioinformatics, 10, 371.

Laloy,E. and Vrugt,J.A. (2012) High-dimensional posterior exploration of

hydrologic models using multiple-try DREAMZS and high-performance

computing. Water Resour. Res., 48, W01526.

Liu,J. et al. (2000) The multiple-try method and local optimization in

Metropolis sampling. J. Am. Stat. Assoc., 95, 121–134.

Lopez,C.F. et al. (2013) Programming biological models in Python using

PySB. Mol. Syst. Biol., 9, 646.

Mitchener,M.M. et al. (2015) Competition and allostery govern substrate se-

lectivity of cyclooxygenase-2. Proc. Natl. Acad. Sci. USA, 112,

12366–12371.

Neumann,L. et al. (2010) Dynamics within the CD95 death-inducing signaling

complex decide life and death of cells. Mol. Syst. Biol., 6, 352.

Price,K. et al. (2005) Differential Evolution: A Practical Approach to Global

Optimization. Springer-Verlag, Berlin Heidelburg.

Schoups,G. and Vrugt,J.A. (2010) A formal likelihood function for

parameter and predictive inference of hydrologic models with correlated,

heteroscedastic, and non-Gaussian errors. Water Resour. Res., 46,

W10531.

Shankaran,H. et al. (2012) Integrated experimental and model-based analysis

reveals the spatial aspects of EGFR activation dynamics. Mol. BioSyst., 8,

2868–2882.

Storn,R. and Price,K. (1997) Differential evolution—a simple and efficient

heuristic for global optimization over continuous spaces. J. Global Optim.,

11, 341–359.

Suderman,R. and Deeds,E.J. (2013) Machines vs. ensembles: effective MAPK

signaling through heterogeneous sets of protein complexes. PLoS Comput.

Biol., 9, e1003278.

ter Braak,C.J.F. (2006) A Markov Chain Monte Carlo version of the genetic

algorithm differential evolution: easy Bayesian computing for real param-

eter spaces. Stat. Comput., 16, 239–249.

Thomas,B.R. et al. (2015) BioNetFit: a fitting tool compatible with

BioNetGen, NFsim, and distributed computing environments. BMC

Bioinformatics, 32, 5.

Vrugt,J.A. and ter Braak,C.J.F. (2008) Differential evolution Markov chain

with snooker updater and fewer chains. Stat. Comput, 18, 435–446.

Vrugt,J.A. et al. (2009) Accelerating Markov chain Monte Carlo simulation

by differential evolution with self-adaptive randomized subspace sampling.

Int. J. Nonlinear Sci., 10, 271–288.

Vrugt,J.A. (2016) Markov chain Monte Carlo simulation using the DREAM

software package: theory, concepts, and MATLAB implementation.

Environ. Modell. Softw., 75, 273–316.

Fig. 1. Histogram of the prior (green) and posterior (blue) distributions of two

parameters of the COX-2 Reaction Model

PyDREAM 697

Deleted Text: &hx201D;
Deleted Text: &hx201D;
Deleted Text: &hx2019;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx626#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx626#supplementary-data
Deleted Text: ,
http://github.com/LoLab-VU/PyDREAM
http://github.com/LoLab-VU/PyDREAM

