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Abstract: The mechanism underlying ciprofloxacin action involves interference with tran-

scription and replication of bacterial DNA and, thus, the induction of double-strand breaks in 

DNA. It also involves elevated oxidative stress, which might contribute to bacterial cell death. 

Vorinostat was shown to induce oxidative DNA damage. The current work investigated a pos-

sible interactive effect of vorinostat on ciprofloxacin-induced cytotoxicity against a number of 

reference bacteria. Standard bacterial strains were Escherichia coli ATCC 35218, Staphylococcus 

aureus ATCC29213, Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis ATCC 

12228, Acinetobacter baumannii ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella 

pneumoniae ATCC 13883, methicillin-resistant Staphylococcus aureus (MRSA) (ATCC 43300), 

and Streptococcus pneumoniae (ATCC 25923). The antibacterial activity of ciprofloxacin, with 

or without pretreatment of bacterial cells by vorinostat, was examined using the disc diffusion 

procedure and determination of the minimum inhibitory concentration (MIC) and zones of 

inhibition of bacterial growth. All tested bacterial strains showed sensitivity to ciprofloxacin. 

When pretreated with vorinostat, significantly larger zones of inhibition and smaller MIC values 

were observed in all bacterial strains compared to those treated with ciprofloxacin alone. In 

correlation, generation of reactive oxygen species (ROS) induced by the antibacterial action of 

ciprofloxacin was enhanced by treatment of bacterial cells with vorinostat. Results showed the 

possible agonistic properties of vorinostat when used together with ciprofloxacin. This could be 

related to the ability of these agents to enhance oxidative stress in bacterial cells.

Keywords: flouroquinolones, MIC, histone deacetylase inhibitor, oxidative stress, antimicrobial 

susceptibility

Introduction
Ciprofloxacin is a member of the fluoroquinolone antibiotic group and possesses both 

gram-positive and gram-negative activities. It is commonly used for the treatment 

of infections, including chronic bacterial prostatitis, urinary tract infections, acute 

sinusitis, and acute uncomplicated cystitis.1 The mechanism of action for the antibac-

terial properties of ciprofloxacin is not fully understood. However, the antibacterial 

action commences by interfering with replication and transcription of DNA through 

action on bacterial DNA gyrase/topoisomerase II and DNA topoisomerase IV, thus 

preventing unwinding and duplication of bacterial DNA.2 Eventually, quinolone–

enzyme–DNA complexes are formed very rapidly, which leads to the generation of 

“cellular poisons” and cell death.3,4 Antibiotics including ciprofloxacin were shown 

to possess antibacterial activity through induction of oxidative stress. For instance, 

major reactive oxygen species (ROS) including singlet oxygen (1O
2
) and superoxide 
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anion (O
2
) were shown to be generated by ciprofloxacin.5–7 

Moreover, multiple adverse effects of ciprofloxacin includ-

ing tendinopathies and phototoxicity were associated with 

ROS generation.8,9

Vorinostat (suberoylanilide hydroxamic acid) is a deriva-

tive of hydroxamic acid that inhibits both histone deacetylase 

classes I and II,10 and has been approved in the United States 

for patients with refractory and relapsed cutaneous T-cell 

lymphoma with persistent, progressive, or recurrent disease 

on/or following two systemic therapies.11–13 The mechanism 

of vorinostat’s antiproliferative effect involves inhibition of 

histone deacetylase activity, leading to the accumulation of 

acetylated proteins, such as histones.10,14 Additionally, vori-

nostat was shown to induce DNA damage that is related to 

generation of oxidative lesions.15–17 We have recently shown 

that vorinostat induces oxidative chromosomal damage lead-

ing to a mutagenic effect in blood lymphocytes.18 Recently, 

we showed that the antibacterial activity of ciprofloxacin is 

altered by major antioxidants, such as vitamins E and C,19 

tempol, pentoxifylline, and melatonin.20 Given that ciproflox-

acin acts by inducing bacterial oxidative damage,21,22 and with 

the known oxidative cell-damaging activity of vorinostat,18 it 

is likely that vorinostat pretreatment enhances ciprofloxacin 

antibacterial activity. Therefore, in this study, the possibility 

of an interaction between vorinostat and ciprofloxacin was 

investigated.

Materials and methods
Microbial growth, culture conditions, and 
drugs
Activity of the ciprofloxacin–vorinostat combination were 

investigated across a panel of bacterial reference strains 

that included Streptococcus pneumoniae ATCC 25923, 

methicillin-resistant Staphylococcus aureus (MRSA) ATCC 

43300, Klebsiella pneumoniae ATCC 13883, Proteus mira-

bilis ATCC 12459, Acinetobacter baumannii ATCC 17978, 

Staphylococcus epidermidis ATCC 12228, Pseudomonas 

aeruginosa ATCC 9027, Staphylococcus aureus ATCC29213, 

and Escherichia coli ATCC 35218. Microorganisms were 

stored in 20% glycerol (Sigma-Aldrich, St. Louis, MO, 

USA) and trypticase soy agar at −70°C (BBL Microbiology 

Systems, Cockeysville, MD, USA). The minimum inhibitory 

concentrations (MICs) were evaluated according to the guide-

lines of the Clinical and Laboratory Standards Institute.23 The 

ciprofloxacin was a generous gift from Al-HIKMA Pharma-

ceuticals (Amman, Jordan). Vorinostat was obtained from 

ABO Swiss Co., Ltd., Fujian, People’s Republic of China.

Testing of antimicrobial susceptibility
Bacterial solutions were constituted on the day of the experi-

ment, and aliquots of 5×104 colony-forming units/drop of 

each bacterial strain were spread evenly over the face of a 

sterile plate containing molten BBL Muller-Hinton Gold II 

agar (BBL Microbiology Systems). Antibiotic solutions were 

prepared according to the recommendations of the manufac-

turer. A panel of ciprofloxacin concentrations was used to 

test for susceptibility of various microorganisms. Twofold 

serial dilutions were added to a hole at the center of each of 

the agar plates. The plates were slightly cooled and dried. 

Thereafter, plates were incubated at 37°C and read 24 hours 

later. In a proportion of the experiments, a combination mix-

ture of ciprofloxacin 100 µg/mL and vorinostat 100 µM was 

added to the hole at the center of each of the agar plates.24–26 

The zones of growth inhibition around holes containing the 

antibiotic were measured. Mean values of three independent 

experiments were recorded.

Determination of MiC
Serial broth dilution method was used for determination of 

MICs as per the recommendations of the National Com-

mittee for Clinical Laboratory Standards.23 Briefly stated, 

drugs were serially diluted and added to tubes containing 

Mueller–Hinton broth (BBL Microbiology Systems). Then, 

tubes were slightly cooled and dried. Thereafter, aliquots 

containing approximately 5×104 colony-forming units/drop 

of the tested bacterial strains were placed in each tube. After 

18 hours of incubation at 37°C, tubes were read. The MIC was 

identified as the lowest concentration at which no growth, a 

faint haze, or fewer than three discrete colonies were detected. 

Duplicate readings were carried out. The breakpoints shown 

in the National Committee for CLSI tables were utilized to 

identify susceptibility versus resistance.23

Measurement of rOs generation
Generation of hydrogen peroxide was used as an indicator 

of ROS generation. E. coli cells were cultured using nutri-

ent broth (M002; Hi-Media, Mumbai, India) and were then 

treated with ciprofloxacin (100 µg/mL) for variable periods. 

These E. coli cells were then incubated with the fluorescent 

probe 2′,7′-dichlorofluorescein diacetate (DCF-DA) from 

Sigma-Aldrich for 30 minutes. The intensity of DCF-DA 

fluorescence was determined by using a FACScan flow 

cytometer (Becton Dickinson, Franklin Lakes, NJ, USA), 

with an excitation wavelength of 480 nm and an emission 

wavelength of 530 nm.
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statistical analysis
Statistical testing was carried out via GraphPad Prism ver-

sion 4.0 (La Jolla, CA, USA). For statistical analysis, data 

were evaluated using one-way ANOVA followed by Tukey’s 

post-test. p<0.05 was considered statistically significant.

Results
In the current study, the possible interactive effect for vori-

nostat on ciprofloxacin antibacterial activity was investi-

gated against various species of reference bacteria. Results 

(Table 1) showed that ciprofloxacin possessed antibacterial 

activity against several reference bacteria, namely, K. pneu-

moniae, P. mirabilis, A. baumannii, S. epidermidis, P. aerugi-

nosa, S. aureus, and E. coli. A 15-mm zone of inhibition was 

selected to indicate bacterial susceptibility to tested agents. 

Treating bacteria with both vorinostat and ciprofloxacin 

resulted in significantly larger zones of inhibition than with 

ciprofloxacin alone in all tested bacterial species (Table 1).

Similar results were obtained with the MICs of cipro-

floxacin alone and in combination with vorinostat. Table 2 

shows that pretreating bacteria with vorinostat enhanced 

the antibacterial activity of ciprofloxacin. This is shown by 

significantly smaller MIC values for the combination at all 

doses of vorinostat and ciprofloxacin, as compared to either 

alone (Table 2).

Previous studies from this laboratory showed that induc-

tion of antibacterial activity of ciprofloxacin was mediated 

through ROS generation.19,20,27 To study this possibility, 

ciprofloxacin 100 µg/mL was used to treat E. coli cells for 

various periods. Using the fluorescent probe 2′,7′-dichlo-

rofluorescein diacetate (DCFH-DA), we identified that 

ciprofloxacin induced an increase in ROS generation of 

treated cells, and this reached maximal levels at 16 hours 

(Figure 1A). Pretreatment of E. coli cells with vorinostat 

100 µM greatly enhanced ROS generation induced by cipro-

floxacin (Figure 1B). Similarly, pretreatment of E.coli cells 

with vorinostat 100 µM significantly enhanced ciprofloxacin 

cytotoxicity (Tables 1 and 2).

Discussion
The current study indicates there is enhanced antibacterial 

activity of ciprofloxacin on pretreating bacteria with vori-

nostat. The current results were produced using a variety of 

standard bacterial strains. These results could be important 

if ciprofloxacin and vorinostat are used concurrently for 

bacterial infections associated with cancer chemotherapy.

The results indicate the effectiveness of ciprofloxa-

cin on several bacterial strains such as E. coli, S. Aureus, 

P.  aeruginosa, S. epidermidis, A. baumannii, P. mirabilis, 

and K. pneumonia. This is in agreement with the susceptibil-

ity of these bacterial strains to ciprofloxacin as previously 

shown.19,28,29 Additionally, ROS had an essential role in the 

antibacterial effect of ciprofloxacin against bacteria such as 

Table 1 Comparison between the zones of inhibition (mm) of 
ciprofloxacin (100 µg/mL) alone and ciprofloxacin with 100 µM 
vorinostat against standard bacterial strains

Standard 
bacterial strains

Zone of inhibition (mm)*

Ciprofloxacin Vorinostat Ciprofloxacin 
+ vorinostat

gram positive:
S. aureus 22.0±0.0 10.0±0.0 37.0±1.0
S. epidermidis 21.3±1.5 9.7±0.6 35.0±1.0
methicillin-resistant 
S. aureus

10.7±0.6 4.3±0.6 19.3±1.5

S. pneumoniae 13.3±0.6 7.0±1.0 23.0±1.0
Vancomycin-
resistant enterococci

7.7±1.5 2.7±0.6 18.3±1.0

S. pyogenes 21.0±1.0 10.3±0.6 29.3±0.6
gram negative:
E. coli 28.3±0.6 10.7±0.6 43.3±0.6
P. aeruginosa 23.3±0.6 10.0±0.0 38.0±1.0
P. mirabilis 19.7±0.6 7.7±1.5 26.3±1.5
K. pneumoniae 22.3±0.6 5.3±0.6 29.0±1.0
A. baumannii 13.0±1.7 4.3±0.6 19.0±1.0

Notes: *Zones of inhibition values for ciprofloxacin alone were significantly (p<0.05) 
lower than those for a combination of ciprofloxacin with vorinostat for all tested 
bacterial strains. results are presented as mean ± SD of three independent experiments.

Table 2 Comparison between the minimum inhibitory 
concentrations (MICs; µg/mL) of ciprofloxacin alone and 
ciprofloxacin in the presence of 100 µM vorinostat against 
standard bacterial strains

Standard 
bacterial strains

MIC (µg/mL)*

Ciprofloxacin Vorinostat Ciprofloxacin 
+ vorinostat

gram positive:
E. coli 0.03±0.0 33.3±14.4 0.01±0.01
S. aureus 0.05±0.0 83.3±14.4 0.003±0.0
S. epidermidis 0.08±0.0 100.0±25.0 0.005±0.0
methicillin-resistant 
S. aureus

0.4±0.1 300.0±25.0 0.07±0.05

S. pneumonia 0.3±0.1 275.0±25.0 0.04±0.03
Vancomycin-
resistant enterococci

0.7±0.3 325.0±25.0 0.2±0.07

S. pyogenes 0.2±0.1 116.7±28.9 0.04±0.02
gram negative:
P. aeruginosa 0.5±0.0 291.7±14.4 0.01±0.04
P. mirabilis 0.2±0.07 116.7±28.9 0.009±0.009
K. pneumonia 0.1±0.04 125.0±25.0 0.02±0.009
A. baumannii 0.5±0.0 308.3±14.4 0.2±0.0

Notes: *In each experiment, ciprofloxacin (100 µM) alone or a combination of 
ciprofloxacin with a final concentration of 100 µM of vorinostat was added to 
agar right before they plated for a 24-hour incubation period. The MiC values for 
ciprofloxacin alone were significantly (p<0.05) higher than those of a combination of 
ciprofloxacin and vorinostat for all tested bacterial strains. Results are presented as 
mean ± SD of three independent experiments.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Pharmacology: Advances and Applications 2017:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

122

Masadeh et al

P. aeruginosa, E. coli, and S. aureus.8,19,21,22 Moreover, com-

mon scavengers of ROS, including vitamins E, C, and B12, 

and other antioxidants such as melatonin, tempol, and pent-

oxifylline were shown to reduce ciprofloxacin antibacterial 

activity.19,20,30 During the course of its action against bacterial 

strains such as E. coli, Enterococcus faecalis, and S. aureus, 

ciprofloxacin systematically induced the production of ROS.21 

Moreover, microorganisms that are sensitive to ciprofloxacin 

had elevated intracellular levels of superoxide as compared 

to ones that are resistant.22 Treatment of E. coli with vitamin 

C or glutathione led to reduced ciprofloxacin antibacterial 

activity, which was due to scavenging of hydrogen peroxide 

and superoxide anions species.31

Results show that the combination of ciprofloxacin and 

vorinostat leads to enhancement of the antibacterial activity 

of ciprofloxacin against a variety of reference bacteria. As 

per our information, this study represents the first report of 

such an effect or drug–drug interaction. Current results could 

have clinical significance where it suggests that simultaneous 

use of ciprofloxacin along with vorinostat might positively 

influence ciprofloxacin antibacterial activity. Thus, combined 

usage of vorinostat and ciprofloxacin might need to be moni-

tored in patients receiving both drugs.

The mechanism for the observed interactive effect of cip-

rofloxacin and vorinostat is not known. The bactericidal effect 

of ciprofloxacin is manifested via inhibition of bacterial DNA 

gyrase and type II topoisomerase.32,33 However, multiple other 

effects for ciprofloxacin were reported including  inhibition 

of the growth of various other cell types,34–38 through inter-

ference with cell cycle, reduction of cell size,38 inhibition 

of de novo pyrimidine synthesis,38 and oxidative stress.31,39 

Current results showed that the cytotoxicity of ciprofloxacin 

against bacterial cells was associated with time-dependent 

ROS generation. This generation of ROS was enhanced via 

treatment of bacterial cells with vorinostat, which increases 

oxidative stress. This leads to bacterial cell death and thus 

enhancement of the antibacterial action of ciprofloxacin. 

These results are in concordance with our previous reports 

using ROS scavengers, namely, vitamins C and E, where ROS 

scavengers were shown to prevent ROS generation induced by 

ciprofloxacin in bacterial cells simultaneously as attenuation 

of the antibacterial activity of ciprofloxacin.19 Therefore, it 

is likely that vorinostat enhances the antibacterial activity 

of ciprofloxacin via boosting ROS generation inside bacte-

rial cells, thus facilitating the death of bacterial cells when 

ciprofloxacin is applied.

Vorinostat was shown to induce DNA damage, which 

is related to the generation of oxidative lesions.15–17 We 

have recently shown that vorinostat induces oxidative 

chromosomal damage, leading to a mutagenic effect in 

blood lymphocytes.18 Given the importance of ROS, energy 

metabolism, and mitochondrial functions for the antibac-

terial action of floroquinolones,8,19,21,22 it is probable that 

vorinostat-induced DNA damage has a role in the observed 

enhancement of ciprofloxacin antibacterial activity by vori-

nostat. Thus, a drug–drug interaction between vorinostat and 

Figure 1 Ciprofloxacin-induced antibacterial action on Escherichia coli cells is preceded by a time-dependent reactive oxygen species (ROS) generation. 
Notes: (A) Mean fluorescence intensity (MFI) was shown as the ratio of geometric mean fluorescence intensity of the test sample and the corresponding control. Data 
shown are representative of three individual experiments. (B) Pretreatment of E. coli cells with vorinostat (100 µM) for 16 hours enhanced ciprofloxacin-induced ROS 
generation; 2′,7′-dichlorofluorescein diacetate (DCF-DA; 10 µM) was added for the last 30 minutes of incubation. The intensity of DCF-DA fluorescence was determined 
using flow cytometry, with an excitation wavelength of 480 nm and an emission wavelength of 530 nm. Data shown are representative of three individual experiments. 
*Significant difference from the control, and ciprofloxacin-only treated groups (one-way ANOVA followed by Tukey’s post hoc test, p<0.05 in each case).
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ciprofloxacin is a possibility. More studies are required to 

identify the exact mechanism whereby vorinostat interacts 

with fluoroquinolone action.

Conclusion
The antibacterial activity of ciprofloxacin is enhanced when 

it is combined with vorinostat. The importance of such 

an observation is related to the wide usage of quinolone 

antibiotics and their great therapeutic value. Thus, studying 

the clinical consequences of simultaneous use of vorinostat 

and ciprofloxacin in patients being treated against bacterial 

infections is recommended.
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