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Abstract
Background  Managing advanced cancer can be psychologically distressing and burdensome for family caregivers 
and their care recipients. Innovations in the collection and modelling of passive data from personally-owned 
smartphones (e.g., GPS), called digital phenotyping, may afford the possibility of remotely monitoring and detecting 
distress and burden. We explored the potential of using passively-collected GPS data from smartphones to assess and 
predict caregiver and patient distress and burden.

Methods  This exploratory longitudinal cohort study enrolled smartphone-owning family caregiver and patient 
participants with advanced cancer (August 2021-July 2023) recruited via an oncology clinic or self-referral through 
Facebook. Participants downloaded a digital phenotyping research app, called Beiwe, that passively collected GPS 
data for 24 weeks. Participants completed self-report measures (PROs) of anxiety and depressive symptoms (Hospital 
Anxiety and Depression Scale [HADS]), mental health (PROMIS Mental Health), and caregiver burden (Montgomery-
Borgatta Caregiver Burden scale) at baseline and every 6 weeks for 24 weeks. After pre-processing raw GPS data 
into daily GPS features (e.g., time spent at home, distance traveled/day), computing biweekly moving averages and 
standard deviations, and conducting a principal components analysis (PCA) of the resulting variables, within-person 
regression models were used to assess associations between changes in PRO measures and changes in PCA scores, 
with adjusted-R2 as the measure of effect size (small = 0.02, medium = 0.13, large = 0.26).

Results  Evaluable data were collected from 48 participants (family caregivers = 32; patients = 16). Caregiver 
smartphone data explained small-to-medium variance in caregiver anxiety (0.06), depression (0.15), and mental health 
(0.07). Patient smartphone data predicted small to medium variance in caregiver depressive symptoms (0.12) and 
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Background
Managing advanced cancer can be psychologically dis-
tressing and burdensome for family caregivers and their 
care recipients. Among the 3.3 million U.S. family care-
givers of individuals with cancer [1], up to 50% may 
experience distress, including anxiety and depressive 
symptoms, burden, and reduced quality of life [2, 3, 4]. 
Their care recipients with cancer have been found to have 
similar high rates of distress [5, 6]. Assessing and inter-
vening upon this distress can be challenging given the 
fundamental difficulty of acquiring and the participant 
burden of completing self-report data using question-
naires.[7,8] To address this challenge, a burgeoning field 
is emerging that uses sensor data collected via person-
ally-owned smartphones to predict health outcomes and 
other adverse events. Modeling this type of passively col-
lected smartphone sensor data, such as accelerometer, 
global positioning system (GPS), and gyroscope data, is 
called digital phenotyping.[9–11].

The overall vision of current research in digital pheno-
typing is a clinical model of care that can unobtrusively 
monitor and detect signs of anxiety, depression, and 
other mental health outcomes.[12] The underlying prem-
ise of digital phenotyping and this potential care model 
is that a person’s mental and health state affects the way 
they interact with their smartphone. Those interactions 
can leave digital traces, or digital biomarkers, that can 
reflect biopsychosocial states and behaviors, including 
emotions, moods, relationships, and mental and physi-
cal health.[13,14] For example, depressive symptoms may 
manifest as a decrease in locations visited and reduced 
call and text activity.[15,16] Digital phenotyping is being 
explored and tested in diverse domains of health, includ-
ing basic psychological science (e.g., attention, speed of 
processing), [13] addiction, [15] mental disorders (e.g., 
schizophrenia), [17] obesity, [18] social isolation, [19] and 
pharmaceutical development.[20].

Work in digital phenotyping has also begun with 
patients in oncology.[21–25] For example, Jenciūtė and 
colleagues are conducting an ongoing study to observe 
smartphone-based system for tracking mobility, socia-
bility, and psychological well-being in patients to predict 

cancer trajectories.[21] Panda et al. used smartphone 
accelerometer data to assess postoperative recovery, find-
ing that lower physical activity correlated with worse 
recovery trajectories.[23] However, to our knowledge 
there and other studies have yet to collect and explore 
data from both patients and their family caregivers.

Hence, in this study, we explored longitudinal cor-
relations over 24 weeks between variations in passively 
collected smartphone GPS data and mental health and 
burden outcomes among a modest sample of family care-
givers and patients with advanced cancer. The goals were 
to assess whether changes in biweekly smartphone GPS 
summary features (e.g., number of locations visited per 
day, average distance traveled per day) were associated 
with changes in anxiety and depressive symptoms, men-
tal health, and caregiver burden, within individuals.

Methods
This was an exploratory longitudinal cohort study that 
enrolled smartphone-owning family caregiver and patient 
participants from August 2021 to July 2023 recruited via 
outpatient oncology clinics at the University of Alabama 
at Birmingham or through self-referral through Face-
book advertisements. Participants downloaded a digital 
phenotyping research app, called Beiwe, to their per-
sonal smartphones that passively collected GPS data for 
24 weeks. Participants also completed measures at base-
line and every 6 weeks for 24 weeks by mail or online 
that assessed anxiety and depressive symptoms, mental 
health, and caregiver burden (Fig.  1). Eligible caregivers 
were 18 years of age or older, owners of a personal smart-
phone (either Android or iOS), and self-identified as “an 
unpaid relative or friend who knows the patient well and 
who provides regular support due to their cancer.” Eligible 
patients were 18 years of age or older and diagnosed with 
metastatic stage III or IV cancer, including hematologic 
malignancies. Patients were not required to participate 
in the study (as some patients were unable or unwilling 
to participate). Participants were paid $25 at baseline for 
successfully downloading the Beiwe app and $25 every 6 
weeks that smartphone data was transmitted to the study 
team. In addition, participants were paid $25 for each 

burden (0.05). Combined caregiver and patient smartphone data explained small variance in caregiver depressive 
(0.02) and anxiety symptoms (0.10) and large variance for PROMIS-mental health (0.36) and burden (0.50). For patient 
outcomes, caregiver smartphone data accounted for small variance in anxiety symptoms (0.07); patient smartphone 
data predicted large variance in anxiety symptoms (0.24). Combined data explained medium variance in patient 
depressive symptoms (0.18).

Conclusions  The exploratory study demonstrates the potential predictive utility of using passive smartphone data to 
detect changes in caregiver and patient psychological distress and burden. A larger study is needed to validate these 
findings and further explore the clinical application of digital phenotyping in cancer.

Keywords  Family caregivers, Advanced cancer, Remote monitoring, Digital phenotyping
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completed set of surveys. The study was approved by the 
UAB Institutional Review Board (IRB-300006575). Of 58 
participants (n = 40 caregivers and n = 18 patients) who 
both consented to participate in the study and initially 
downloaded the app, only 46 (n = 32 caregivers and n = 14 
patients) provided data that was usable for analysis (i.e., if 
there was at least one instance of health outcome report 
that could be date-matched with sensor data). Feasibility 
and acceptability of recruitment and data collection pro-
cedures were discussed in a prior report.[26].

Ethics approval and consent to participate
This study was conducted in accordance with the ethi-
cal principles outlined in the Declaration of Helsinki. 
The study was approved by the Institutional Review 
Board at the University of Alabama at Birmingham (IRB-
300006575). All caregiver and patient participants pro-
vided informed consent prior to their inclusion in the 
study.

The Beiwe digital phenotyping smartphone app
For this study, the Beiwe Research Platform at Harvard 
University was contracted to allow usage and study-
specific customization of their Beiwe app, which collects 
research quality digital phenotyping data from person-
ally owned smartphones.[9,11] The Beiwe platform is 
comprised of a study portal, smartphone applications for 
Android and iOS operating systems, data storage using 
Amazon Web Services cloud, and data preprocessing 
software. The platform ensures the security and privacy 
of collected data through encryption and compliance 
with research ethics and data protection regulations. 
Data is de-identified and anonymized.

Measures
Participant-reported outcome (PRO) measures
Anxiety and depressive symptoms were measured using 
the Hospital Anxiety and Depression Scale (HADS).
[27,28] The 14-item scale is equally divided into two 
subscales: one measuring depressive symptoms and the 
other measuring anxiety symptoms over the past week. 
Each subscale has a score range of 0 to 21, with higher 
scores indicating higher levels of anxiety or depression. 
To measure mental health, we used the global mental 
health subscale (5 items) of the Patient-Reported Out-
comes Measurement Information System (PROMIS) 
Global Health 10.[29,30] Each item is rated on a five-
point Likert scale, with responses reflecting the indi-
viduals experiences and perceptions over the past week. 
The overall scale score is transformed to a T-score with 
Mean = 50 and SD = 10, using the reference population 
of U.S. adults. Caregiver burden was measured using the 
validated and widely used 22-item Montgomery-Bor-
gatta Caregiver Burden Scale (MBCB).[31] The MBCB 
includes three domains of objective, subjective, and stress 
burden with a total score range of 22 to 110, with higher 
scores representing higher burden.

Smartphone data
For this study, the Beiwe app was set up to collect GPS 
data (i.e., latitude, longitude, and altitude coordinates), 
when available (i.e., when the phone is “on” and not in 
a “inactive” or “idle” mode). To minimize the impact on 
battery life, the app was set to collect GPS data for inter-
vals of 90 s with 810 s “off” in between, or 6 min per hour.

Fig. 1  Schema of exploratory longitudinal cohort study
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Analysis
GPS data processing
Raw GPS data were pre-processed with R scripts pro-
vided by the Beiwe platform. For days when data were 
collected, this step generated daily summaries of 14 
mobility-derived features, [32] including: number of 
significant locations visited, proportion of day spent 
paused, significant location entropy, circadian routine 
metric, weekday/weekend routine metric, time spent 
at home in hours, total distance traveled in kilometers 
(km), maximum diameter in km, maximum distance 
from home in km, average flight length in km, standard 
deviation of flight length in km, average flight duration 
in minutes, standard deviation of flight duration in min-
utes, and radius of gyration in km. Some extreme values 
were observed in the daily summaries which were then 
confirmed in the raw data to be caused by either long-
distance travel or GPS malfunction. Therefore, for all 
derived variables, extreme outliers, if any, were identified 
using Tukey’s extreme fence criterion (i.e., values > 75th 
percentile + 3*IQR), then set to missing and substituted 
by imputed estimates via Random Forest, [33] including 
a categorical vector of individual IDs as a covariate to 
address nesting of days within person. Across the derived 
daily features, the percentage of substituted extreme out-
liers ranged from 0 to 10%, with a median of 3.9%. Due 
to the exploratory, rather than confirmatory nature of 
the analyses, a single imputation was used. Next, mov-
ing biweekly (i.e., retrospectively over 14 days) averages 
and standard deviations of each derived daily feature 
were computed for each day that had at least 8 preceding 
days of data (i.e., half of the target days plus 1, assumed 
to provide sufficient information on 2 weeks if not all 
days were collected), resulting in 28 biweekly summary 
features: 14 biweekly means and 14 biweekly standard 

deviations. Consistent with previous research, [34] we 
chose biweekly summaries because shorter summaries 
(e.g., weekly) could have excessive variability, while lon-
ger summaries (e.g., monthly) may mask short-term 
changes. To reduce the dimensionality of the processed 
GPS features prior to association analysis, a principal 
components analysis (PCA) was conducted on the 28 
biweekly summary features. Principal components with 
eigenvalues > 1 were retained and principal component 
scores were extracted for downstream analyses. To assess 
stability of the resulting PCA solution, a 95% confidence 
interval (CI) on the number of components was esti-
mated using resampling methods (i.e., cluster Jackknife).
[35].

Association analyses
When available, a caregiver’s PRO measurements were 
date-matched with their smartphone sensor biweekly 
principal component scores as well as principal com-
ponent scores of their patient. Likewise, a patient’s 
PRO measurements were date-matched with their GPS 
biweekly principal component scores and the principal 
component scores of their caregiver. To conduct within-
person analyses, change from subsequent PROs was 
estimated (Fig.  2) and used as the outcome in regres-
sion models with predictors being their correspond-
ing time-matched changes in GPS biweekly PC scores. 
This approach to within-person analysis was used (as 
opposed to subtracting a within-person mean) because 
this approach would be more applicable to potential use 
in a clinical setting. Models were fitted separately for 
caregivers and patients, using the individual’s and dyad’s 
principal component scores as predictors. Intra-class 
correlations of the repeated within-person change scores 
were estimated at 0, indicating that linear regression 

Fig. 2  Correlations are calculated between PRO change and sensor data change at preceding and proceeding 6-week timepoints
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analysis was an appropriate methodological approach. 
For the regression models, the overall measure of effect 
size was adjusted-R2. A 95% confidence interval for 
adjusted-R2 was computed using resampling (i.e., cluster 
Jackknife) to provide a measure of uncertainty of the esti-
mate. For individual predictors (i.e., principal component 
scores), the measure of effect size was Omega2 (inter-
preted as small = 0.01, medium = 0.06, large = 0.14).

Results
Participant characteristics
Demographic characteristics of caregivers (N = 32) and 
patients (N = 14) whose data were usable for this report 
are shown in Table 1. Family caregivers were a mean of 
49.4 years old, mostly female (84.4%), White (78.1%) 
or Black/African American (21.9%), employed full or 
part time (72.5%), and the spouse (43.8%) or adult child 
(31.2%) of the patient. Most caregivers provided care 7 
days a week (50%) for 1–4 h/day (40.6%). Patients were a 
mean of 59.1 years old, mostly White (92.9%), and with a 
wide range of advanced cancer types.

Bivariate correlation analyses
Details of the smartphone GPS sensor data processing, 
including descriptive statistics of biweekly features and 
PCA results are shown in Supplemental Table (1) Corre-
lation estimates between change in PROs and change in 
principal component scores are shown in Supplemental 
Table (2) These correlations were estimated with sam-
ple sizes ranging from 29 to 57 instances, although they 
also should be interpreted as exploratory. Of note, for all 
PROs there was at least one principal component score 
for which there was a bivariate correlation of moderate 
magnitude.

Regression analyses
Results from the analyses are shown in Table 2. For care-
giver smartphone data predicting caregiver outcomes 
(n = 27), adjusted-R2s were of small to medium magnitude 
for the HADS anxiety (0.06) and depressive symptom 
(0.15) and PROMIS-mental health subscales (0.07), how-
ever the estimate was at zero for the MBCB. For patient 
smartphone data predicting caregiver outcomes (n = 12), 
adjusted-R2s were of small to medium magnitude for 
the HADS depressive symptom (0.12) and MBCB (0.05) 
scales but of small or negligible magnitude for the HADS 
anxiety (0) and PROMIS-mental health subscales (0.02). 
Regarding both caregiver and patient smartphone data 
predicting caregiver outcomes (n = 11), adjusted-R2 for 
HADS depression (0.02) and anxiety (0.10) was small and 
for PROMIS-mental health (0.36) and MBCB was large 
(0.50).

In terms of caregiver smartphone data predicting 
patient outcomes (n = 14), adjusted-R2 for HADS anxiety 

(0.07) was small and was estimated at zero for HADS 
depressive symptom and PROMIS-mental health sub-
scales. For patient smartphone data predicting patient 
outcomes (n = 13), adjusted-R2 for HADS anxiety (0.24) 
was of large magnitude, but was estimated at zero 
for HADS depressive symptom and PROMIS-mental 
health subscales. Regarding both caregiver and patient 
smartphone data predicting patient outcomes (n = 11), 
adjusted R2 for HADS depression (0.18) was of medium 
magnitude.

Discussion
The aim of this exploratory study was to investigate the 
potential of using smartphone sensor data and digi-
tal phenotyping to detect changes in the psychological 
health of family caregivers and their care recipients with 
advanced cancer over 24 weeks. Despite the prelimi-
nary nature of our findings, largely due to a small sample 
size, our results demonstrated small to large correla-
tions between changes in caregivers’ and patients’ GPS 
smartphone data and changes in anxiety and depres-
sion symptoms, mental health, and caregiver burden. 
We believe this shows the potential clinical utility of 
using passive smartphone data to signal changes in care-
giver and patient psychological health, warranting larger 
studies with this innovative dyadic approach to remote 
monitoring.

To our knowledge, this is one of the first studies to 
explore whether passively collected smartphone GPS 
data from one member of a caregiver-patient dyad can be 
used to indicate changes in the other’s self-reported psy-
chological health. Caregivers and patients with advanced 
cancer are often tightly linked individuals in their day-to-
day routines, and numerous actor-partner studies have 
documented these linked interrelationships between 
caregivers’ and patients’ mental and physical health, their 
coping strategies, self-efficacy, and many other relation-
ship factors.[36–38] This study expands this dyadic inter-
dependence work[39] to include caregivers’ and patients’ 
engagement and interaction patterns with technology, 
namely their smartphones, as potential digital behavioral 
markers of their own and others’ psychological wellbe-
ing. While our findings are exploratory, we observed that 
caregiver’s smartphone GPS data were associated with 
changes in their care recipient’s anxiety symptoms and 
that a patient’s GPS data indicated changes in their care-
giver’s depressive symptoms and burden. Future studies 
with larger sample sizes and with longer follow-up peri-
ods are needed to verify and more conclusively substanti-
ate these relationships.

To our knowledge, this is also one of the first studies 
that has used smartphone-based digital phenotyping to 
combine passive data from a dyad to predict each indi-
vidual member’s outcomes. Most smartphone-based 
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Table 1  Caregiver and patient demographics
Characteristic Family Caregivers (N = 32) Patients (N = 14)

Number (%) or Mean (standard deviation)
Age 49.4 (12.8) 59.1 (8.7)
Gender
Female 27 (84.4) 8 (57.1)
Male 5 (15.6) 6 (42.9)
Race
White 25 (78.1) 13 (92.9)
Black/African American 7 (21.9) 1 (7.1)
Hispanic/Latino/a/x
No 30 (93.5) 14 (100.0)
Yes 2 (6.5) 0 (0.0)
Employment
Full/part-time 20 (72.5) 3 (21.4)
Retired 2 (6.2) 4 (28.6)
Homemaker 5 (15.6) 3 (21.4)
Disability / Other 5 (15.6) 4 (28.6)
Education
8th grade or less 1 (3.1) 0 (0.0)
High school grad or GED 8 (25.0) 3 (21.4)
Some college or technical school 10 (31.2) 4 (28.6)
College graduate 8 (25.0) 4 (28.6)
Graduate degree 5 (15.6) 3 (21.4)
aCaregiver-patient relationship (The patient is the caregiver’s…)
Spouse 14 (43.8) n/a
Parent 10 (31.2) n/a
Other 7 (21.9) n/a
Missing 1 (3.1) n/a
aDays/week providing care
1 day a week or less 5 (15.6) n/a
2–3 days/week 6 (18.8) n/a
4–5 days/week 3 (9.4) n/a
6 days/week 1 (3.1) n/a
7 days/week 16 (50.0) n/a
aHours/day providing care
< 1 h/day 5 (15.6) n/a
1–4 h/day 13 (40.6) n/a
5–8 h/day 6 (18.7) n/a
> 8 h/day 7 (21.9) n/a
Missing 1 (3.1) n/a
aCancer type
Colon/Rectal 5 (15.6) 3 (21.4)
Head/Neck 5 (15.6) 3 (21.4)
Lung 4 (12.5) 1 (7.1)
Prostate 4 (12.5) 2 (14.3)
Breast 3 (9.4) 1 (7.1)
Bladder/Kidney 3 (9.4) 2 (14.3)
Other 8 (25.0) 2 (14.3)
bHADS-Anxiety subscale (baseline) 9.1 (5.1) 5.8 (4.6)
bHADS-Depression subscale (baseline) 6.0 (5.2) 4.5 (3.7)
PROMIS-Mental Health subscale (baseline) 46.6 (11.0) 49.7 (10.0)
cMBCB-Caregiver Burden (baseline) 45.4 (8.0) n/a
aCaregiver only
bHospital Anxiety and Depression Scale
cMontgomery Borgatta Caregiver Burden scale (total score)
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digital phenotyping to date has only looked at using 
single individual’s smartphone data to predict their own 
(within person) outcomes.[40,41] The primary advantage 
in principle of using a dyad’s combined data to predict 
outcomes is the increased number of variables and hence, 
predictive power. In our findings for example, one can 
note the higher adjusted-R2 values for caregivers’ out-
comes when combined data are modeled. Large adjusted-
R2 values were particularly salient for mental health and 
caregiver burden. Caution is warranted, however, given 
the small sample sizes and the risk of overfitting the data.
[42] As a case in point, we found it counterintuitive that 
there would be such a large adjusted-R2 value for care-
giver PROMIS-mental health (0.36) compared to their 
HADS depressive (0.02) and anxiety symptom (0.10) 
scores, given the close relationship of these psychological 
domains. Hence, we believe these exploratory findings 
warrant further investigation in larger studies to more 
robustly assess the added value of dyadic-based remote 
monitoring.

Our study is part of a larger ongoing effort to assess the 
potential of smartphone-based digital phenotyping clini-
cal models to provide continuous, real-time assessment 
of the health of both caregivers and patients, thereby 
offering a non-invasive tool for early detection and sup-
port (e.g., predicting acute psychological distress). As 
noted by others, [43,44] this approach to remote moni-
toring may be superior in its ecological validity to other 
forms of activity monitoring (e.g., actigraphy monitors, 
fitness trackers like Fitbit or Garmin trackers) because it 
leverages technologies (like smartphones) that individu-
als already own and are accustomed to using on a daily 
basis. Based on our experiences and others’ work to date, 
we believe it is unlikely that even the most optimized 
smartphone sensing tools alone will be sufficient to 
monitor changes in the psychological health of patients 
and families. The upper bounds of our findings’ confi-
dence intervals suggest that even in the most optimistic 
case, estimates of the presence or severity of distress are 
only suggestive but not large enough to be confirmatory. 
Hence, digital phenotyping tools would most likely need 
to be used in conjunction with other more diagnostic 
assessment strategies to avoid “false” alarms, as we have 
learned in our prior qualitative work.[26].

This study has a number of important limitations. As 
we have highlighted throughout this discussion, the sam-
ple size for this study was small and our analyses were 
exploratory. Hence, robust interpretations and conclu-
sions cannot be made on these results concerning the 
definitive ability of smartphone data to predict caregiver 
and patient psychological outcomes. Future larger stud-
ies are needed to maximize interpretability and more 
robustly assess potential clinical utility. Second, our 
approach to GPS data feature extraction and principal 

components analysis of those features precluded assess-
ment of the relationship between individual features (e.g., 
time spent at home, total distance traveled per day) and 
caregiver and patient outcomes. While many studies take 
this approach, [43] our overall goal in our team’s line of 
research is to develop approaches that maximize predic-
tion (i.e., total variance explained) in changes in clini-
cal relevant psychological outcomes so as to potentially 
develop new just-in-time clinical models of remote moni-
toring. Third, this report does not directly address other 
challenges of smartphone-based digital phenotyping, 
such as privacy and confidentiality concerns, challenges 
of integrating this into real-world cancer care delivery, 
and clinical capacity to address caregiver distress and 
burden.[45,46] We have reported and discussed a num-
ber of these topics in a separate qualitative analysis.[47].

Conclusion
We investigated the potential of smartphone-based digi-
tal phenotyping to remotely monitor psychological health 
changes in caregivers and patients with advanced cancer. 
While our findings are exploratory, we observed prom-
ising associations between passively collected GPS data 
and changes in anxiety, depression, and caregiver burden. 
This study extends dyadic interdependence research by 
highlighting how smartphone data from one member of a 
caregiver-patient dyad may be able to signal psychologi-
cal changes in the other. Furthermore, our findings dem-
onstrate the potential clinical utility of this dyadic-based 
remote monitoring approach and underscore the need 
for larger studies to validate and refine predictive models. 
This work is a step toward leveraging everyday, person-
ally-owned technologies for real-time, ecologically valid 
monitoring that supports family caregivers and patients 
with cancer.
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