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An in-memory computing architecture based on
two-dimensional semiconductors for multiply-
accumulate operations
Yin Wang1,3, Hongwei Tang1,3, Yufeng Xie1,3, Xinyu Chen1, Shunli Ma1, Zhengzong Sun 1, Qingqing Sun1,

Lin Chen1, Hao Zhu 1, Jing Wan1, Zihan Xu2, David Wei Zhang1, Peng Zhou 1✉ & Wenzhong Bao 1✉

In-memory computing may enable multiply-accumulate (MAC) operations, which are the

primary calculations used in artificial intelligence (AI). Performing MAC operations with high

capacity in a small area with high energy efficiency remains a challenge. In this work, we

propose a circuit architecture that integrates monolayer MoS2 transistors in a two-

transistor–one-capacitor (2T-1C) configuration. In this structure, the memory portion is

similar to a 1T-1C Dynamic Random Access Memory (DRAM) so that theoretically the

cycling endurance and erase/write speed inherit the merits of DRAM. Besides, the ultralow

leakage current of the MoS2 transistor enables the storage of multi-level voltages on the

capacitor with a long retention time. The electrical characteristics of a single MoS2 transistor

also allow analog computation by multiplying the drain voltage by the stored voltage on the

capacitor. The sum-of-product is then obtained by converging the currents from multiple 2T-

1C units. Based on our experiment results, a neural network is ex-situ trained for image

recognition with 90.3% accuracy. In the future, such 2T-1C units can potentially be integrated

into three-dimensional (3D) circuits with dense logic and memory layers for low power in-

situ training of neural networks in hardware.
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Artificial intelligence (AI) algorithms require significant
computing power for running successive matrix calcula-
tions. Multiply accumulate (MAC) is the most critical

operation in AI computation at the chip level. In-memory com-
puting is a technology that uses memory devices assembled in an
array to execute MAC operations1. As such, it has triggered
extensive research interests because data transfer in a conven-
tional von Neumann architecture has a bottleneck between
memory and logic circuits2,3, and a memory device capable of in-
memory computing can be used to carry out high-throughput
MAC operations directly4,5. For an ideal in-memory computing,
various features are preferred for its memory portion, including a
nonvolatile characteristic, multi-bit storage capability, long
cycling endurance, simple erase/write operation, etc.1,4,6.

Various types of memory devices have been investigated for
performing MAC operations. Among them, nonvolatile memory
devices, include resistive random-access memory (RRAM)7–9,
phase change RAM (PCRAM)10–13, spin-transfer torque mag-
netoresistive RAM (STT-MRAM)14,15, and conventional
FLASH16–18. Most nonvolatile memories can realize multi-bit
storage, but they usually exhibit a stochastic nature, resulting in a
learning accuracy loss in the neural network applications1,5. Their
limited cycling endurance (FLASH ~105, RRAM and PCRAM
106–109) and relatively complex memory operation19 are also
unsuitable for frequent weight update processes required for in-
memory computing20. For example, FLASH usually requires high
voltages for the write operation. RRAM/PCRAM requires con-
tinuous voltage pulses to tune the conductive filaments to control
the electrical conductance, which complicates the multiplication
operation5. STT-MRAM requires a relatively large current to
program information in the storage element, which carries greater
dynamic power dissipation and overall write energy cost4,15. On
the other hand, volatile memory devices can also execute in-
memory computing, such as static random accesses memory
(SRAM)21–23 and dynamic random-access memory
(DRAM)24–26. Theoretically, they have much higher program-
ming speed and superior endurance(>1016)1,4, but in volatile
memories, the stored information dissipates quickly, and a peri-
odic refresh operation is required24. Furthermore, SRAM and
DRAM belong to binary memory, and their main applications are
limited in the binary-weighted network1,25,26. An overall com-
parison among different types of in-memory computing tech-
nologies is also concluded in Supplementary Table S1.

Other than exploring different memory technologies for in-
memory computation, suitable channel material is also critical.
Two-dimensional layered materials (2DLMs), well-known for
their intrinsic nature of atomic thickness, allow aggressive
channel length scaling owing to its superior electrostatic control
that can substantially suppress short-channel effects27. In addi-
tion, unlike rigid silicon CMOS, 2DLMs can enable flexible
electronic circuitry with multiple sensing functionalities, adding
value towards a multifunctional hardware platform28. Among
various 2DLMs, semiconductive transition metal dichalcogenides
(TMDs) are promising due to their rich band structures and
tunable bandgaps29, and molybdenum disulfide (MoS2) is one
representative that has been extensively investigated in the past
few years30,31. Compared to silicon and other TMDs with a
narrower bandgap, monolayer MoS2 has a relatively wide band-
gap (~1.8 eV) to enable a large current on/off ratio in its field-
effect transistors (FETs)32. Now wafer-scale continuous MoS2
films can already be synthesized by chemical vapor deposition
(CVD) methods33 and transferred to arbitrary substrates34. The
device processing techniques have also been intensively investi-
gated to address early criticism of 2D-FETs, such as the realiza-
tion of Ohmic contact and integration of high-k dielectrics35–37.
Therefore, recent exploration of 2DLMs has been expanded from

fundamental investigations to the demonstration of circuit-level
device applications, such as memories, logic gates, and
sensors35,38,39. A 1T-1R structured in-memory computation unit
has also been demonstrated lately, in which a MoS2 FET is used as
a selector, and a HfOx-based RRAM is used to perform analog
calculation40.

In this work, we explored and designed a MAC circuit archi-
tecture in a 2T–1C configuration, which includes two MoS2 FETs
and one metal-insulator-metal capacitor. In such a structure, the
1T–1C portion acts as a DRAM cell. Owing to the ultralow
leakage current of the MoS2 FETs, a voltage with 8-level (3 bits)
quantization can be stored on a capacitor with longer than 10 s
retention time, enough for additional complex operations. The
stored voltage is connected to the gate of the second MoS2
transistor, in which the input drain bias Vd and gate bias Vg can
determine the drain current Id to realize an analog multiplication
operation. Moreover, the current in multiple 2T–1C rows can be
converged together, giving an addition operation. Based on two
identical 2T–1C cells, we demonstrate a simple MAC operation
circuit, which is the core module for the convolution operation in
an artificial neural network. A more complicated MAC array was
trained against the MNIST handwritten digit database and used
for image recognition. The successful recognition rate was found
to reach 90.3%. Our 2T–1C MoS2 cells highlight the promising
potential of in-memory computing and in situ training of neural
networks based on emerging 2D semiconductors to overcome the
bottleneck of von Neumann computing.

Results and discussion
Figure 1a shows a wafer-scale MoS2 film grown using the CVD
method (see SI). Raman spectra (Fig. 1b) gathered from different
positions in the MoS2 film show acceptable spatial uniformity,
which is vital for performing accurate analog calculations in our
circuit. The transfer characteristics (Fig. 1c) of 24 MoS2 FETs on a
1 × 1 cm2 wafer exhibit large on/off current ratios (~107) and an
acceptable homogeneity level. We fabricated a 2T–1C cell (optical
microscopic image shown in Fig. 1d) to provide charge storage
and analog computation. Figure 1e shows a circuit schematic of
such a 2T–1C cell; the left 1T–1C structure forms a dynamic
memory in which the MoS2 FET is labeled T1, and the MoS2 FET
T2 on the right side is used to accomplish the multiplication
calculation. Figure 1f schematically illustrates its 3D structure,
and the fabrication process is described in the “Methods” section.

The refresh voltage Vre on the refresh line (RL) controls the
ON/OFF state of transistor T1. During a write operation, T1 is
turned on and the signal Vw applied by the weight line (WL) then
charges the capacitor, which indicates the weight has been written
into this 2T–1C cell. During the hold operation, T1 is turned off
by applying a negative Vre. Due to the ultralow leakage current in
the MoS2 channel in the OFF state (see Fig. S1), the charge stored
in the capacitor can be held for a long time to maintain the
voltage that acts as a gate voltage for T2. Since the input Vx is
applied as a drain voltage to T2, the drain current (Id) in T2 is
controlled with a combination of Vw and Vx. If the applied Vw

and Vx locate in a relatively linear range of the output and
transfer characteristics for the MoS2 FET, an analog multi-
plication operation between Id, Vx, and Vw can be realized, which
will be discussed in detail later in this paper.

We now propose an array circuit based on such a MoS2 2T–1C
unit cell to implement a MAC operation in an electrical circuit.
The circuit diagram is displayed in Fig. 1g, which corresponds to

a MAC operation Ym ¼ ∑
n

k¼1
Vxk ´Wkm (Fig. 1h). In each unit, the

weight Wnm is stored in the capacitor and updated using the RL
and WL. The input voltage Vxn is then applied to the entire
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column n. Both Wnm and Vx determine the drain current Id in
each MoS2 FET. Finally, the output currents in all rows are added
to give a total current Im. The collected current then flows into the
current block for further calculation. The relationship between

Im; Wnm; andVx is Im ¼ ∑
n

k¼1
g ðVxk;WkmÞ, where g xð Þ is a

current–voltage transform function that depends on the transfer
and output characteristics of transistor T2. Below we will try to
build a correlation between Ym and Im.

We first characterize the properties of the 1T–1C storage
module. Figure 2a shows a schematic diagram of the measure-
ment circuit, in which one end of the capacitor is connected to an
external oscilloscope (see Fig. S4 for more details). The internal
resistance of the oscilloscope Rin is used to estimate the current
flow (IQ) during read/write operations by measuring the voltage
of Rin. To measure IQ, voltage signals Vw and Vre are applied to T1

(Fig. 2b) with pulse widths of 12 and 10ms, respectively. Vw rises
1 ms earlier than Vre and falls 1 ms later than Vre to ensure the
charge is entirely written onto the capacitor and prevent leakage
current through T1. Vre and Vw were both set to 3 V during the

write operation. The high Vre value turns on T1, allowing Vw to
charge the capacitor to the same potential. A positive current
pulse (IQ+) during the write operation indicates a charge flows
into the capacitor. After the write operation completes, Vre is
switched to −3 V to turn off T1. Due to the ultra-low leakage
current (Fig. S1), the charged voltage on the capacitor can be
stably maintained during the write operation. After waiting
for 10 s, a read operation is triggered, where Vre= 3 V and
Vw−read= 2 V. The polarity of the measured IQ pulse is now
negative, indicating the capacitor potential is higher than 2 V and
charge flows out of the capacitor. In contrast, if the capacitor
potential is less than 2 V, the capacitor will be recharged again,
giving a positive current pulse. To further characterize the
dependence of Vw−write for reading IQ, the above measurements
were repeated. Figure 2c shows the IQ pulses for reading under
various values of writing Vw-wirte. To estimate the charge in the
capacitor, after waiting for 10 s, Vw−read= 2 V is applied to
compare with the retained capacitor voltage to read the remaining
charge. The amplitude of the IQ pulse becomes larger as Vw

increases. It is also noted that all IQ pulses are under 2 ms

Fig. 1 2T–1C unit cell and circuits fabricated on a wafer-scale MoS2 film. a Wafer-scale MoS2 continuous films are batch-synthesized by a CVD method.
b Raman spectra from different positions on the MoS2 film. c Transfer characteristics for 24 MoS2 transistors spread on a 2 in. wafer. d Microscope image
of the fabricated 2T–1C cell. Scale bar: 100 μm. e Circuit schematic of a 2T–1C cell containing storage and calculation modules. f 3D schematic illustration of
a 2T–1C unit cell, including two MoS2 FETs and one capacitor. g Circuit diagram of the proposed 2T–1C cell array. h A typical diagram of a matrix
convolution operation.
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(Fig. 2c), which approximately equals the write time. The integral
of the current overtime during a read cycle equals the charge
Qread remaining after the waiting interval (10 s). In Fig. 2d, the
calculated Qread vs. Vw curve is linear, indicating that the charge
saved on the capacitor can still be differentiated after 10 s.

To test whether the voltage stored in the capacitor can effec-
tively drive T2, we examined the time evolution of the drain
current Id in T2 after completing a storage operation. Figure 3a
shows a complete diagram of the measurement circuit used to
measure a 2T–1C cell’s electrical behavior, and a storage cycle is
shown in Fig. 3b. The magnified area in Fig. 3b shows the storage
operation in detail. Vw= 2.4 V with a pulse width of 140 ms, and
Vre= 3 V with a pulse width of 100 ms, i.e., Vw rises 20 ms earlier
and falls 20 ms later than Vre. One should note that Id has a steep
pulse during a storage operation. Since it synchronizes with Vre,
this is mainly due to the parasitic capacitance between the gate
electrode and the capacitor. After the storage operation completes
and the capacitor is charged to 2.4 V, T1 is then turned off by
applying a negative Vre (−3 V), and Vw is set to 0 V. Thus, the
voltage potential on the capacitor entirely controls Id of T2,
without the influence of Vw. During the 10 s holding time, the
output current Id decreases from 302 to 292 nA, approximately a
3% loss. It indicates that most of the charge stored in the capa-
citor can be maintained over a 10 s period, which keeps its voltage
potential nearly constant and provides persistent control of the
channel current in T2. Such charge storage persists even the
holding time is extended to 100 s with a loss of Id less than 10%
(Fig. S5). Reproducibility tests show that Id in T2 remains nearly
constant after more than 100 cycles (Fig. S6). Such desirable
storage characteristics indicate that, upon tuning Vw and Vx,
different values of Id in T2 could be obtained and maintained with

an acceptable loss in 10 s, which provides various differentiable
states.

To demonstrate this, we first explored the electrical char-
acteristics of T2. Figure 3c shows the output characteristics with
Vg ranging from 2.4 to 3.0 V in 0.1 V increments, where one
electrical probe is added separately to apply Vg directly to T2 as
Vw (Fig. S7a). A relatively small Vx is applied to obtain linear
Id–Vd output characteristics. Then Vw is fixed at 2.4 V, and Vx

varies from 0.05 to 0.35 V in 0.05 V increments. Figure 3d shows
Id–t curves (similar to that in Fig. 3b) under different applied Vx

values. For each Id–t curve, Vx is fixed to monitor the decrease of
Id during one cycle (~10 s) to tell if the Id at each level can be
distinguished without overlap with neighboring states. The right
graph shows the variation in Id during one cycle. We then
investigated the corresponding transfer characteristic, as plotted
in Fig. 3e. Vx is fixed from 0.05 to 0.35 V in 0.05 V increments
while Vg varies from 2.4 to 3 V, in which range the Id–Vg curves
are all nearly linear. Figure 3f again shows the measured Id–t
curves in which Vx is fixed at 0.1 V, and Vw pulse varies from 2.4
to 3 V in 0.1 V increments. Like the results in Fig. 3d, the Id at
each level can be distinguished in one cycle. In Fig. 3d, f, it is
noteworthy that there remain charges on the capacitor at the
beginning time due to the previous cycle’s operation, so that each
Id–t curve has an initial value equals to that after 10 s
retention time.

As illustrated in Fig. 4a, we used two nearly identical 2T–1C
cells to demonstrate a simple MAC operation. The sources of the
two T2 cells are connected to sum up Id1 and Id2. Figure 4b shows
that when a test step-waveform is applied to Vx, and Vw is set as
various values, Id from T2 can be accurately controlled. Vx ranges
from 0.05 to 0.35 V in 0.05 V increments during every test cycle,
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Fig. 2 Characterization of the 1T–1C storage module. a Schematic diagram of the electrical circuit used to measure the 1T–1C storage module (shadow
area). The equivalent circuit in the dashed box equals an external oscilloscope connected to the capacitor. b Input voltage waveform (Vw, Vre) and readout
current (IQ) vs. measurement time. c IQ spikes at Vre= 3 V while Vw−write ranges from 2.4 to 3 V in 0.1 V steps. d Calculated retained charge (Qread) in the
capacitor as a function of Vw−write (compared with Vw−read= 2.0 V when IQ= 0 A).
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Fig. 3 Characterization of the 2T–1C unit cell. a Schematic diagram of the circuit used to gather measurements from a 2T–1C unit cell. b A complete
storage and calculation operation for a 2T–1C unit. The input voltage (Vw, Vre, Vx) and drain current (Id) are shown vs. measurement time for a 10 s cycle.
The magnified inset shows details of the refresh operation. c The output characteristics for T2 with Vg ranging from 2.4 to 3 V in 0.1 V increments. d Drain
current Id in T2 with Vx ranging from 0.05 to 0.35 V, where Vw= 2.4 V. The bars in the right panel indicate the variation of Id for each curve after T1 is
turned off. e Transfer characteristics of T2 with Vx ranging from 0.05 to 0.35 V in 0.05 V increments. f Drain current Id in T2 with Vw ranging from 2.4 to
3 V, where Vx= 0.1 V.

Fig. 4 Demonstration of multiply accumulate operation using two 2T–1C cells. a Schematic showing two identical 2T-1C cells. The sources of the two
cells are connected to sum the drain current. b Top graph: a test multi-step voltage waveform applied to Vx, ranging from 0.005 to 0.35 V with 0.05 V
increments. The pulse width is 0.1 s. Bottom graph: The corresponding Id waveform, while Vw is fixed at a series of values. Both Vx and Vw exhibit eight
distinguishable voltage levels (3 bits). c The output current Id as a function of Wc, and the fixed input Vx ranges from 0 to 0.35 V with 0.05 V increments.
d The output current Id is plotted as a function of Vx under differentWc values. e The measured Id values as a function of their calculated Y(Wc × Vx) for two
different 2T–1C cells on one MoS2 wafer. f The total output current Isum as a function of Ysum from the two different 2T–1C cells.
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and the weighted voltage Vw ranges from 2.4 to 3.0 V in 0.1 V
increments. The waveform Vx exhibits eight voltage levels (3 bits)
with a pulse width of 0.1 s, while Vw also exhibits eight levels,
spanning 7 voltage levels plus a zero level. This measurement
imitates when Vw is stored in the 1T–1C unit, a series of
operations can be performed to Vx to accomplish multiple cal-
culations in a storage period. The overall speed depends on the
response speed of T2 and the writing speed of T1. One should
note that the output Id changes almost simultaneously with the
input Vx, indicating a fast operation speed. The calculation speed
depends on the response speed of the transistor T2, which is
mainly determined by the cut-off frequency f T ¼ gm

2πCG
, where gm

is the transconductance, CG is the equivalent gate capacitance41.
Thus the upper limit of f T approximately equals 127.47 kHz for
our current transistor scale (details see Fig. S8), which can act as a
reference value for the calculation speed. It is much lower than
previously reported MoS2 RF devices42,43, mainly because the CG
is significantly influenced by the device size and overlap region of
the gate electrode. Thus the speed improvement has a large room
through fabrication optimization and further down-scaling.

We have demonstrated storage and calculation capabilities
with our 2T–1C cell. We now demonstrate how to implement a
MAC operation in detail. Based on the above electrical char-
acterization of a MoS2 FET, we can obtain linear Id–Vx curves at
small Vx, which approach zero when Vx= 0. To realize the
multiplication function between Id and the production of Vw and
Vx, a linear correlation between Id and Vw is also anticipated, i.e.,
a linear transfer characteristic. However, similar to previous lit-
erature results44–46, Id has a quadratic dependence on Vw, despite
under a relatively low drain voltage regime. To achieve the
required linearity, we can propose a recalculated weight

Wc ¼ ðVw � 1:9Þ2 þ 0:3 ð1Þ
Now, Id and the product of Wc and Vx can fulfill the

requirements of multiplication operation, i.e., Id ¼ �kWcVx. The
conversion between Wc and Vw can be realized by an additional
peripheral circuit design (Fig. S9a). Figure 4c shows the output
current Id as a function of Wc, where data was extracted from
Fig. 4b, and the fixed input Vx ranges from 0 to 0.35 V in 0.05 V
increments. For each Vx value, the output current Id and the
recalculated Wc show satisfying linearity. We then further
investigated the relationship between Vx and the output current Id
for different Wc values. As shown in Fig. 4d, Id is plotted as a
function of eight Vx values with different Wc values. For each Wc

value, the output current Id and Vx are also relatively linear.
Similar electrical characteristics for the second 2T-1C cell are
shown in Fig. S9b, c. In the future, more linear transfer char-
acteristics can be investigated by surface treatment and contact
engineering of MoS2 FETs, or using gapless graphene as an
alternative channel material for T2. So the additional peripheral
circuit for linearity conversion can be simplified or removed to
realize MAC operation more efficiently.

When we multiply each Wc (3-bit) with each Vx (3-bit), we
obtain the mathematical product Y with 64 different values

Y ¼ WcðiÞ ´ VxðjÞ � ði; j ¼ 1; 2; ¼ ; 8Þ ð2Þ
Figure 4e shows the measured Id values of the two 2T–1C cells

as a function of their corresponding Y values separately. Id is
relatively linear with Y for both cells. We then accumulate Y1 (cell
1) and Y2 (cell 2), defined as Ysum= Y1(i)+ Y2(j) (i, j= 1, 2, …,
64), while the corresponding sum of the output current is defined
as Isum= Id1(i)+ Id2(j) (i, j= 1, 2,…, 64). Figure 4f shows a linear
relationship between Isum and Ysum.

Thus, we have shown that MAC operations can be successfully
performed based on our MoS2 2T–1C units. Furthermore, during

the retention period, it is enough to implement multiple MAC
operations upon inputting a sequence of Vx on T2. Thus our
2T–1C MoS2 device can be potentially used for in-situ training
that can significantly improve the recognition accuracy of neural
networks47. Therefore, our results suggest a potential path of 2D
semiconductors for future post-Moore applications.

Finally, we built a fully connected neural network (FNN)
model with a 3-layer network for handwritten digit recognition.
As shown in Fig. 5a, the 400 input neurons correspond to the
20 × 20 pixels in one image while 10 output neurons corre-
sponded to the recognition of digits 0–9, respectively. Here, each
pixel has a grayscale value from 0 and 255 (8 bits). We used 4000
images to train the simulation model and another 1000 images for
testing.

To process the 8-bit grayscale data, we established an 8-bit
MAC composed of 32 2T/1 C cells (Fig. S11). The trained Win

(weight of the simulation model) corresponded to quantized
voltage with 256 levels (8-bit) stored in the cells. The FNN
structure is shown in Fig. S12. Each 8-bit MAC works as a neuron
to process the input grayscale data for each pixel. The complete
FNN diagram consists of 400 × 20 neurons to form forward
propagation from the input layer to a hidden layer. We used
back-propagation to train our FNN simulation (see Supplemen-
tary Notes for more details). A flowchart for the training and test
is shown in Fig. S13. After the FNN completed 100 training
epochs against 4000 handwritten images, we performed a
recognition test using 1000 handwritten images. The average
recognition accuracy of our neural network simulation model
reached 90.3%. Figure 5b shows the recognition confusion matrix
for the 1000 images test. Figure 5c shows the relationship between
recognition rate and training epoch, where the recognition rate
rises quickly during the initial 10 training epochs primarily due to
a large number of training images.

Considering that the size of an 8-bit grayscale input image
occupies too many 2T–1C cells, we attempted to reduce the bit
depth of the input grayscale images. We find that when an 8-bit
input grayscale image is reduced to 1-bit, there is no evident
decrease in recognition rate (Fig. 5d). We also simulated the
influence of noise in our neural network by randomly choosing
pixels and resetting them to random values. As shown in Fig. 5e,
the in-set displays images with 0% and 30% noise levels. In the
simulation, each well-trained weight is a 32-bit floating type by
ex situ training, and it needs to be quantized to meet the finite
weight levels. When the trained weights are re-quantized from 8
bits to 1 bit, as shown in Fig. 5f, we find that a 16-level (4-bit)
weight is sufficient for our neural network to reach high recog-
nition accuracy. The in-set in Fig. 5f shows the interval dis-
tribution of the 20 × 200 quantized 16-level weights (the
quantized 256-level weights are shown in Fig. S14). Figure 5g
shows a color map of the trained weights after being quantized to
16-levels. The size of the colormap is 20 ´ 200. These results
suggest that two 2T–1C cells are enough for a neuron to store a 4-
bit quantized weight.

In conclusion, we experimentally demonstrated an in-memory
computing architecture that integrates MoS2 FETs in a 2T–1C
configuration for MAC operations. Owing to the large current
on-off ratio of MoS2 FETs, the charge stored on the capacitor
leaks slowly to present a long retention time so that a multi-level
voltage can be retained. Based on the electrical characteristics of
MoS2 FETs and an additional peripheral circuit, the analog
multiplication operation can be realized with a re-calculated
weight parameter. By connecting two or more 2T–1C unit cells in
parallel, the output current is summed to provide the accumu-
lation portion of a MAC operation. In addition, a neural network
model was built based on the experimental data to provide image
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recognition with an average 90.3% accuracy. Our MoS2 2T–1C
circuit is still a prototype device at the current research stage, and
its performance requires further improvement by optimizing
material quality and fabrication. Nevertheless, our demonstrated
results offer a promising research platform for in-memory com-
putation and in situ training of neural networks.

Methods
Fabrication of MoS2 2T–1C cell arrays. Device fabrication begins by using
photolithography (Microwriter ML3) to pattern the source/drain region and
bottom capacitor plate on a monolayer MoS2 film grown on a sapphire substrate.
The channel width/length of T1 and T2 are defined as 30/20 and 90/20 μm using
ICP etching, respectively. Next, a seed layer (3 nm SiO2) was evaporated on the
MoS2 film using electron beam evaporation, followed by annealing (200 °C,
10 min) in a high vacuum furnace to remove any resist residue and ensure low
contact resistance. A 20-nm-thick HfO2 layer was then deposited using atomic
layer deposition at 180 °C. The oxide stack containing 3 nm SiO2 and 20 nm HfO2

serves as a high-k gate dielectric of MoS2 FETs and the capacitor’s insulating layer
as well. CF4/Ar plasma etching was used to form an interconnect opening in the
dielectric layer to connect the source in T1 to the gate in T2. Finally, 30 nm Au
was deposited as gate electrodes of the MoS2 FETs and the top plate of the
capacitor.

Characterization and electrical measurements. All measurements were gathered
in an ambient environment at room temperature. For capacitor characterization,
capacitance–voltage curves were measured with a Keysight E4990A Impedance
Analyzer. The MoS2 FETs were characterized using a semiconductor parameter
analyzer (Agilent B1500A). For dynamic memory and 2T–1C cell measurements,
the Agilent B1500A was used for supplying voltage signal and detecting the channel
current, and a waveform generator (Aligent 33260A) was also used to supply
waveforms to the test circuit, while an oscilloscope (DS 1054Z) was used for
capturing output signal voltage.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding authors upon reasonable request.

Code availability
The codes used for simulation and data plotting are available from the corresponding
authors upon reasonable request.
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