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Abstract: Lung cancer is the second-most deadly malignancy worldwide, of which smoking is
considered a major risk factor and causes 75–80% of lung cancer-related deaths. Costunolide (CTD)
extracted from plant species Saussurea, Aucklandia, and Inula exhibits potent anticancer properties,
specifically in lung cancer and leukemia. Several nanoemulsions were prepared and optimized using
a three-factor Box–Behnken experimental design. The optimized green nanoemulsion (GNE) showed
a vesicle size of 199.56 nm. The IC50 values revealed that A549 cells were significantly more sensitive
to the optimized CTD formula than the plain formula and raw CTD. A cell cycle analysis revealed
that the optimized CTD formula treatment resulted in significant cell cycle arrest at the S phase.
The results also indicated that treatment with the CTD formula significantly increased caspase-3,
Bax, Bcl-2, and p53 mRNA expression compared to the plain formula and CTD raw. In terms of
the inflammatory markers, the optimized formula significantly reduced the activity of TNF-α and
NF-κB in comparison with the plain formula and raw drug only. Overall, the findings from the study
proved that a CTD GNE formulation could be a promising therapeutic approach for the treatment of
lung cancer.

Keywords: ecofriendly; nanoparticles; lung cancer; venoms; cytotoxicity

1. Introduction

According to the World Health Organization’s (WHO) estimated top 20 causes of
death in 2016, cancer was listed as the first [1]. Among many cancers, lung cancer is the
main cause of cancer-related death among men, especially in developed countries, and it is
becoming more common among women [2]. The incidence of lung cancer is very high not
only in United State but also in Canada, China, and many other industrial countries [3]. In
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2008, 1.6 million new cases of lung cancer were reported in 91 countries around world, and
1.4 million deaths were documented as a result of lung cancer in 17 countries [4]. Although
many environmental and lifestyle factors lead to developing lung cancer, cigarette smoking
habits are strongly attached to the incidence of lung cancer and its mortality rate [5,6]. In
fact, smoking is the highest contributor factor and represents 85–95% of the lung cancer
epidemiology [6]. According to the WHO, lung cancer is classified as non-small cell lung
cancer (NSCLC), which represents 85%, and small cell lung cancer (SCLC), which represents
15%. The main common subtypes of NSCLC are lung adenocarcinoma and lung squamous
cell carcinoma [7].

Chemotherapy and radiation therapy are the standard treatments for patients with
lung cancer [8]. Although chemotherapy can suppress the symptoms of lung cancer and
plays an important role in enhancing the patient’s quality of life, it does not prolong the
patient’s survival [9]. Furthermore, chemotherapy is associated with many side effects,
such as nausea, vomiting, fatigue, cardiac complication, anemia, and neutropenia [10]. On
the other hand, chemotherapy-acquired resistance has been demonstrated in non-small
cell lung cancer cell lines [11]. As a result, improved treatment alternatives for lung cancer
are critical. For thousands of years, medicinal plants have been utilized to cure cancer in
ancient Egypt, India, China, and the Arab world. According to the statistics, over 3000 plant
species have been utilized to cure cancer across the world. Anticancer agents derived from
plants are a valuable source of anticancer drugs, because they have more structurally varied
“drug-like” and “biologically friendly” molecular properties compared to pure synthe-
sized molecules at random [12]. In Chinese herbal medicines, especially, phytochemicals
have shown promise as a therapeutic option for cancer [13]. Phytochemical costunolide
(CTD) is a member of a large family of 5000 compounds of sesquiterpene lactones that has
multiple pharmacological activity [14]. CTD has been isolated from a variety of medici-
nal plant species, including Costus speciosus, Saussurea lappa, and Laurus nobilis [15]. It has
been reported to possess antiviral, antifungal, anti-inflammatory, antiulcer, antioxidant,
antidiabetic, and antitumor activity [14,15]. In lung cancer, CTD has been shown to in-
hibit the proliferation of cell-induced apoptosis and prevent angiogenesis. The molecular
mechanism through which CTD suppresses tumor metastasis is still unclear [8].

In the research of cancer therapy, scientists have focused more on nanoemulsion due
to its essential properties that achieve effective therapeutic goals through providing a large
surface area, as well as increasing the drug’s half-life, with selectivity in targeting [16].
Nanoemulsion as a carrier for a lipophilic compound (CTD) is a colloidal system consisting
of two immiscible liquids stabilized by emulsifiers [17]. In the literature, primarily, two
techniques for the formulation of nanoemulsions have been documented. The first is a
high-energy emulsification approach, while the second is a low-energy method [18]. In the
low-energy method for emulsion preparation, large amounts of stabilizer (surfactant) are
required, and this is unfortunately harmful and induces inherent toxicity [19]. According
to the concepts of green engineering and green chemistry, the pharmaceutical approach
has recently focused on minimizing and/or replacing the use of synthetic surfactants and
organic solvents in preparations of drug delivery systems [20]. In our work, biosurfactant
α-cyclodextrin (α-CD) was utilized to prepare the green nanoemulsion (GNE), which
has ecofriendly properties with less adverse effects on humans. α-CD as a macrocyclic
oligosaccharide consists of six glucose units and is biodegradable, biocompatible, and
nontoxic to humans [20,21]. Since it has a hydrophobic core cavity and a hydrophilic outer
surface, α-CD is capable of forming inclusion complexes with different molecules and, thus,
will stabilize the nanoemulsion through a self-assembled complex with fatty acids at the oil–
water interface [20]. As a result, the self-assembled natural oil/native cyclodextrin complex
acts as a carrier for the included CTD in an aqueous environment and thus improves the
solubility and rate of dissolution, resulting in enhancement of the bioavailability.
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2. Materials and Methods
2.1. Materials

CTD, α-CD (MW = 972 Da) and pumpkin oil were purchased from Sigma-Aldrich
(GmbH, Steinheim am Albuch, Germany, Baden-Württemberg, Germany). All other chemi-
cals and solvents were of analytical grade.

2.2. Experimental Design for Formulation and Optimization of CTD-Loaded GNE

A response surface experimental design, namely the Box–Behnken, was employed for
the development and optimization of CTD-loaded GNE. Three numerical factors, namely
pumpkin oil concentration (X1, %), CD concentration (X2, %), and homogenization time
(X3, min), were considered as independent variables, whereas the globule size (Y, nm)
was studied as the response. The used ranges were selected based on preliminary studies.
Design Expert® software (Version 12.0, Stat-Ease Inc., Minneapolis, MN, USA) was em-
ployed to generate the design points and statistically analyze the response data. The design
resulted in 15 experimental runs, including three replicate center points. The globule size
was evaluated using linear, 2-factor interactions, and quadric sequential models. The model
with highest prediction power was selected to assess the impact of the studied variables on
the claimed response. Analysis of variance (ANOVA) was performed to test the statistical
significance of the independent variables and the interactions between them at the 95%
level. The composition of the optimized emulsion with a minimized globule size was
predicted using numerical optimization following the desirability approach. The selected
optimized emulsion was subjected to further testing. The variables’ levels and the criterion
set for the optimized formulation are summarized in Table 1. The variables’ levels in each
experimental run with the corresponding globule size are displayed in Table 2.

Table 1. Independent variables’ levels and desirability constraints for the globule sizes used in
Box–Behnken for the optimization of CTD-loaded GNE.

Variables
Levels

(−1) (+1)

A: Pumpkin oil concentration (%) 10 30
B: α-CD concentration (%) 3 9

C: Homogenization time (min) 3 10

Response Desirability Constraint

Globule size (GS, nm) Minimize

2.3. Preparation of CTD-Loaded GNE

A reported method based on high shear homogenization with modifications was
utilized to prepare CTD-loaded GNE [22]. A specified amount of CTD, α-CD, limonene oil,
and water were placed in glass bottles and homogenized for 3 min at 25 ◦C (T25 digital
Ultra-turrax®, IKA, Staufen, Germany) operating at 20,000 rpm. Then, deionized water was
poured into the mixture. The coarse emulsion was homogenized at 20,000 rpm for different
time intervals, as indicated in Table 1. The quantities used in the prepared emulsions were
specified according to the compositions of the experimental design runs.

2.4. Characterization of CTD-Loaded GNE
2.4.1. Globule Size

The dynamic light scattering technique was applied for the determination of the
globule sizes of the prepared emulsions using Zetasizer Nano ZSP (Malvern Panalytical
Ltd., Malvern, UK). Before measurements, the prepared emulsions were appropriately
diluted with double-distilled water. Each measurement was done thrice, and the results
were presented as the mean ± standard deviation.
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Table 2. Box–Behnken experimental runs of CTD-loaded GNE and their corresponding globule sizes.

Run

Independent Variables Response

X1: Pumpkin Oil
Concentration

(%)

X2: α-CD
Concentration

(%)

X3:
Homogenization

Time (min)

Y: Globule Size ± SD
(nm) *

E1 20.0 3.0 10.0 345 ± 12.4

E2 10.0 3.0 6.5 265 ± 9.7

E3 20.0 3.0 3.0 367 ± 12.9

E4 30.0 6.0 3.0 432 ± 11.8

E5 30.0 9.0 6.5 377 ± 10.9

E6 30.0 6.0 10.0 398 ± 13.8

E7 30.0 3.0 6.5 411 ± 12.9

E8 10.0 6.0 3.0 243 ± 8.5

E9 20.0 9.0 10.0 287 ± 9.1

E10 20.0 6.0 6.5 312 ± 11.2

E11 20.0 9.0 3.0 301 ± 9.9

E12 20.0 6.0 6.5 313 ± 10.2

E13 10.0 6.0 10.0 212 ± 7.3

E14 20.0 6.0 6.5 315 ± 9.7

E15 10.0 9.0 6.5 208 ± 6.5
* Results presented as average ± SD (n = 3).

2.4.2. Transmission Electron Microscope (TEM)

The appropriately diluted optimized CTD-loaded GNE was investigated using a
transmission electron microscope (Jeol JEM1230, Tokyo, Japan). A drop of the formula
was negatively stained with 1% phosphotungstic acid on a copper grid. The samples
were then examined and photographed under the microscope after being dried at ambient
temperature for 15 min.

2.5. In Vitro Anticancer Activity of Optimized CTD-Loaded GNE in A549 Cells
2.5.1. Determination of IC50 by MTT Assay

The IC50 values of untreated A549 cells (control) or treated with blank GNE, CTD,
or CTD-GNE for 24 h were obtained using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) viability assay, as previously described [23]. Briefly, A549
cells (1 × 105 cells) were seeded into a 96-well plate and incubated overnight for complete
attachment. Later, the cells were treated with the blank GNE, CTD, or CTD-GNE at 0.39 µM,
1.56 uM, 6.26 uM, 25 uM, and 100 uM. After 24 h, the medium was replaced with MTT
solution (2 mg/mL), and the plates were incubated at 37 ◦C for 4 h. The purple formazan
product was dissolved by the addition of 200 µL of 100% DMSO, and the plates were
then incubated for 5 min at 37 ◦C in a 5% CO2 incubator. The absorbance at 569 nm in
each well was read by using a microplate reader (Spark® multimode, Tecan Group Ltd.,
Seestrasse, Maennedorf, Switzerland). The results were expressed as the percent of cell
viability relative to the control. Dose response curves were plotted and IC50 values. The
IC50 for each of the experimental conditions was calculated using GraphPad prism software
(GraphPad, Inc., La Jolla, CA, USA).

2.5.2. Cell Cycle Analysis

The analysis of cell cycle stages in the A549 cells was performed by flow cytometry
(FACScalibur, BD Bioscience, San Diego, SD, USA), as previously described [24]. Briefly,
cells were seeded in 6-well plates at a density of 3 × 105 cells/well and left untreated
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(control) or treated with blank GNE, CTD, or CTD-GNE at a subtoxic concentrations (IC10)
for 24 h. Afterthought, the cells were washed, fixed with 70% cold ethanol, and stained
with propidium iodide and RNase staining buffer. A total of 10,000 gated events were
acquired using flow cytometry (FACS Calibur, BD Bioscience, San Diego, SD, USA) in order
to assess the cell cycle, and the data were analyzed by MultiCycle AV software (Phoenix
Flow Systems, San Diego, CA, USA).

2.5.3. Annexin V–FITC Apoptosis Assay

The apoptotic effects with blank GNE, CTD, or CTD-GNE A549 cells were assayed
using an Annexin V-FITC Apoptosis Detection Kit (BioVision, Cambridge BioSciences,
Cambridge, UK) according to the manufacturer’s protocols. Briefly, cells were seeded
into 6-well plates at a density of 1 × 106 cells/well and were left untreated (control) or
treated with the plain, CTD-R, or Optimized CTD formula at a subtoxic concentrations
(IC10) for 24 h. Next, the cells were centrifuged, separated, washed with PBS buffer, and,
finally, resuspended in 500 µL of 1× binding buffer. The cells were then stained with
annexin V-FITC and propidium iodide. The stained cells were analyzed by flow cytometry
(FACScalibur, BD Bioscience, San Diego, SD, USA), and a minimum of 20,000 events
were acquired for each treatment. The data analysis was performed using MultiCycle AV
software (Phoenix Flow Systems, San Diego, CA, USA).

2.5.4. Real-Time Polymerase Chain Reaction (RT-qPCR)
RNA Extraction

RNA was extracted from A594 cells using Qiagen’s RNeasy Mini Kit (Qiagen, Manch-
ester, UK) according to the manufacturer’s instructions. The concentration and purity of
RNA was confirmed using a Nanodrop spectrophotometer (ND-2000C, Thermo Fisher
Scientific, Waltham, MA USA). A ratio of A260 nm/A230 nm of no less than 1.8 and
A260 nm/A280 nm ratio of no less than 1.9 were detected in all RNA samples.

cDNA Synthesis and PCR Amplification

RNA was normalized between tubes and reverse-transcribed to complementary DNA
(cDNA) using the iScript™ One-Step RT-PCR Kit with the SYBR® Green Kit (Bio-Rad,
Hercules, CA, USA) according to the manufacturer’s manual. Relative expression pat-
terns of p53, bcl2, casp3, and β-Actin were performed using 10 ng of RNA template in
a 50-mL reaction mixture of the iScript One-Step RT-PCR Kit with SYBR® Green Mix
using a 7500 Fast Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific
Corporation, Waltham, MA, USA).

2.5.5. Statistical Analysis

GraphPad Prism software (GraphPad Software, San Diego, CA, USA) was utilized
for the statistical analysis. The data were presented as the mean ± SD. The means were
compared by using the analysis of variance (ANOVA), which was then followed by Tukey’s
post hoc test. Statistical significance was indicated at p < 0.05.

3. Results
3.1. Experimental Design
3.1.1. Fit Statistics and Diagnostic Analysis

A fit statistics summary for the globule sizes is compiled in Table 3. Amongst the
polynomial models (linear, two-factor interaction, and quadratic) under investigation, the
quadratic model was the best fitting model for the globule sizes of CTD-loaded GNE, as
evidenced by its greatest R2 and least PRESS values. The adjusted R2 was in good harmony
with the predicted R2. Additionally, the adequate precision value of 67.80 exceeding the
preferable value implies an adequate signal-to-noise ratio. Thus, the quadratic model could
be regarded as successfully exemplary to explore the experimental design space. Diagnostic
plots for the globule size, developed for establishing the goodness of fit of the selected
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model, are displayed in Figure 1. The Box–Cox plot for power transforms, Figure 1A,
exhibits a recommended lambda (λ) value of 0.17. The 95% confidence interval (shown by
the red limits) includes the current λ value of 1; therefore, no specific transformation for
the measured globule size is suggested [25,26]. The absence of a need for transformation
is advocated by the calculated maximum-to-minimum size ratio of 1.97, where a ratio
greater than 10 probably necessitates transformation. Random distribution of the measured
globule sizes in the externally studentized residuals vs. predicted response plots, Figure 1B,
within the limits indicates that no constant error exists. Moreover, the residual vs. run plots,
Figure 1C, display random point distribution, indicating that no lurking factor could have
an impact on the measured sizes. The predicted vs. observed size plots, Figure 1D, show a
remarkably linear correlation that highlights the good agreement between the observed
and predicted values, which further confirms the reliability of the selected model [27].

Table 3. Fit summary statistics for the globule sizes of CTD-loaded GNE.

Source SD Sequential
p-Value

Lack of Fit
p-Value R2 Adjusted R2 Predicted R2 PRESS

Linear 6.86 <0.0001 0.0512 0.7659 0.9903 0.9848 1029.08

2FI 6.79 0.4131 0.0480 0.9149 0.9905 0.9759 1633.33
Quadratic 4.18 0.0506 0.1014 0.9788 0.9964 0.9806 1313.50

Abbreviations: SD, standard deviation; PRESS, predicted residual error sum of squares; 2FI, two-factor interaction.

3.1.2. Variables’ Impact on Globule Size (Y)

The globule size is an influential criterion when developing an emulsion, owing
to its impact on biopharmaceutical drugs [20]. In addition, it is reported that globule
sizes of lipid-based delivery systems of less than 400 nm favor preferential distribution
within solid cancerous tissues [28,29]. Therefore, the prepared CTD-loaded GNE exhibited
acceptable globule sizes that ranged from 208 ± 6.5 to 411 ± 12.9 nm. However, the favored
buildup of nanodelivery systems and the associated clinical efficacy could be prevailed
upon by ineffective tumor penetration owing to the tumor pathological characteristics [30].
Cancerous cells penetration could be boosted by reducing the globule size to enlarge
the surface area available for permeation. Accordingly, the globule size of the GNE was
optimized to the minimized value to assure effective tumor penetration. The analysis
of variance (ANOVA), according to the selected quadratic model, showed a F-value of
430.85 (p < 0.0001). As per the coded factor, the quadratic model equation for the globule
size was generated as follows:

Y = 314.00 + 76.25 X1 − 29.38 X2 − 10.13 X3 + 5.75 X1X2 + 0.25 X1X3 + 2.00 X2X3 − 1.75 X1
2 + 3.00 X2

2 + 8.00 X3
2

All linear terms (X1, X2, and X3) expressing the independent variables showed a signif-
icant impact on the globule size (p < 0.0001 for X1 and X2, p = 0.01 for X3). The interaction
terms between pumpkin oil and CD concentrations (X1 and X2), in addition to the quadratic
term X3

2 corresponding to the homogenization time, were also significant (p = 0.0402 and
0.0143, respectively). The effects and the interactions between the investigated variables
on the globule size are illustrated as 2D contour plots and 3D surface plots in Figure 2. It
can be seen that the globule size increases with the increasing pumpkin oil concentration,
while it decreases with the increasing CD concentration. This could be assisted by the
signs of the coefficients in the model equation. The positive sign of the oil concentration
reflects the direct relationship with the globule size, while the negative sign of both the
CD concentration and homogenization time reflects the inverse relationship between these
factors and the predicted response. On the other hand, the magnitude of the coefficient
reflects the magnitude of the variable impact on the globule size. As per the quadratic
model equation, the order of influence of the variables on the size is the oil concentration >
CD concentration > homogenization time, as depicted by the order of magnitude of the
coefficients of the linear terms X1, X2, and X3, respectively.
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3.1.3. Optimization

The numerical optimization method was selected according to the constraints pre-
viously set on the globule size; the optimized levels of the investigated variables were
anticipated as follows: 10.1% for the pumpkin oil concentration, 8.8% for the α-CD con-
centration, and 6.2 min for the homogenization time. The globule size of the optimized
formulation was evaluated. The percentage error (1.12%) between the predicted (197.34 nm)
and obtained particle sizes (199.56 nm) was relatively low, highlighting the appropriateness
of the optimization process.
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globule size of CTD-loaded GNE.

3.2. Transmission Electron Microscope (TEM)

TEM images of the optimized CTD-GNE formula showed spherical-formed structures
(Figure 3). The sizes of the spherical structures showed relatively similar average sizes as
the GNE sizes obtained by the dynamic light scattering technique.
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Figure 3. TEM image of the optimized CTD-GNE formula.

3.3. Cytotoxicity Assay

A549 cell viability by CTD or CTD-GNE was assessed via the MTT assay. Inhibition
occurred in a dose-dependent manner. CTD was demonstrated to inhibit the cells’ viability,
with an IC50 value of 13.4 ± 1.5 µM (Figure 4). CTD-GNE-treated cells showed a significant
reduction in their viability compared to the CTD group (p < 0.05). CTD-GNE exhibited an
IC50 value of 6.1 ± 0.8 µM. An IC50 value of ~24 µM was previously reported with CTD
against A549 cells. Based on these values, our data suggest that the CTD-GNE could easily
penetrate the cell membrane and induce cell death at a significantly low dose.
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3.4. Cell Cycle Analysis

To determine whether CTD-GNE inhibited the viability of the A549 cells through
influencing the cycle phases, we treated the cells with blank, CTD, or CTD-GNE for 24 h
and analyzed the cell cycle using flow cytometry. As presented in Figure 5, the control
A549 cells exhibited a proliferative profile of about 60% at the G0/G1 phase, 25% at the S
phase, 9% at the G2 phase and 1.7% at the pre-G1 phase. The CTD treatment significantly
increased the number of cells in the cell cycle’s G1 and S phases in comparison to the
control and blank GNE (p < 0.05). The percentage of cells in G2/M decreased to 1.5 ± 2.1%,
indicating a cell cycle arrest at the S phase. In addition, the percentage of cells increased in
the pre-G1 phase to 23.6 ± 1.1% when compared to the control cells, and the appearance of
a clear sub-G1 peak represented cell death. Interestingly, CTD-GNE significantly increased
the percentage of G2/M when compared to CTD, indicating a rapid G2/M arresting activity
(p < 0.05). A slight incline of the G0/G1 phase accompanied this, as did a marked increase
of the S phase and pre-G1 phase, which suggest a significant arrest of the A549 S phase,
along with a significant apoptotic effect, in comparison to CTD alone (Figure 5).
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Figure 5. Graphical presentation of the A549 cell cycle phases in (A) control, (B) blank GNE, (C) CTD,
(D) CTD-GNE using a flow cytometry analysis. All data are expressed as the mean ± SE of three
independent experiments. * p < 0.05 is considered significantly different from the control, # p < 0.05 is
considered significantly different from blank GNE, and $ p < 0.05 is considered significantly different
from CTD.
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3.5. Annexin V Apoptosis Assay

To confirm whether the significant antiproliferative effect of CTD-GNE against A549 cells
was mediated via apoptosis, the cells were treated with blank GNE, CTD, or CTD-GNE for
24 h. The apoptotic rate was investigated via flow cytometry based on Annexin V and PI
staining. CTD-GNE significantly increased the percentage of early/late apoptosis and necrosis
in A549 cells compared to the control, blank GNE, and CTD-treated cells (p < 0.05) (Figure 6).
CTD at 10 µM has previously induced a similar apoptotic effect when A549 were treated for
24 h [8]. The apoptotic effect of CTD against human lung cancer cell line H1299 has been also
previously reported. CTD could only induce a comparable apoptotic effect at 48 µM [8]. Our
data demonstrated that CTD-GNE induced a significant apoptotic effect on A549 cells at a
very low dose (IC10). Changes in the A549 apoptotic profile indicated that the cell underwent
apoptosis due to CTD-GNE-inducing antitumor activity. The CTD-GNE possible apoptotic
mechanism will be further investigated though its effect on caspase-3 and p53 expressions.
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Figure 6. Analysis of apoptosis via the Annexin-V FITC Staining Kit in A549 cells (A) control,
(B) blank GNE, (C) CTD, (D) CTD-GNE using a flow cytometry analysis. All data are expressed
as the mean ± SE of three independent experiments. * p < 0.05 is considered significantly different
from the control, # p < 0.05 is considered significantly different from blank GNE, and $ p < 0.05 is
considered significantly different from CTD.
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3.6. Caspase-3 Expression

Caspases are a large family of cysteine proteases that are essential for initiating and
executing the intrinsic apoptosis pathway. To determine whether the caspase was involved
in CTD-GNE-induced apoptosis, we examined the expression of caspase-3, which is a
common downstream apoptosis effector [31]. We examined the activation of casp3 mRNA
by RT-qPCR for blank GNE, CTD, and CTD-GNE. The A549 cells showed a significant
upregulation of casp3 expression in CTD-GNE when compared to CTD, while both blank
GNE and CTD-treated cells showed an early induction of casp3 (Figure 7). In a previous
study, CTD increased caspase-3 with at least a dose of 10 µM compared to the control cells.
Our results clearly demonstrated that the intrinsic-mediated caspase-3 activation pathway
is involved in CTD-GNE-mediated apoptosis at a significantly low dose.
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Figure 7. RT-qPCR analysis of the casp3 mRNA expression levels. Expression levels were normalized
to the reference gene β-actin using the comparative Ct method (2−∆∆Ct). All data are expressed as the
mean ± SE of three independent experiments. * p < 0.05 is considered significantly different from the
control, # p < 0.05 is considered significantly different from blank GNE, and $ p < 0.05 is considered
significantly different from CTD.

3.7. P53 Expression

The p53 gene is a tumor suppressor gene, which is upregulated rapidly in response to
potentially oncogenic stimuli. A p53-mutated gene decreases the activity of the p53 protein,
which leads to uncontrolled cell division [32]. The RT-qPCR results in Figure 8 indicate that
the mRNA expression levels of p53 were significantly higher in CTD-GNE compared with
the control, blank GNE, and CTD (p < 0.05). In a previous work, the same cells were treated
with different doses of CTD (40 and 80 µM) for 24 h to induce p53 expression [9]. Both
doses were significantly higher than CTD-GNE. Our results demonstrated that p53 played
a critical role in CTD-GNE-mediated apoptosis at a very low dose in the A549 cell line.



Pharmaceutics 2022, 14, 227 13 of 15Pharmaceutics 2022, 14, x FOR PEER REVIEW 14 of 15 
 

 

 
Figure 8. Effect of blank GNE, CTD raw, or CTD-GNE treatments on p53 mRNA expression in A549 
cells. All data are expressed as the mean ± SE of three independent experiments. * p < 0.05 is consid-
ered significantly different from the control, # p < 0.05 is considered significantly different from blank 
GNE, and $ p < 0.05 is considered significantly different from CTD. 

4. Conclusions 
The Box–Behnken design was successfully applied to optimize CTD-GNE; the opti-

mized formulation prepared at 10.1% for the pumpkin oil concentration, 8.8% for the α-
CD concentration, and 6.2 min for the homogenization time showed a minimized globule 
size of 199.56 nm. The low percentage of less than 5% between the predicted and meas-
ured sizes highlighted the appropriateness of the optimization process. The optimized 
formulation showed an enhanced cytotoxic and proapoptotic effect in lung cancer cells. 
Further, the optimized formula significantly reduced the activity of inflammatory mark-
ers in comparison with the plain formula and raw drug only. Overall, the findings from 
this work indicated that the proposed formulation could be a promising therapeutic ap-
proach for treating lung cancer. 

Author Contributions: Conceptualization, N.A.A. and U.A.F.; methodology, O.A.A.A., U.A.F., 
S.M.B.-E. and H.M.A.; software, S.M.B.-E.; validation, H.M.A., S.Z.O. and M.A.A.; formal analysis, 
W.H.A.; investigation, O.D.A.-h.; resources, O.D.A.-h.; data curation, U.A.F., T.N., O.A.A.A., and 
W.H.A.; writing—original draft preparation, T.N. and O.A.A.A.; writing—review and editing, 
N.A.A. and M.A.A.; visualization, O.D.A.-h., S.M.B.-E., and U.A.F.; supervision, M.A.A., S.M.B.-E. 
and H.M.A.; project administration, N.A.A.; and funding acquisition, N.A.A., S.Z.O. and U.A.F. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz 
University, Jeddah under grant no. (RG-10-166-42). 

Acknowledgments: The authors acknowledge, with thanks, the DSR for the technical and financial 
support. 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of the data; in the writing of the 
manuscript; or in the decision to publish the results. 

References 
1. Mattiuzzi, C.; Lippi, G. Current cancer epidemiology glossary. J. Epidemiol. Glob. Health 2019, 9, 217–222. 
2. Lam, W.K.; White, N.W.; Chan-Yeung, M.M. Lung cancer epidemiology and risk factors in Asia and Africa. Int. J. Tuberc. Lung 

Dis. 2004, 8, 1045–1057. 
3. Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, 

and survivorship. Mayo Clin. Proc. 2008, 83, 584–594. 
4. Lortet-Tieulent, J.; Soerjomataram, I.; Ferlay, J.; Rutherford, M.; Weiderpass, E.; Bray, F. International trends in lung cancer 

incidence by histological subtype: Adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer 2014, 84, 13–22. 
5. Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019, 85, 1–16. 

Figure 8. Effect of blank GNE, CTD raw, or CTD-GNE treatments on p53 mRNA expression in
A549 cells. All data are expressed as the mean ± SE of three independent experiments. * p < 0.05 is
considered significantly different from the control, # p < 0.05 is considered significantly different from
blank GNE, and $ p < 0.05 is considered significantly different from CTD.

4. Conclusions

The Box–Behnken design was successfully applied to optimize CTD-GNE; the op-
timized formulation prepared at 10.1% for the pumpkin oil concentration, 8.8% for the
α-CD concentration, and 6.2 min for the homogenization time showed a minimized globule
size of 199.56 nm. The low percentage of less than 5% between the predicted and mea-
sured sizes highlighted the appropriateness of the optimization process. The optimized
formulation showed an enhanced cytotoxic and proapoptotic effect in lung cancer cells.
Further, the optimized formula significantly reduced the activity of inflammatory markers
in comparison with the plain formula and raw drug only. Overall, the findings from this
work indicated that the proposed formulation could be a promising therapeutic approach
for treating lung cancer.
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