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ABSTRACT An arsenic resistance genomic island in the bacterium Klebsiella michi-
ganensis 3T412C was isolated from mine tailings from Peru. This genomic island con-
fers adaptation to extreme environments with high concentrations of arsenic. Isolate
3T412C contained a complete set of genes involved in resistance to arsenic. This
operon is surrounded by putative genes for resistance to other heavy metals.

Recent studies have revealed that both horizontal gene transfer (HT) and genomic
islands (GIs) can confer selective advantages to bacteria (1). Multiple mechanisms

have evolved for cellular defense against arsenic, and the genes involved are taxonom-
ically widespread and subject to HT (2, 3). The general efflux detoxification pathway
involves the reduction of arsenate to arsenite, and then subsequent expulsion of
arsenic from the cell through arsenite-specific transporters (4, 5). The efflux system
consists of an arsenate reductase (ArsC) (6), an arsenite-specific efflux pump (ArsB) (7),
ATPase (ArsA) that couples with ArsB for the expulsion of arsenite from cells, the
regulatory elements ArsR and ArsD, and a gene, arsH, of unknown function (2). The
genes sufficient for a complete efflux pathway were previously identified in Prochloro-
coccus genomes (8). This efflux detoxification is believed to be the major arsenic
detoxification strategy for Prochlorococcus and other species with the same operon
configuration (3).

Here, we report the draft genome sequence of Klebsiella michiganensis strain
3T412C, which was isolated from surface water from a mine water treatment operation
in Trujillo, Peru. The draft genome sequence was determined using Illumina sequenc-
ing, and assembly with SPAdes version 3.10 was carried out with k-mer values increas-
ing from 51 to 71 (9). Additionally, reads were utilized for contig extension and gap
repairing with ABACAS and IMAGE, respectively (10). The quality of the assemblies was
verified with QUAST software (11). Default parameters were used. Finally, 187 contigs
were submitted to GenBank. Preliminary gene prediction and annotation were per-
formed with the Prokka tool (12). The existence of GIs was confirmed with IslandViewer
software, a predictor of GIs that integrates three methods: IslandPick, IslandPath-
DIMOB, and SIGI-HMM (13). The number of contigs was 120, and the N50 was
136,825 bp. The draft genome of 3T412C comprised 6,208,338 bp, with a G�C content
of 55.71%.

We found that the genome contained a GI with an operon for arsenic resistance.
Within the operon, the configuration of genes was the same as that for Prochlorococcus
spp., in the following order: ArsA, ArsC, ArsB, ArsA, the operon repressor ArsD, and the
regulatory element ArsR. This operon is surrounded by other putative resistance
proteins for copper, cobalt, cadmium, mercury, lead, and zinc.
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After evaluation of the persistent operon in the genome, we evaluated the bacte-
rium’s tolerance of heavy metals. The growth of strain 3T412C was not affected by an
arsenic concentration as high as 28 mM (arsenite, NaAsO2 from Merck) in the medium
nonenriched LB at pH 7. In contrast with other reports on Klebsiella spp., this is the
strain with the highest resistance potential (14).

Accession number(s). This whole-genome shotgun project for K. michiganensis

strain 4T312C has been deposited at DDBJ/ENA/GenBank under the accession number
MPJL00000000.
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