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Rodent-borne hantaviruses cause two severe acute diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia, and han-
tavirus pulmonary syndrome (HPS; also called hantavirus cardiopulmonary syndrome [HCPS]) in the Americas. Puumala virus
(PUUV) is the most common causative agent of HFRS in Europe. Current routine diagnostic methods are based on serological
analyses and can yield inconclusive results. Hantavirus-infected patients are viremic during the early phase of disease; therefore,
detection of viral RNA genomes can be a valuable complement to existing serological methods. However, the high genomic se-
quence diversity of PUUV has hampered the development of molecular diagnostics, and currently no real-time reverse transcrip-
tion-quantitative (RT)-PCR assay is available for routine diagnosis of HFRS. Here, we present a novel PUUV RT-PCR assay. The
assay was validated for routine diagnosis of HFRS on samples collected in Sweden during the winter season from 2013 to 2014.
The assay allowed detection of PUUV RNA in 98.7% of confirmed clinical HFRS samples collected within 8 days after symptom-
atic onset. In summary, this study shows that real-time RT-PCR can be a reliable alternative to serological tests during the early
phase of HFRS.

Hantaviruses (family Bunyaviridae) cause two severe acute
zoonotic diseases: hemorrhagic fever with renal syndrome

(HFRS) in Eurasia, and hantavirus pulmonary syndrome (HPS;
also called hantavirus cardiopulmonary syndrome [HCPS]) in the
Americas (1). Puumala virus (PUUV) is the major HFRS-causing
hantavirus in Europe (2). The number of diagnosed HFRS pa-
tients in Europe is increasing; from 1990 to 1999, the average
number of cases per year was below 2,000; from 2000 to 2009, it
was above 3,000 cases per year (2). Further, underreporting of
PUUV-caused HFRS has been described. For example, three
patients with suspected leptospirosis were in retrospect diag-
nosed with HFRS (3). There is a need for rapid, reliable, and
easy-to-use diagnostic methods for HFRS. Currently, routine
diagnosis of HFRS is based on detection of virus-specific IgM
and/or IgG antibodies (4). However, not all patients show de-
tectable antibody levels (5) and, consequently, not all patients
can be diagnosed using serological methods, at early stages of
the disease. Hantaviruses establish systemic infections, and pa-
tients are viremic when they present with symptoms (4, 6–8),
indicating that detection of hantavirus RNA has diagnostic po-
tential. PUUV can normally be detected in serum from HFRS
patients during the first week, and often up to at least 16 days,
after onset of symptoms (5–7). However, the development of
molecular techniques for PUUV diagnostics has been hindered
by the large genomic diversity, even over small geographical
distances (7, 9–11).

In this study, all PUUV S segment sequences of Swedish origin
available from the GenBank nucleotide collection were used for
primer and probe design of a novel PUUV reverse transcription-
quantitative (RT)-PCR assay. This assay was then retrospectively
evaluated on clinical samples obtained from patients serologically
analyzed for HFRS in Sweden from November 2013 to March
2014.

MATERIALS AND METHODS

Clinical samples and ethical statement. HFRS is a notifiable disease in
Sweden, and all diagnosed cases are registered in the national HFRS reg-
ister at the Public Health Agency of Sweden. HFRS laboratory diagnostics
are performed at three laboratories in Sweden: the Public Health Agency
of Sweden, Umeå University Hospital, and Sunderby Hospital. Serum
samples from all patients (n � 216) serologically analyzed for HFRS at
these three laboratories during November 2013 to March 2014 were col-
lected and stored at �20°C pending analysis. Of these 216 patients, 114
were serologically confirmed for HFRS and reported to the national HFRS
register. The remaining 102 individuals whose samples did not show evi-
dence of seroconversion were considered HFRS negative.

RNA preparations from patients with non-HFRS diagnoses (n � 47)
were tested in the PUUV RT-PCR assay to ensure no unspecific binding of
the primers and probe to human RNA. The serum samples were obtained
from the biobank repository of the Public Health Agency of Sweden, as
stipulated in the regulations for use of such material in diagnostic devel-
opment and quality assessment. The Swedish Ethical Review Act (2003:
16), Ethical Review of Research Involving Humans (http://www.epn.se
/media/1205/the_ethical_review_act.pdf), is not applicable for material
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used in diagnostic development and quality assessment; for this reason,
no ethical permit or informed consent was required.

Assay design. The assay was designed using all published PUUV S
segment sequences (n � 44, Swedish origin) covering the complete nu-
cleocapsid protein available in the NCBI GenBank nucleotide collection
(see Table A1 in the supplemental material). Multiple sequence align-
ments were generated using CLC Main Workbench 6.6.5 (CLC Bio, Qia-
gen). Chemical properties of the primers and probe were evaluated using
in-house software and Primer Express v3.0 (Applied Biosystems, Thermo
Fisher Scientific).

Extraction of RNA and real-time RT-PCR. Total RNA was extracted
from 140 �l of serum or from supernatants of infected cells using the
QIAamp viral RNA minikit (Qiagen). The RNA was eluted with 60 �l of
elution buffer and was stored at �80°C, pending analysis. The PUUV
RT-PCR assay was carried out in 25-�l reaction mixtures containing Taq-
Man Fast Virus 1-step master mix (Applied Biosystems, Thermo Fisher
Scientific), 5 �l of template RNA, DNase/RNase-free H2O (Life Technol-
ogies, Thermo Fisher Scientific), 0.9 �M each primer, and 0.2 �M Taq-
Man probe (Applied Biosystems). Table 1 shows the characteristics of the
primers and probes. Amplification and detection of the 62-bp amplicon
were performed in a StepOne Plus real-time PCR system (Applied Biosys-
tems). The cycling profile was as follows: 50°C for 5 min; 95°C for 20 s; and
45 cycles of 95°C for 3 s and 60°C for 30 s. Samples were considered
positive if target amplification was recorded within 40 cycles (cycle thresh-
old [CT], �40). The baseline and threshold were set using the autobas-
eline and autothreshold features in StepOne software v2.2.2 (Applied Bio-
systems).

To ensure adequate RNA extraction, the presence of �-actin mRNA in
clinical samples was analyzed using a TaqMan gene expression assay (cat-
alog no. 4333762F; Applied Biosystems). PUUV RNA was used as the
positive control, and water, as negative control.

Specificity study. The specificity of the PUUV RT-PCR assay was eval-
uated by testing RNA extracted from preparations of cell cultures infected
with the following viruses: PUUV, strains Bussjö, Kazan, and Sotkamo;
other human-pathogenic hantaviruses: Hantaan virus, strain 76-118; An-
des virus, strain Chile-9717869; Dobrava virus, strain H119/99; Seoul vi-
rus, strain R22; Sin Nombre virus, strain NMR11; Rift Valley fever virus,
strain ZH548; Crimean-Congo hemorrhagic fever virus, strain IbAr
10200; Dengue virus 1 through 4, strains 8356/10, 4397/11, 3140/09, and
3274/09, respectively; Japanese encephalitis virus, strain Nakayama; tick-
borne encephalitis virus, strain Hochosterwitz; West Nile virus, strain
MgAn 786/6/1995; Zika virus, strain MR766; Usutu virus, strain g39; yel-
low fever virus, strain Asibi; chikungunya virus, strain 23161; and Lassa
virus, strain Josiah.

The primer and probe target site in PUUV was tested in silico against
all non-PUUV sequences in the NCBI nucleotide database by using

BLASTn with very loose match criteria (word size, 7; E cutoff, 1,000;
match/mismatch cost � 1/�1; Gap cost, 5/2).

Assay performance. The amplification efficiency, linear dynamic
range, and limit of detection of the PUUV RT-PCR assay were determined
by assaying dilutions of in vitro transcribed RNA, based on the sequence of
PUUV strain Umea/hu (GenBank accession no. AY526219), with the fol-
lowing sequence: 5=-cgtagTGGACCCGGATGACGTTAACAAAAA
CACACTGCAAGCAAGGCAACAGACAGTGTCAGCACTGtgtca-3= (Bio-
Synthesis, Inc.).

Possible inhibition of serum, commonly associated with HFRS diag-
nosis (4-7, 12), and of other matrices, plasma, and saliva (12), was evalu-
ated by comparing the slopes of the standard curves generated by ampli-
fication of 5-fold diluted RNA extracted from PUUV (strain Bussjö)
spiked in human saliva, serum, and plasma with the slopes for RNA ex-
tracted from PUUV diluted in water.

RESULTS
Analysis of PUUV sequences and assay design. Two separate lin-
eages, the North and the South Scandinavian lineages, of PUUV
exist in Sweden (9), and our initial analysis showed that there is up
to 17% difference in the nucleotide sequence for the nucleocapsid
protein open reading frame (ORF) (e.g., Fäboviken/Mg26/05
[GenBank accession no. GQ339484] versus Ljusträsk/Mg20/05
[GenBank accession no. GQ339481]) among the Swedish PUUV
isolates. However, a candidate region for primer and probe design
with a relatively high sequence conservation was identified in the S
segment, where the ORFs of the nonstructural protein S and the
nucleocapsid protein overlap. Based on this region, we designed
primers and probe for detection of PUUV. Figure 1 shows the
location of the primers and probe in relation to the ORF of the
nucleocapsid protein and its variability. Table 1 shows the chem-
ical properties of the primers and probe.

Assay performance. To determine the linear dynamic range
and the amplification efficiency, serial 10-fold dilutions of RNA
transcript were tested in triplicates.The linear dynamic range (13)
was 103 to 1010 genome copy equivalents (GCE)/ml, and the am-
plification efficiency over that interval was 102% (R2 � 0.998; y
intercept � 40).

Assay sensitivity. To obtain a statistically robust assessment
of the limit of detection, RNA transcripts were tested in three
parallel experiments each, including eight replicates of RNA
copy numbers above and below the expected detection limit.

FIG 1 Conservation map of PUUV nucleocapsid protein ORF from Swedish
isolates (list of sequences in Table A1 in the supplemental material). Blue
arrows represent the position of forward (F) and reverse (R) primers and probe
(P) in the PUUV RT-PCR.

TABLE 1 Characteristics of primers and probe targeting the S segment
of PUUV

Name Sequence (5=–3=)a Positionb

Melting
temperaturec

(°C)

PUUV_P FAM-ACACTGCAAGCAAG-MGBd 169–182 68.0
PUUV_F TGGACCCRGATGACGTTAAC 143–162 56.9
PUUV_R1 CAGTGCTGACACTGTYTGTTGC 183–204 58.2
PUUV_R2e CAGTGCTGACACTGTCTGTTGT 183–204 55.0
a Degenerated nucleotides: R, A/G; Y, C/T.
b Positions are given according to PUUV strain Umea/hu (GenBank accession no.
AY526219).
c The mean melting temperature (Tm) is shown for degenerate primers.
d FAM, 6-carboxy fluorescein; MGB, minor-grove-binding.
e The PUUV_R2 primer is complementary to two sequences (GenBank accession no.
GQ339486 and GQ339487) out of the 44 sequences in the data set (see the list of se-
quences in Technical Appendix 1 in the supplemental material).
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The limit of detection of the PUUV RT-PCR assay was deter-
mined to be 560 GCE/ml, representing the lowest RNA copy
number for which all 24 replicates of transcript RNA in water
were detected (Fig. 2).

Possible PCR inhibition was evaluated by testing virus spiked
in clinical matrixes associated with HFRS diagnostics (4-7, 12).
The slopes of the lin-log standard curves generated from RNA
preparation from saliva, serum, and plasma diluted 5-fold were
not significantly different from the slopes obtained from 5-fold
dilutions of viral RNA extracted from water (two-way analysis of
variance, three replicates: saliva, P � 0.45; serum, P � 0.63;
plasma, P � 0.96), indicating that PCR inhibition was minimal in
these clinical matrixes.

Assay specificity. Cross-reactivity of the PUUV RT-PCR assay
with related pathogenic hantaviruses, other members of the Bun-
yaviridae family, and members of the Arenaviridae, Flaviviridae,
and Togaviridae families (the specific viruses tested are listed in
Materials and Methods) was excluded by testing RNA prepara-
tions from infected cell culture materials. All of these RNA prep-
arations tested negative in the PUUV RT-PCR assay. Further, no
relevant hits were obtained when the assay target site was matched
against all non-PUUV sequences in the NCBI nucleotide database
by using BLASTn (data not shown).

To exclude cross-reactions with human RNA, 47 serum sam-
ples from patients with non-HFRS diagnoses were tested using the
PUUV RT-PCR assay. None of these samples tested positive in this
assay, whereas all were positive for human �-actin mRNA, thus
indicating adequate RNA extraction. It was concluded that the
PUUV RT-PCR assay could be reliably used for clinical serum
samples.

Comparison of molecular and serological diagnoses, winter
2013 to 2014. The clinical applicability of the PUUV RT-PCR
assay was evaluated by testing serum samples from 216 individuals
serologically analyzed for HFRS in Sweden during the winter of
2013 to 2014. Of these, 114 patients were serologically confirmed
with HFRS, and 102 were negative for HFRS based on lack of
seroconversion.

PUUV RNA was detected in 87.7% (n � 100) of the 114 HFRS-
diagnosed patients, whereas no PUUV RNA was detected in any of
the samples from the 102 non-HFRS patients (accuracy, 0.94

[95% confidence interval {CI}, 0.89 to 0.96]; sensitivity, 0.88 [95%
CI, 0.80 to 0.93]; specificity, 1 [95% CI, 0.95 to 1]; positive predic-
tive value, 1 [95% CI, 0.95 to 1]; negative predictive value, 0.88
[95% CI, 0.80 to 0.93]). Data regarding days after onset of symp-
toms was available for 95 of the 114 HFRS-confirmed patients.
PUUV RNA were detected in 98.7% (78 of 79; sensitivity, 0.99
[95% CI, 0.93 to 1]) of patients sampled within 8 days after symp-
tomatic onset using the PUUV RT-PCR assay, whereas 56.3%
of the patients (9 of 16 patients) sampled at day 9 or later after
symptomatic onset tested positive for PUUV RNA. As previ-
ously reported (5, 6), the highest levels of PUUV RNA were
detected at early time points after the onset of HFRS; a signif-
icant correlation (correlation value [r], 0.4016; n � 86; P �
0.001) between CT values and time after onset of symptoms up
to 14 days after infection was observed for samples positive in
PUUV RT-PCR (Fig. 3).

Patients with inconclusive serological results. For 9.6% (n �
11) of the 114 patients with serologically confirmed HFRS, the
initial sample arriving to the laboratory tested negative by conven-
tional serologic testing (no virus-specific antibodies were present)
or gave inconclusive results. The diagnoses of these patients re-
quired additional serological analysis performed on a second sam-
ple. In all of these cases, the first sample was positive for PUUV
RNA (Table 2), showing that RT-PCR is a sensitive assay for diag-
nosis of HFRS during the acute phase of disease.

DISCUSSION

Serological assays aimed at detecting acute hantavirus infections
can give false-negative, or false-positive, results (14–18). Further,
negative or inconclusive results of serological diagnoses are fre-
quently observed during the very early phase of HFRS (2, 5);
therefore, analyses of follow-up samples are often required before
the diagnosis can be verified. By using molecular methods, a fast
and reliable diagnosis of acute virus infection can be obtained. We
report here an RT-PCR assay for detection of PUUV RNA that
show 98.7% sensitivity within the 8 first days after onset of HFRS
and 100% specificity. This RT-PCR assay efficiently detected
PUUV in acute HFRS patients from all over Sweden. The results
show, to our knowledge for the first time, that RT-PCR can be
used for the routine diagnosis of HFRS.

Rapid and reliable diagnosis of hantavirus infections is of im-
portance to initiate supportive care in severe cases, avoid unnec-

FIG 2 Limit of detection. The number of positives per total number of
replicates tested is given above each box. The mean values are indicated by
horizontal lines; boxes denote the 25th to 75th percentiles and whiskers,
the 5th to 95th percentiles; dots represent outliers. GCE, genome copy
equivalents.

FIG 3 CT value of positive samples from PUUV-infected patients (n � 86)
sampled at day 1 to 14 after onset of HFRS. Four patients, sampled at days
5, 9, 10, and 14, were negative by RT-PCR and not included in the graph.
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essary examinations and antibiotic treatment, and initiate preven-
tive measures to avoid exposure to others (19–21). By serological
diagnosis, 11 patients could not be diagnosed until a second sam-
ple was tested. In contrast, PUUV RNA was detected in all of the
first samples, and, in these cases (representing 9.6% of all 114
HFRS patients in this study), a faster diagnosis could have been
obtained by using molecular diagnosis.

Hantaviruses are negative-stranded RNA viruses with tripar-
tite genomes encoding 4 or 5 proteins (1, 22). All HPS-causing
hantaviruses and PUUV, but no other HFRS-causing hantavi-
ruses, have a short ORF within the nucleocapsid protein ORF that
encodes the nonstructural protein NSs. This highly conserved re-
gion of the S segment, corresponding to the overlapping ORFs of
the nucleocapsid protein and the NSs proteins, might be an attrac-
tive target for molecular diagnostics of HPS-causing hantaviruses.

The results from this study suggest that the PUUV RT-PCR
assay can be complementary, or even an alternative, to serological
assays in the diagnosis of PUUV-caused HFRS.
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