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Abstract

Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed
Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The
spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be
instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural
microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC
were highly motile, continuously crawling through the interstitial space in a Gai protein-coupled receptor–dependent manner.
However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and
incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly
dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards
the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was
independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context
of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a
unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.
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Introduction

The skin is the interface between the environment and internal

tissues. Dendritic cells (DC), as part of the body’s innate immune

defense, are strategically positioned in this organ; the epidermis is the

home of Langerhans cells (LC), while the dermis harbors dermal DC

(DDC). The main function of DC is believed to be the recognition

and processing of foreign antigens, and subsequent presentation to

naı̈ve T cells [1]. DC normally reside in an immature state in the skin.

Upon antigen encounter in the presence of ‘‘danger signals’’, such as

proinflammatory cytokines, DC undergo maturation enabling their

migration to draining lymph nodes (LN) [2]. Accumulating evidence

suggests that DDC may be responsible for the transport of pathogens

to draining LN [3–6]; in certain infections, for example with herpes

simplex virus, DDC act as an antigen shuttle, i.e. they transfer antigen

to LN-resident CD8+ DC, which subsequently present it to T cells

[7]. In other infections, including those with Leishmania parasites, they

may present antigen directly to T cells [6].

Using intravital confocal microscopy, LC in the skin were found

to be immobile with occasional repetitive dendrite movement,

termed dendrite surveillance extension and retraction cycling

habitude (dSEARCH) [4,8]. In contrast to LC, very little is known

about the migratory and interactive behavior of DDC. This is of

significance, as during certain infections DDC may come into close

contact with microorganisms, and it is unclear whether DDC are

capable of detecting living pathogens directly or take up antigens

from dying infected cells or dead pathogens. Since these initial

events of an immune response are likely to determine the magnitude

and quality of T cell and B cell immunity, it is important to decipher

the events of pathogen encounter directly in situ.

Cutaneous Leishmaniasis is a disease caused by a large group of

protozoan parasites belonging to the Genus Leishmania, including L.

major. It serves as a paradigmatic skin infection, as promastigote

stage parasites are directly deposited into the dermis during sand fly

bites [9]. While it is thought that the parasites then infect innate

immune cells in the skin, primarily macrophages [10,11], the precise

events occurring at the time of infection are not well defined. After

entering cells, the parasites rapidly transform to the amastigote

form, a rounded non-flagellated stage, which survives and multiplies

within the phagolysosome (parasitophorous vacuole, PV) up until

the time of cell rupture. After several weeks a lesion at the site of

infection develops that is primarily composed of infected and
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inflammatory cells [12,13]. In some cases, these lesions are able to

resolve over several months, while in others the lesions are chronic

and can be associated with severe disease [9]. Current treatment

options are scarce, therefore begging for the development of

prophylactic vaccines. A prerequisite for this is a thorough

understanding of the immune response against the parasites.

Several studies have investigated the response of cutaneous DC to

Leishmania spp. Initial reports suggested that LC are infectable by

Leishmania, migrate to LN and activate CD4+ T cells [14]. However,

more recently these findings have been questioned as DC harboring

parasites in LN do not express the LC marker langerin [6]. Also,

mice that lack MHC class II expression in LC but not DDC resolve

infection similarly to wildtype animals [15]. While several

investigators have suggested that DDC transport Leishmania to the

paracortex of draining LN [5,6], others have questioned the role of

cutaneous DC during early infection altogether [16,17]. At later

stages of disease, monocyte-derived DC may differentiate directly

within the inflamed skin, and then migrate to draining LN where

they induce CD4+ T cell activation [18]. To gain further insight into

this controversy, i.e. what is the nature of parasite-DC encounter

during early infection, ideally, Leishmania infections should be

visualized directly in the natural microenvironment of the skin.

In the present study, we made use of intravital two-photon

microscopy (2P-IVM) to address the following questions: 1. What

is the steady-state behavior of DDC? 2. How do DDC respond to

danger signals? And 3. Do cutaneous DC take up Leishmania

parasites in the early phase of infection, and if so, what are the

dynamics of this process? Surprisingly, we found that DDC were

migratory under homeostatic conditions, which is in stark contrast

to their epithelial counterparts. After encountering danger signals,

DDC underwent a morphological transition into immobile,

dendritic-shaped cells. At this point, the cells were capable of

taking up parasites through the elaboration of motile pseudopods.

Together, these results shed new light on the dynamics and

anatomy of host-pathogen interactions.

Results

CD11c-YFP Mice Enable Visualization of Cutaneous DC
In order to visualize the behavior of LC and DDC, we made use

of CD11c-YFP mice [19], in which DC express high levels of

cytoplasmic YFP. To ascertain that skin DC expressed YFP, we

analyzed single cell suspensions prepared from separated epider-

mis and dermis by flow cytometry (Figure 1). CD45+YFP+

epidermal cells were CD11c+CD11b+F4/80+I-Ab+ (Figure 1),

and immunofluorescence staining of tissue sections showed that

langerin expressing YFP+ cells displayed the characteristic

morphology of LC (data not shown). In the dermis, CD45+YFP+

cells were CD11c+CD11b+F4/80+I-Ab-high, and therefore repre-

sented DDC [20]. We also detected a subset of CD45+YFPlow cells

within the dermis. However, this signal was due to autofluores-

cence, rather than specific YFP expression, as a similar population

of cells was also found in wildtype animals (Figure S1A). These

cells were CD11c2CD11b+F4/80+Moma-2+I-Ab-low thereby re-

sembling dermal macrophages [20]. The fluorescence intensity of

these cells was, on average, 50 times dimmer than the YFP signal

from DDC. Since, under our 2P imaging conditions, we did not

detect any signal in the dermis of wildtype animals (Figure S1B),

we concluded that LC and DDC in CD11c-YFP mice can be

detected by means of specific YFP expression, while other

hematopoietic cell subsets remain undetectable.

The distribution of YFP+ DC populations was determined by

2P-IVM in the ear skin of CD11c-YFP mice. Vertical scans

revealed the presence of YFP+ cells between 5–20 mm below the

outermost epidermal layer (Figure 2A–2C). These cells exhibited

numerous, irregularly shaped dendrites, morphologically consis-

tent with LC. The highest density of LC was found 15 mm

underneath the stratum corneum (Figure 2C). Below the

epidermis, second harmonic generation (SHG) signals highlighted

extracellular matrix (ECM) components [21] forming a dense,

mesh-like network (vertical depth of 20–60 mm from the outermost

surface). Embedded in the lower part of this network, with the

highest density between 20–40 mm below the basement membrane

and reaching up to a depth of ,100 mm, were scattered YFP+

cells, of markedly different morphology to LC, i.e. of rounder

shape, with fewer, shorter dendrites (Figure 2A–2C). The overall

density of LC was approximately 3 times higher than that of DDC

(Figure 2C). Together, these results established that cutaneous skin

DC populations could be imaged by means of 2P-IVM, and

identifed two morphologically distinct cutaneous DC subsets in the

different compartments of the skin.

DDC Migrate through the Interstitial Space in a Gai

Protein-Coupled Receptor–Dependent Manner
While epithelial DC populations in the skin and gut have been

found to be sessile [19,22], no information is available on DC

behavior in the interstitial space within peripheral organs.

Nevertheless, DC in the dermis are suspected to be involved in

antigen transport from the skin to draining LN thereby regulating

the initial phases of host-pathogen responses. We therefore asked

whether DDC scanned their microenvironment in a similar

fashion to epidermal LC. To this end, we conducted time-lapse

2P-IVM in ear skin of CD11c-YFP mice. When focusing on the

epidermis, we found that LC were sessile (mean velocity ,2 mm/

min), with their dendrites remaining almost completely immobile

(Figure 3A–3C and Video S1). As described previously, we

occasionally observed dSEARCH [4,8] (Figure 3B and Video S2).

However, in contrast to LC, we discovered that DDC were

actively crawling through the interstitial space of the dermis at a

mean velocity of 3.760.3 mm/min (mean6SEM) (Figure 3A–3C

and Video S3). Migrating cells exhibited a polarized morphology,

often displaying lamellipodia at the leading edge and a trailing

uropod-like structure (Video S3). Since our experiments were

performed in non-inflamed ear tissue, these results suggest that

continuous migration is a steady-state feature of interstitial

Author Summary

Cutaneous Leishmaniasis is a difficult-to-treat disease
affecting millions of people worldwide. Hence, there is high
demand for the development of vaccines against Leish-
mania parasites, begging for a better understanding of
immune responses against this pathogen. Dendritic cells, as
part of the innate immune system, are thought to act as
gatekeepers against intruding pathogens. However, their
behavior in the context of intact tissues is incompletely
understood. Here, we have used intravital two-photon
microscopy to visualize the behavior of skin resident
dendritic cells in real time, both in the steady-state and
upon parasite encounter. We have found that migratory
dermal dendritic cells are capable of rapidly sensing
Leishmania parasites injected into the skin. This occurred
through the formation of highly motile cellular processes
capable of engulfing parasites, followed by parasite uptake
into the cell. Together, our study provides a new vista of the
orchestration of host cell–pathogen encounter in the three-
dimensional context of intact tissues. Our results serve as
the basis for a better understanding of the dynamic
regulation of tissue surveillance by dendritic cells.

Dendritic Cells in Infection

PLoS Pathogens | www.plospathogens.org 2 November 2008 | Volume 4 | Issue 11 | e1000222



cutaneous DC. It may further indicate that the unexpectedly high

motility of DDC serves to screen the dermal extracellular space for

intruding microorganisms/environmental noxae.

We next sought to define signals involved in spontaneous

migration of DDC. When we treated animals with pertussis toxin

(PTX), an inhibitor of Gai protein-coupled receptors, the

capability of DDC to translocate within the dermis significantly

decreased (reflected by a reduction of their displacement;

Figure 4A and Videos S4 and S5). The migratory velocity of

DDC did not change after PTX treatment, because cells moved

Figure 1. Phenotypic characterization of CD11c-YFP+ cells in ear skin. Flow cytometric analyses of surface markers expressed by epidermal
and dermal cells from CD11c-YFP mice. The histogram plots were pre-gated on forward (FSC) and side-scatter (SSC) profiles. SSC/CD45 and FSC/YFP
plots are shown for clear distinction of individual cell populations. Representative plots from 3 to 4 animals are shown.
doi:10.1371/journal.ppat.1000222.g001
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back and forth in the same place (therefore, following cell-

centroids resulted in measurable velocity; Figure 4A and Video

S5). We concluded that, while PTX does not interfere with the

migratory machinery of DDC per se, DDC utilize chemo-attractant

signals, most likely chemokines, for their migration through the

interstitial space.

Encounter of Danger Signals Leads to Migratory Arrest of
DDC

Having defined the cellular activities of skin DC in the steady-

state, we determined their behavior in the presence of danger

signals implicated in DC activation [23]. CD11c-YFP mice were

injected intravenously with LPS (50 mg), which mimics systemic

bacterial infection [24]. Two to eight hours after LPS treatment,

LC remained sessile within the epidermis, without evidence of

lateral or vertical movement (Figure 4B). In contrast, we observed

dramatic changes of DDC behavior two to four hours after LPS

administration. They exhibited significantly decreased migratory

velocity (2.1260.21 mm/min) and displacement, with more than

50% immobile cells (Figure 4B, Figure S2 and Video S6). Six to

eight hours post LPS injection DDC partially regained their

mobility (70% motile cells; Figure 4B, Figure S2, and Video S7).

Thus, upon encounter of danger signals, DDC change their

behavior, which may facilitate recognition/uptake of pathogens.

DDC Rapidly Take Up L. major Promastigotes after
Intradermal Deposition

To further test this hypothesis, we used the protozoan parasite

L. major as a model pathogen. During natural infection,

promastigote stage Leishmania spp. are directly deposited into the

dermis by sand flies. Previous in vitro studies have demonstrated

that DC can be infected by Leishmania parasites [13,25]. We

therefore speculated that DDC may recognize and interact with L.

major upon introduction into the dermis.

1–26105 DsRed2-tagged Leishmania (LmjF-DsRed2) promasti-

gotes were injected in a small volume (1.5 ml) of saline solution into

the superficial dermis. This allowed us to deposit parasites

underneath the epidermis at a vertical depth of 25–60 mm while

keeping mechanical tissue disruption as minimal as possible

(Figure 5A). Within 20 min of injection, DDC in the vicinity of

parasites decreased their migratory speed and changed their shape

to a more dendritic cell-like morphology characterized by the

emergence of multiple dendritic processes (Figure 5B and 5C).

This was paralleled by the appearance of several intracellular

vacuoles, each of them containing a single red parasite (Figure 5C),

which is consistent with the formation of PVs [26,27]. Interest-

ingly, these vacuoles were mobile, i.e. appeared to move freely

within the cytoplasm of the cells. Two to three hours after

infection, the percentage of DDC harboring one or more parasite

Figure 2. Three-dimensional distribution of dendritic cells within CD11c-YFP mice. (A) Single plane images from 2P-IVM showing YFP+

dendritic cells (yellow) in ear skin at various vertical depths along the z-projection. Extracellular matrix in the dermis was detected by the SHG signals
(blue). Scale bar, 49 mm. (B) Upper panels, representative images from three-dimensional reconstructions of ear skin of a CD11c-YFP mouse showing
the distribution of LC and DDC in relation to SHG. Lower panel, a schematic representation of DC localization in relation to different compartments in
the skin. (C) Upper and middle histograms depict numbers of YFP+ LC and DDC along the vertical depth in the epidermis and dermis (underneath
basement membrane). Lower histogram shows LC and DDC density in the epidermis and dermis (between 20–50 mm). Bars represent mean6SEM
numbers obtained from at least three individual mice.
doi:10.1371/journal.ppat.1000222.g002
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was ,70% (Figure 5C). Of note, LC morphology and behavior

was unchanged after infection with L. major. Further, LC were not

found to take up parasites, at least during the first six hours of

infection (data not shown). However, it should be pointed out that

parasites were injected intradermally. Consequently, LC access to

parasites may have been prevented by anatomical barriers, such as

the epidermal basement membrane.

To determine whether parasite uptake by DDC was specific for

the Friedlin strain (FV1) of L. major, or could be recapitulated with

other L. major strains, we injected the LV39 strain under the same

conditions as described above. As shown in Figure 5C, this led to

,55% of DDC containing parasites. We therefore consider L.

major uptake by DDC a general phenomenon.

For most of our experiments we made use of stationary phase L.

major promastigotes. Since these cultures may contain stages of

different infectivity or even a few dead parasites, confirmatory

experiments (n = 3) using highly purified metacyclic [28] LmjF-

DsRed2 parasites were conducted. These experiments confirmed

uptake of parasites by YFP+ DDC into cytoplasmic vacuoles to the

same extent as stationary phase parasites (Figure S3).

Local Leishmania Infection Leads to Migratory Arrest of
Both Infected and Uninfected DDC

Since our LPS experiments had shown that DDC markedly

reduce their locomotion after exposure to a danger signal, we next

assessed the migratory behavior of L. major-bearing DDC. As

shown in Figure 5D, infected DDC significantly reduced their

migratory velocities. To determine whether parasite uptake and

migratory arrest were related phenomena, we also measured the

migratory speed of non-infected DDC. We found that the latter

revealed a similar reduction in their migratory velocities and

displacement as compared to their infected counterparts. Collec-

tively, these results show that DDC, by default, reduce their

migration at sites of inflammation.

We also conducted sham infection experiments using a red

fluorescent dye, SNARF-1, in order to exclude that the physical

manipulation during intradermal injection by itself caused changes

in DDC behavior. As shown in Figure 5E, there was no difference

in DDC migration between SNARF-1 injected and uninjected skin

attesting to the specificity of the infection experiments.

Uptake of L. major by DDC Occurs through Motile
Pseudopods

The exact mode by which Leishmania infects cells in vivo is not

known. It is thought that parasite uptake by phagocytes involves

non-random promastigote attachment to the cell followed by

engulfment [29]. However, only in vitro data on this process are

currently available, and the cellular and molecular mechanisms

remain poorly understood. Our intravital imaging experiments

demonstrated that cytoplasmic DDC processes actively extended

towards parasites (Figure 6A and Videos S8 and S9) at an average

speed of ,2.5 mm/min and reaching up to 50 mm in length. We

occasionally observed that dendrite extension was preceded by

parasite contact with the cell membrane followed by engulfment

along the long axis of the parasite (Figure 6A and Videos S8 and

S9). After capturing parasites, dendrites often rapidly retracted

Figure 3. Migratory behavior of LC and DDC. (A) Representative time-lapse images from 2P-IVM showing the migratory behavior of LC and
DDC. Red line, track of migration during the observation period. Scale bar, 25 mm. (B) Representative high magnification time-lapse images showing
the cellular movement of LC and DDC. Scale bars, 16 mm (epidermis) and 25 mm (dermis). Arrows illustrate dendrite movements. Red line, track of
migration during the observation period. (C) Upper panel, mean velocity of LC and DDC; lower panel, displacement of LC and DDC from 15 min tracks.
Symbols represent individual cells.
doi:10.1371/journal.ppat.1000222.g003
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towards the cell body, paralleled by the formation of an

intracellular vacuole. These results establish that L. major parasites

in the interstitial space were internalized in a free form by DDC

during the early phase of infection.

We next asked whether inhibition of Gai protein-coupled

receptor signaling interfered with parasite uptake by inoculating

mice with LmjLV39-DsRed2 parasites two to three hours after

systemic PTX treatment. Since after PTX application DDC did

not translocate through the dermis, we imaged cells that co-

localized with the parasite depots. We observed that the formation

of pseudopods and parasite uptake was preserved in these non-

displacing DDC (Figure 6B). This indicates that parasite sensing

was independent of Gai protein-coupled receptors. Furthermore,

these results show that migration and dendrite formation can be

uncoupled at the molecular level.

Phosphoglycans Are Not Involved in Parasite Interactions
with DDC

Phosphoglycans (PG), in particular lipophosphoglycans (LPG), are

essential during the infectious cycle of Leishmania. For instance, PGs

have been implicated in the adherence of parasites to the gut

epithelium in the sand fly, the resistance to complement in the blood

stream, and have been considered candidate molecules for the uptake

by host cells [13,30]. PG-deficient parasites persist in vivo for months

without causing disease, and are therefore considered potential

attenuated anti-Leishmania vaccine candidates [31]. While in vitro

studies have shown that macrophages can take up PG-deficient

parasites, it is not known whether the target cell range is the same for

PG-deficient and wildtype parasites in vivo. To gain further insight

into the role of LPG in parasite interactions with DC in vivo, we made

use of DsRed2-tagged L. major deficient in the LPG2-encoded Golgi

GDP-mannose transporter. These parasites fail to synthesize surface

and other secreted PG [32]. As shown in Figure 6B, lpg2KO-DsRed2

parasite uptake was similar to that of LmjLV39-DsRed2 control

parasites. Therefore, PGs appear to be dispensable in the initial

sensing of parasites by dendrites as well as in the binding of parasites

to the cell membrane and subsequent internalization.

DDC Discriminate between L. major Parasites and Inert
Material

DC can, in principle, internalize a large variety of particulate

material [33]. Thus, we next determined whether parasite uptake

was a specific phenomenon, or whether DDC indiscriminately

incorporate particles introduced into the dermis. When inert

Figure 4. Migratory mechanisms of DDC and LC. (A) Response of DDC to systemic injection of PTX. Top and middle panels depict a
representative cell under control and PTX treatment conditions, respectively. The red square indicates the cell centroid, and the red line shows
movement of the centroid over the observation period (n = 3 experiments for PTX treatment). Lower panel, data points represent individual cells, lines
indicate mean. (B) Upper and middle plots show mean velocity and displacement of LC and DDC in response to systemic LPS challenge over time
(n = 3 experiments). Data points represent individual cells, lines indicate mean. Lower plot shows the frequency of motile DDC at resting state, 2 to
4 h and 6 to 8 h after LPS treatment from 30 min tracks (bars represent mean6SEM).
doi:10.1371/journal.ppat.1000222.g004
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fluorescent beads were injected intradermally, a minority (,20%)

of DDC revealed intracellular beads at a low number (usually 1

bead/cell) two to four hours after injection (Figure 7A, Table 1,

and Videos S10 and S11). When counting the ratio between

particles present in the immediate vicinity of DDC (i.e. within half

a cell diameter) and intracellular particles, it was obvious that there

was a clear preference of L. major uptake (ratio 2.7) as compared to

bead uptake (ratio 39.5; Table 1). In addition, we never observed

dendrite formation after bead injection.

The bead injection procedure did not result in significant

changes in migratory velocity or shape change of the cells

(Figure 7B), indicating that the mechanical trauma induced by the

inoculation was not sufficient to alter DDC behavior. However, it

was conceivable that an inflammatory stimulus may have

increased phagocytic activity of DDC. To test this further, we

co-injected beads and parasites. Interestingly, there was no

increase in bead incorporation, demonstrating that DDC are

capable of selectively discriminating between L. major parasites and

inert material.

Parasite Uptake by DDC Is Independent of Neutrophils
Finally, we determined whether L. major uptake was a primary

feature of DDC or was facilitated by other innate immune cells

present in early infection. In particular neutrophils have been

shown to serve as vectors for Leishmania uptake by macrophages

[34]. Depletion of these cells prior to intradermal injection of

LmjF-DsRed2 did not change the number of DDC containing

parasites as compared to controls (Figure 7C). While these results

do not exclude a role of neutrophils in the defense against this

pathogen, they suggest that parasite phagocytosis by DDC is

independent of these cells.

Discussion

DC are considered gatekeepers in the defense against intruding

pathogens. While DC responses to microbes have been studied in

great detail in vitro and in cells isolated ex vivo, very little is known

about their interactions in the context of intact tissues in real time.

The present study aimed to visualize, in a dynamic manner, the

Figure 5. Internalization of L. major by DDC. (A) Three-dimensional reconstructions of ear skin inoculated with LmjF-DsRed2 promastigotes (red)
showing the distribution of parasites (90 serial optical sections, 1 mm step size). (B) Representative images showing the morphology of LC (epidermis,
yellow) and DDC (dermis, yellow) after LmjF-DsRed2 promastigote (red) inoculation. (C) A three-dimensional section of DDC (yellow) containing
intracellular LmjF-DsRed2 promastigotes (red). Plot shows the frequency of LC and DDC containing LmjF or LV39 parasites (.50 cells obtained from
randomly selected fields). (D) Comparison of the mean velocity and displacement of DDC in control skin, and DDC in infected skin with or without
internalized parasites. Data points represent individual cells, lines indicate mean. Data were obtained from at least three independent experiments.
(E) SNARF-1 was injected i.d. and DDC migration determined after 2 h (n = 3 experiments). Symbols represent individual cells. Control data are the
same as in Figure 4A.
doi:10.1371/journal.ppat.1000222.g005
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behavior of DDC in normal skin and in response to a defined

pathogen. Using 2P-IVM, we found that, under homeostatic

conditions, DDC were actively crawling through the dermal

interstitial space. Remarkably, upon introduction of the protozoan

parasite L. major, DDC transformed into stationary, dendritic-

shaped cells that were capable of rapid parasite uptake through

flexible dendritic processes. Together, our findings define the

microenvironmental context of DDC-pathogen encounter in the

earliest phase of cutaneous immune responses.

That DDC migrate in the steady-state was unexpected, as other

DC populations, such as DC in the gut epithelium and the

epidermis have been found to be immobile, or in the case of the T

cell area, very slow moving [4,8,19,22]. It is likely that the specific

cellular motility patterns adopted by these individual DC

populations serve to optimize their functions in their respective

microenvironments. For instance, epidermal LC are in continuous

close contacts with surrounding keratinocytes. The paucity of

extracellular space may not require, or may not allow, movement

of the cells for their immunosurveillance function. Rather, soluble

antigens percolating through the extracellular epidermal space or

signals from neighboring keratinocytes and/or adjacent LC may

be sensed by the communicating dendrite network in this

environment. DC in the LN T cell zones are characterized by

extensive motions of their dendrites, which may be important for

sensing of antigens filtering through the conduit system of this

organ, and for establishing contacts with naı̈ve T cells [19]. As

compared to the epidermis, DDC are localized within the much

more extensive dermal space, which, at the same time, contains

considerably lower densities of resident cells, primarily fibroblasts.

Thus, while keeping in mind that other tissue resident cells were

not visualized in our study, DDC appeared as isolated cells

embedded within the network of dermal ECM fibers. They were

also found to be morphologically distinct from LC, i.e. they did not

exhibit dendrites under non-inflammatory conditions. Therefore,

the observation of their continuous crawling indicates a funda-

mental difference in tissue screening as compared to LC as well as

DC in the T cell areas of LN. Since signals from intercellular

communication by DDC with other dermal cells may be less

abundant than for LC in the epidermis or DC in LN T cell areas,

spontaneous DDC migration guarantees access to every corner of

this specific microenvironment regardless of the activation state or

potential damage of other resident cells during infection.

Consequently, this ensures the rapid detection of intruding

microbes and the subsequent immediate response to danger

signals.

Morphologically, DDC appeared to migrate in an amoeboid

fashion, similarly to what has been described for T cells in the

extravascular space [35,36]. Thus, crawling DDC exhibited an

anterior-posterior asymmetry reflected by the formation of

lamellipodia and uropods. This may suggest that similar molecular

Figure 6. DDC extend pseudopods to engulf L. major parasites. (A) Representative time-lapse images showing uptake of parasites (red) by
rapid extension/retraction of pseudopods from DDC. Scale bars, 12 mm (upper panels) and 6 mm (lower panels). Small inlet shows tip of pseudopod
at high magnification. Blue circles illustrate parasite-containing vacuoles. (B) Graph shows the effects of systemic PTX treatment on LmjLV39-DsRed2
parasite uptake by DDC in close vicinity to a parasite depot (n = 3 experiments). Images depict high magnification of parasite uptake by a dendrite
after PTX treatment. Also shown is the uptake of lpg2KO-DsRed parasites by DDC (n = 3 experiments).
doi:10.1371/journal.ppat.1000222.g006
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cues responsible for interstitial T cell migration, for example

surface receptors involved in communication with the environ-

ment as well as intracellular molecules, mediate DDC locomotion.

We found that blocking of Gai protein-coupled receptors with

PTX significantly reduced the displacement of DDC, implying

chemoattractant receptors, such as chemokines or lipid mediators,

in this process. This is consistent with recent 2P-IVM studies

demonstrating that PTX inhibited the migration of naı̈ve T cells

within the LN paracortex, and that CCR7 is, at least partially,

involved in this process [37–39]. However, the T cell zone of LN

contains the fibroblastic reticular cell (FRC) network, which

provides the structural backbone of this particular microenviron-

ment. Elegant imaging experiments by Germain’s group have

shown that the FRC network acts as a scaffold for migrating naı̈ve

T cells [40]. A similar cellular structure does not exist in the

dermis, raising the question as to how migrating DDC orient

themselves within the dermis. It is conceivable that interactions

with the extracellular matrix, primarily collagen fibers, are

responsible for this process. Indeed, high resolution imaging has

shown the intimate contact between DDC and the ECM (Figure 3),

and it is likely that chemoattractants are deposited along these

structures. Future studies will address the role of specific adhesion

receptors, such as integrins or the hyaluronan receptor CD44, as

well as specific chemoattractant receptors in these interactions.

The fact that DDC seemed to survey the dermis made us

wonder whether they were indeed capable of detecting microor-

ganisms introduced into the dermis. We chose the protozoan

parasite L. major as a model pathogen, which is ideal in this context

because, firstly, the parasite is directly deposited in the dermis

during natural infection by sand flies, and secondly, the parasite is

of sufficient size to be detected by 2P microscopy both extra- and

intracellularly. Furthermore, the innate and adaptive immune

responses against Leishmania spp. have been characterized in great

detail in the past, even though controversy exists as to whether DC

themselves are infected by the parasite during early infection

(reviewed in [11,13,25]). While the exact number of parasites

Figure 7. Discrimination of inert beads and L. major uptake by DDC and role of neutrophils in parasite uptake. (A) Left panels, time-
lapse images from 2P-IVM showing the cellular behaviors of DDC (yellow) after fluorescent bead inoculation alone (red) or beads (red) together with
L. major promastigotes (unlabelled). Right panel, frequency of DDC with intracellular beads in the presence or absence of L. major parasites (.50 cells
obtained from randomly selected fields). Scale bar, 12 mm. n = 3 experiments. (B) Mean velocity and frequency of motile DDC (mean6SEM ) at resting
state, after LmjF-DsRed2 promastigote, beads only, and beads plus L. major promastigote inoculation. Data points represent individual cells. (C)
Frequency of DDC with internalized LmjF-DsRed2 parasites in the ear skin of control (IgG), or neutrophil depleted (Gr-1 Ab) CD11c-YFP mice. n = 3
experiments.
doi:10.1371/journal.ppat.1000222.g007

Table 1. L. major and bead uptake by DDC.

Cell L. major Beads

Extracellular Intracellular Extracellular Intracellular

1 3 1 6 0

2 2 1 3 0

3 1 0 16 1

4 5 8 8 1

5 10 2 10 0

6 5 0 7 0

7 4 1 11 0

8 9 2 10 0

9 6 3 4 0

10 3 0 4 0

Total 48 18 79 2

Mean 4.8 1.8 7.9 0.2

Ratio = 2.67 Ratio = 39.5

Two to four hours after L. major or bead injection, individual DDC (number 1 to
10) were randomly selected, and the number of the respective particles present
intracellularly or within half a cell diameter around individual DDC determined
(n = 10 DDC) from 3 individual experiments. Ratio equals mean
extracellular:mean intracellular particles.
doi:10.1371/journal.ppat.1000222.t001
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transferred during sand fly bites is not known, inoculation of as few

as 100 metacyclic parasites is sufficient for establishing an infection

[41]. Although we could observe parasite uptake by YFP+ DDC by

injecting as few as 26104 parasites (data not shown), this was

technically challenging as only very few parasites and DC could be

visualized in situ when using such low numbers. Thus, for the

experiments in the present paper, 1–26105 parasites were used in

order to obtain data for proper statistical analysis. It should further

be pointed out that the use of small volumes (in the range of 1–

2 ml) for intradermal injection was critical, as larger volumes

(particularly .5 ml) resulted in the disruption of the local

microenvironment. This was evidenced by a disturbance of

ECM fibers due to excess fluid (edema) and a migratory

decrease/arrest of DDC within the injected ear, even after

injection of saline solution without an inflammatory stimulus (data

not shown). In contrast, using our injection protocol, we did not

observe a migratory or morphological change of DDC imaged

,50–200 mm away from the injection site under control

conditions (Figures 5E and 7B). This result bears consideration

not only for imaging studies, but for any situation in which the

function of DDC is studied.

In our intradermal infection model, we found that the majority

of DDC picked up one or more L. major parasites shortly after

inoculation. This was consistent when using two independent L.

major strains, supporting the hypothesis that DDC are indeed

capable of detecting this protozoan parasite in vivo. Interestingly,

after the introduction of parasites, DDC underwent a morpho-

logical transition into bona fide DC-shaped cells. Strikingly,

parasites appeared to be taken up by long, motile pseudopods

(Videos S8 and S9). In vitro infection models of macrophages

demonstrated that parasites initially adhered to the cell membrane

in a non-random orientation, i.e. preferentially with either the tip

or the base of their flagellum [29]. Subsequently, the parasites

were engulfed by pseudopods wrapping around the parasites

(‘‘coiled phagocytosis’’ [42]). We found that dendrite extension

was sometimes preceded by parasite contact with the cell

membrane, while at other times no visible contact was obvious.

However, the level of 2P-IVM resolution did not always allow for

unequivocal visualization of the parasite flagellum. Therefore, it is

conceivable that physical contact is the main trigger of DDC

dendrite extension observed in the context of Leishmania infection.

Recently it has been suggested that DDC are composed of two

separate subpopulations, i.e. the major langerin2 subset and a

small langerin+ subset [43–45]. Langerin+ DDC are distinct from

in-transit LC, and have been shown to be capable of inducing

cutaneous hypersensitivity reactions independently from langerin2

cells. However, these cells are very rare (2–10% of DDC), and it is

unclear whether their functions are different to langerin2 cells.

Since in our experiments 55–70% of all DDC are infected by L.

major, the vast majority will represent langerin2 cells. Together

with previous studies showing that langerin2 DC in draining LN

present Leishmania antigens to T cells, we therefore speculate that

langerin2 DDC are the major players in this scenario. Ablation of

langerin+ DDC using genetic approaches will enable definitive

answers to this question.

What are the mechanisms of parasite recognition by dendrites?

In the intestine, subepithelial DC have been found to extend

processes between epithelial cells into the gut lumen, often

revealing a spherical shape (‘‘balloon bodies’’) [22,46]. While

these processes were capable of capturing bacteria in the gut

lumen in a passive manner, this appeared to be a rare event.

Importantly, sampling of gut material was non-discriminatory, i.e.

DC did not distinguish between inert beads and bacteria [22]. In

our study, we found that inert material (beads) alone or co-injected

with parasites was largely ignored by DDC. In addition, when we

injected fluorescently-tagged Bacillus Calmette-Guérin (BCG), we

found that two to four hours after inoculation only ,30% of DDC

contained single internalized BCG, comparable to the results using

beads (Figure S4 and data not shown). Furthermore, under these

conditions we did not observe the transition of DDC into highly

dendritic cells, even when they contained bacteria (Figure S4 and

data not shown). Together, these results suggest that L. major

induces a specific change in DDC in vivo (i.e. pseudopod

formation), and may indicate the involvement of specific surface

receptor(s) in this process. Previous studies have shown that Fc

receptors and complement receptors are involved in Leishmania

uptake by phagocytic cells. However, the molecular cues

recognized on parasites are not well understood. Our studies have

shown that PGs are not involved in parasite uptake by DDC. The

use of parasite strains deficient in a variety of other structural and

metabolic genes may, in the future, identify the molecular

requirements of parasites to be sensed by dendritic processes.

Another key observation from this study was the rapid

transformation of migratory DDC into sessile DDC after exposure

to microbial products, such as LPS. In addition, both infected and

uninfected DDC became non-migratory at sites of L. major injection,

suggesting that the inflammatory environment induces the change in

migratory behavior, rather than parasite uptake per se. This

conceivably also reflects a switch in functionality of DDC, i.e. from

surveillance to sampling/antigen uptake. Thus, by arresting DDC in

close proximity to the site of infection, they form a network of sessile

cells ‘‘primed’’ for uptake of microbes present at the site. That these

states are indeed distinct from each other is further reflected by the

fact that PTX treatment interfered with DDC translocation, but not

with parasite uptake. These findings raise the question as to the fate of

DDC infected early during parasite infection. We have noted that

DDC loaded with Leishmania remained relatively sessile over a period

of up to ,6 hours post-inoculation (unpublished observation). When

imaging at later time points (,20 hours post infection), there were

numerous YFP+ cells present within the dermis. While these cells

showed a similar non-migratory phenotype as cells at earlier

timepoints, the number of parasite-containing DDC decreased

(unpublished observation). Nevertheless, parasites were still present

in the dermis, presumably within other cells (unpublished observa-

tion). This may suggest that infected DDC leave the dermis at this

stage in order to migrate to draining LN, and that these cells may be

replaced by newly immigrating DC or their precursors from the

bloodstream. Indeed, previous studies have shown that infected DC

arrive in draining LN around 24 hours after infection [5].

Alternatively, parasites within DDC in vivo may simply lose

fluorescence over time possibly due to an inability to survive for

prolonged periods of time within these cells. Future studies will

address potential interactions of infected DDC with the lymphatic

vasculature in the dermis, and how these interactions are regulated at

the molecular level.

Materials and Methods

Reagents
Anti-mouse CD11b, CD11c, CD45.2, F4/80, I-Ab (all from BD

Biosciences), Langerin (Dendritics, Lyon, France) and Moma-2

(Abcam, Cambridge, UK) antibodies were used for flow cytometry

analysis of epidermal and dermal cell suspensions.

Animals, L. major Parasites, and BCG Strain
CD11c-YFP mice [19] (kind gift of Dr. Michel Nussenzweig) on

a C57BL/6 background (10 generations) were bred in the animal

facility of the Wistar Institute and the Centenary Institute. Animal
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experiments were performed with approval of the Institutional

Animal Care and Use Committees at both institutions. To

generate fluorescent protein expressing L. major parasites, the gene

encoding the red fluorescent protein DsRed2 was PCR amplified

from pDsRed2 (Clontech) with primers that added BamHI sites to

both ends. The PCR product was cut with BamHI and ligated into

BglII site of pIR1SAT yielding pIR1SAT-DsRed2 (strain B4787).

After SwaI digestion, it was introduced into L. major strain Friedlin

V1 (MHOM/IL/80/Friedlin) by electroporation [47]. DsRed2-

expressing LV39 clone 5 (Rho/SU/59/P) and its LPG2-deficient

derivative were generated by stable transfection of Swa I-cut pIR1-

SAT-LUC-DsRed2 (B5947). This plasmid was obtained by

ligating the NruI-SalI DsRed2 fragment from pIR1SAT-DsRed2

(B4787) into SalI+NruI digested pIR1SAT-LUC (B5037). Clonal

transfectants were obtained and screened for bright red fluores-

cence and virulence in mouse infections (data not shown). One

clone of each strain was selected for work here (L. major FV1

SSU:IR1SAT-DsRED2(b), LmjF-DsRed2; LV39 SSU:LUC:

DSRED2, LmjLV39-DsRed2; LPG2KO SSU:LUC:DSRED2,

lpg2KO-DsRed2). Promastigotes were grown in complete M199

as described previously [47]. Red fluorescent protein expressing

BCG was generated by transforming BCG Pasteur with plasmid

pSMT3:mCherry (a kind gift of Dr Wilbert Bitter, VU University

Medical Center, Amsterdam, the Netherlands) as previously

described [48]. Hygromycin-resistant colonies were selected on

Middlebrook 7H11 medium (Difco Laboratories, Detroit, MI,

USA) and expanded in liquid Middlebrook 7H9 medium.

Fluorescent colonies were selected by flow cytometry.

Preparation of Epidermal and Dermal Cell Suspensions
Epidermal and dermal cell suspensions were prepared as

described previously [49] with some modifications. In brief, ear

tissues were incubated in trypsin (0.5%) in HBSS buffer (Invitrogen)

for 1 h at 37uC. For CD11c staining, we made use of dispase (5 U/

ml) instead of trypsin. After enzyme incubation, epidermis was

separated from dermis. To obtain single cell suspensions, epidermal

sheets were passed through a wire mesh, and dermal sheets were

further digested with collagenase D for 1 hour.

Treatment Protocols
For Gai protein-coupled receptor inhibition experiments,

CD11c-YFP mice were injected intravenously with PTX (30 ng/

g bodyweight) in saline solution. For LPS experiments, CD11c-

YFP mice were injected intravenously with 50 mg of LPS. 2P-IVM

was performed at various time points after the injections. For

neutrophil depletion, CD11c-YFP mice were injected i.p. with

250 mg of anti-Gr-1 antibody or rat IgG as control 24 hours

before the inoculation of L. major promastigotes. Splenocytes from

these mice were examined by flow cytometry to ensure the

depletion of neutrophils at the end of imaging (data not shown). In

order to reduce autofluorescence from hairs, hair was removed

from the ears for all imaging experiments [50]. Control

experiments without the use of hair remover revealed identical

migratory behavior of DDC (Figure S5).

Intradermal Leishmania Parasite, Bead, and BCG
Inoculation

Mice were anesthetized by intraperitoneal injection of Keta-

mine/Xylazine (80/10 mg/kg). 1–26105 stationary phase pro-

mastigotes in 1.5 ml of saline solution were injected intradermally

using a 33 gauge Hamilton syringe. This procedure was performed

under a stereoscopic microscope. For the bead experiments either

2.56105 FluoSphere microspheres (2 mm, Invitrogen) or 2.56105

microspheres plus 2.56105 FVI LmjF parasites were injected. For

the BCG experiments, ,26105 BCG were injected intradermally.

As an additional control, the fluorescent dye SNARF-1 (10 mg/ml)

was injected intradermally. Images were typically acquired 50–

200 mm from the injection site.

Two-Photon Intravital Microscopy and Image Analysis
Anesthetized mice were placed onto a custom-built stage to

position the ear on a small metal platform for 2P imaging. The ear

was immersed in saline/glycerol (70:30, vol:vol) and covered with

a coverslip. The temperature of the platform was maintained at

36uC, while the body temperature was regulated at 37uC through

a heating pad placed underneath the mouse. Two-photon imaging

was performed on a Prairie Technology Ultima System or a

LaVision Biotec TrimScope equipped with a 406 (NA 0.8) water

immersion objective [35]. Both setups included four external non-

descanned dual-channel reflection/fluorescence detectors, and a

diode pumped, wideband mode-locked Ti:Sapphire femtosecond

laser (Coherent Chameleon or Spectra-Physics Mai Tai HP). The

ear skin was exposed to polarized laser light at a wavelength of

950–960 nm. Three-dimensional (x,y,z) images of the ear skin

were acquired (2–5 mm spacing in z-axis over a total distance of

10–25 mm) every 30 s for a total observation period of 1–2 hours.

Images acquired were then transformed into time sequence movies

using Volocity software (Improvision). Mean migration velocities,

cellular displacement, and confinement ratios (total length of track

divided by distance between starting and end point) were manually

tracked and calculated for 159 or 309300 as described previously

[35]. Measurements were typically performed on 31 or 62

consecutive frames of the video. Cells were defined as immobile

if the mean velocity was less than 2 mm/min [19]. To quantify the

number of DC with internalized parasites, beads or BCG, images

from 3D reconstructions of inoculated skin were examined for the

colocalization of red signals (L. major, beads or BCG) and yellow

signals (DC).

Statistical Analysis
For comparisons, the Student’s t test (normally distributed) or

the Mann-Whitney test (not normally distributed) or one-way

ANOVA were used. A difference was considered significant if

P,0.05.

Supporting Information

Figure S1 Flow cytometric analyses of YFP expression in the

dermal cell population of CD11c-YFP and wildtype mice. (A) Dot

plots show YFP signals in dermal cells in relation to I-Ab

expression. Mean Fluorescence Intensity (MFI) of YFP is indicated

in the plots. A YFP+I-Ab-low population was present in both mouse

strains and was thus considered autofluorescent. Phenotypic

analysis revealed that these cells represent macrophages (see

Figure 1). (B) Maximum intensity images from 2P-IVM showing

CD11c-YFP and WT mouse ear skin (dermis). While YFP bright

cells are clearly detectable in CD11c-YFP mice, no YFP signal was

detected in wildtype animals. Blue signals indicate second

harmonic generation.

Found at: doi:10.1371/journal.ppat.1000222.s001 (0.09 MB PDF)

Figure S2 Effects of LPS on DDC migration. Representative

tracks of DDC after LPS treatment (out of 3 experiments). Scale

bars 49 mm.

Found at: doi:10.1371/journal.ppat.1000222.s002 (0.21 MB PDF)

Figure S3 Internalization of highly purified metacyclic Leish-

mania parasites by DDC. A three-dimensional section of DDC
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(yellow) containing several LmjF-DsRed2 promastigotes (red). The

blue cross/circles point out intracellular parasites.

Found at: doi:10.1371/journal.ppat.1000222.s003 (0.04 MB PDF)

Figure S4 mCherry-BCG uptake by DDC. 2 h after intrader-

mal mCherry:BCG (red) inoculation (26105 bacilli), a three-

dimensional section of the ear was taken by 2P microscopy. A

DDC (yellow) containing one intracellular BCG is visible (white

box highlights BCG). Note that the DDC does not transform into

a dendritic shaped cell.

Found at: doi:10.1371/journal.ppat.1000222.s004 (0.38 MB PDF)

Figure S5 Hair removal does not influence the behavior of

DDC in the skin. Experiments were performed with or without

hair removal (n = 3 mice).

Found at: doi:10.1371/journal.ppat.1000222.s005 (0.10 MB PDF)

Video S1 Behavior of epidermal LC. A time-lapse sequence of

maximum projection (21 mm stack) showing the in vivo dynamics of

LC movement in CD11c-YFP ear skin. Note the occasional

extensions and retractions of dendrities (dSEARCH). Time is

shown as hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s006 (1.46 MB

MOV)

Video S2 Dendrite movement of epidermal LC. A time-lapse

sequence of maximum projection (21 mm stack) showing

dSEARCH at higher magnification. Time is shown as hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s007 (3.14 MB

MOV)

Video S3 Dermal DC migration. A time-lapse sequence of

maximum projection (21 mm stack) shows the migratory patterns

of DDC in CD11c-YFP mouse ear skin. Time is shown as

hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s008 (5.16 MB

MOV)

Video S4 Dermal DC migration. A time-lapse sequence of

maximum projection (21 mm stack) shows the migratory patterns

of a representative DDC in CD11c-YFP mouse ear skin. Red

square indicates cell centroid, red line tracks the centroid over the

observation period.

Found at: doi:10.1371/journal.ppat.1000222.s009 (0.20 MB

MOV)

Video S5 Effects of PTX on dermal DC migration. A time-lapse

sequence of maximum projection (21 mm stack) shows the

migratory pattern of a representative DDC in CD11c-YFP mouse

ear skin after systemic PTX treatment. Red square indicates cell

centroid, red line tracks the centroid over the observation period.

Found at: doi:10.1371/journal.ppat.1000222.s010 (0.37 MB

MOV)

Video S6 The migratory pattern of dermal DC after LPS

injection (2 h). A time-lapse sequence of maximum projection

(21 mm stack) showing DDC movement dynamics in CD11c-YFP

ear skin 2 h after intravenous injection of 50 mg of LPS. Time is

shown as hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s011 (3.19 MB

MOV)

Video S7 The migratory pattern of dermal DC after LPS

injection (6 h). A time-lapse sequence of maximum projection

(21 mm stack) showing DDC movement dynamics in CD11c-YFP

ear skin 6 h after intravenous injection of 50 mg of LPS. Time is

shown as hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s012 (4.17 MB

MOV)

Video S8 Dermal DC interact with L. major parasites. A time-

lapse sequence of maximum projection (24 mm stack) shows a

DDC extending a pseudopod to pursue and capture a moving

LmjF-DsRed2 promastigote in the ear skin of a CD11c-YFP

mouse. Time is shown as hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s013 (1.56 MB

MOV)

Video S9 A DDC containing multiple vacuoles capturing an L.

major parasite. A time-lapse sequence of maximum projection

(24 mm stack) shows a DDC extending a pseudopod to pursue and

capture a moving LmjF-DsRed2 promastigotes in the ear skin of a

CD11c-YFP mouse. Time is shown as hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s014 (0.60 MB

MOV)

Video S10 Behavior of dermal DC in L. major and beads (red)

injected ear. A time-lapse of maximum projection (24 mm stack)

shows DDC movement dynamics in the presence of L. major

parasites (unlabelled) and beads (2 mm, red). Time is shown as

hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s015 (1.24 MB

MOV)

Video S11 Behavior of a dermal DC in ear inoculated with

beads only. A time-lapse sequence of maximum projection (24 mm

stack) shows DDC movement dynamics in the presence of beads

(2 mm, red) only. Time is shown as hh:mm:ss.

Found at: doi:10.1371/journal.ppat.1000222.s016 (0.25 MB

MOV)
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