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Abstract: The thrombin binding aptamer (TBA) is a promising nucleic acid-based anticoagulant.
We studied the effects of chemical modifications, such as dendrimer Trebler and NHS carboxy group,
on TBA with respect to its structures and thrombin binding affinity. The two dendrimer modifications
were incorporated into the TBA at the 5′ end and the NHS carboxy group was added into the
thymine residues in the thrombin binding site of the TBA G-quadruplex (at T4, T13 and both T4/T13)
using solid phase oligonucleotide synthesis. Circular dichroism (CD) spectroscopy confirmed that
all of these modified TBA variants fold into a stable G-quadruplex. The binding affinity of TBA
variants with thrombin was measured by surface plasmon resonance (SPR). The binding patterns
and equilibrium dissociation constants (KD) of the modified TBAs are very similar to that of the
native TBA. Molecular dynamics simulations studies indicate that the additional interactions or
stability enhancement introduced by the modifications are minimized either by the disruption of TBA–
thrombin interactions or destabilization elsewhere in the aptamer, providing a rational explanation
for our experimental data. Overall, this study identifies potential positions on the TBA that can be
modified without adversely affecting its structure and thrombin binding preference, which could be
useful in the design and development of more functional TBA analogues.

Keywords: thrombin binding aptamer (TBA); dendrimers; trebler; NHS-carboxy T

1. Introduction

Hemostasis is an important process for all living organisms. When a blood vessel is
damaged, clotting factors are released and they convert prothrombin into thrombin [1].
Thrombin is a serine protease that plays a major role in the coagulation cascade [2]. It
converts the soluble protein fibrinogen into the insoluble fibrin, which further stabilizes
platelet aggregates and leads to clot formation. However, when undesired coagulation
occurs, it can result in serious conditions, such as deep vein thrombosis (DVT) and pul-
monary embolism [3,4]. Anticoagulants are medications that help to prevent blood from
over clotting. The current in-use anticoagulants, including warfarin, heparin and rivarox-
aban [5,6], have several side effects, such as excessive bleeding, dizziness, hair loss, and
tissue necrosis [7–9]. Thus, there is an urgent need for new anticoagulation therapies with
enhanced efficacy and fewer side effects.

An alternative to the existing anticoagulants, which are mostly small molecule drugs,
is the use of aptamers. Aptamers are single stranded DNA or RNA that bind to their target
molecules with high specificity and affinity [10]. Thrombin binding aptamer (TBA) is an
example of a potential anticoagulant, that binds to thrombin specifically at the fibrinogen
binding site in the protein (exosite I) and prevents the conversion of fibrinogen to fibrin
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and consequently clot formation. TBA is a 15-mer DNA oligonucleotide with the sequence
of 5′-GGTTGGTGTGGTTGG-3′ and it self-assembles into an antiparallel G-quadruplex
structure in solution with two G-quartets or G-tetrads—GT1 (G1, G6, G10, G15) and GT2
(G2, G5, G11, G14), as well as two T-T loops and one T-G-T loop (Figure 1). It is usually
stabilized by a metal cation (Na+ or K+) in between the two quartets [11]. TBA binds to
thrombin exosite I via the T-T loops and exosite II is a heparin binding site for the T-G-T
loop [12–15]. Currently, one of the TBA variants is in clinical trials as an anticoagulant for
patients undergoing coronary artery bypass graft surgery [16].
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To improve the binding affinity between TBA and thrombin, several chemical and
structural modifications have been explored such as TBA with 5-fluoro-2′-deoxyuridine,
5′-nitroindole, UNA (unlocked nucleic acid), LNA (locked nucleic acid), thiophosphoryl
internucleotide linkages, or triazole internucleotide linkages [12,17–22]. Several of them
maintain the native conformation and the ability of anticoagulation, but in certain cases the
binding affinity dramatically decreased due to the structural disruptions that are introduced
by the chemical modifications to the overall conformation of the TBA G-quadruplex.
For example, when thiophosphoryl internucleotide bond was introduced in between the
two G-tetrads, the thermostability of modified TBA decreased by up to 12 ◦C [21]. An
exception was reported by Pasternak et al. such that a UNA-U in position T7 had higher
thermodynamic stability, stronger binding affinity to thrombin, and better anticoagulant
ability compared to the native TBA [19].

The binding affinity of native TBA to human α-thrombin has been reported to be
106 ± 5.1 nM [19]. In this study, we introduced two sets of modifications in the TBA,
targeting to improve the binding between TBA and thrombin. As illustrated in Figure 1, we
chose two dendrimer linkers on the 5′ end of TBA as our first set of modifications. These
linkers are stable symmetric branched polymers with hydroxyl groups at their terminals
named as Trebler (T) and Long Trebler (LT). Our initial hypothesis was that while the
long arms of the linkers might be able to impart additional stability to the aptamer by
wrapping around it, the terminal hydroxyl groups can provide additional hydrogen-bond
interactions with the thrombin, thus improving the overall binding. For our second set of
modifications, we chose the NHS (N-hydroxysuccinimide)-carboxyl group introduced at
the C5 position of thymine. It was incorporated at the thrombin exosite I binding site of
TBA in the TT loops, specifically at T4, T13 and both T4/T13 positions. NHS esters are
one of the most popular amine-specific functional groups and bind with primary amine
on protein to form amide bonds [23]. Exosite I of thrombin is lined with two Arg residues
with primary amine groups that are involved in binding with TBA [13]. We hypothesized
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that NHS ester modifications in the binding site of TBA, namely the T-T loops, would interact
with the amines and consequently have impacts on the binding between TBA and thrombin.

Our circular dichroism (CD) spectroscopy study confirmed that all of these modified
TBA variants can fold into the same G-quadruplex structure as the native counterpart.
Binding affinity studies by surface plasmon resonance (SPR) indicated that the interaction
patterns and dissociation constants (KD) of the modified TBAs are very similar to that of
the native one, although there was no discernable increase in binding. We further investi-
gated the structural effects as well as the interactions of these modifications with thrombin
through in silico modelling and molecular dynamics simulations studies, which indicate
that the additional interactions or potentially stabilizing effects of the modifications are ac-
tually minimized either by the disruption of TBA–thrombin interactions or destabilization
elsewhere in the aptamer, providing a rational explanation for our experimental observa-
tions. Overall, this study identifies potential positions on the TBA that can be modified
without adversely affecting its structure and thrombin binding preference. In addition,
our simulation studies also suggested new positions for future modifications that could be
useful to the design and development of TBA analogues with improved functionality.

2. Materials and Methods
2.1. General Chemicals

Acrylamide, potassium chloride, sodium hydroxide, phosphate buffered saline (PBS),
tetramethylethylenediamine (TEMED), and 10× TBE were purchased from Sigma-Aldrich.
Then, 10 mg of 7.7 mg/mL human alpha Thrombin was purchased from Haematologic
Technologies. Carboxyl sensor chip, activation buffer, blocking solution, 1-ethyl-3-(3-
dimethylaminopropyl)-carbodiimide (EDC), and N-hydroxysuccinimide (NHS) for SPR
were purchased from Nicoya Lifesciences.

2.2. Oligonucleotide Synthesis

Native TBA, Trebler modified TBA (T) and Long Trebler modified TBA (LT) sequences
were chemically synthesized at 1.0-mol scales by solid phase synthesis using an Oligo-800 syn-
thesizer. Commercially available native TBA was purchased from Integrated DNA Technolo-
gies (IDT). Dendrimer modifiers, Tris-2,2,2-[3-(4,4′-dimethoxytrityloxy)propyloxymethyl]-ethyl-
[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite and Tris-2,2,2-[3-(4,4′-dimethoxytrityloxy)
propyloxymethyl]-methyleneoxypropyl-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite
were purchased from Glen Research. Native phosphoramidites were purchased from Chem-
Genes Corporation and dissolved in acetonitrile with final concentration of 0.1 M. All the
other reagents are standard solutions also obtained from ChemGenes. After synthesis, the
oligos were cleaved from the solid support and fully deprotected with AMA (ammonium
hydroxide:methylamine = 1:1) at 65 ◦C for 30 min. The amines were removed by Speed-Vac
concentrator before purification. The DNA strands were purified by HPLC and characterized
by denaturing polyacrylamide gel electrophoresis (PAGE).

2.3. Circular Dichroism Spectroscopy

CD spectra were measured by Jasco J-815 CD spectrometer by using a fused quartz
cuvette with 1 mm of light path length. The data was collected at 25 ◦C in the range
of 220–320 nm with 1.00 nm bandwidth and data pitch. Spectra were collected with 3
accumulations and at a 100 nm/min scanning speed. No baseline correction was done, but
the spectra were smoothened with convolution width of 25 by Savitzky–Golay method.
Then, 5 µM solutions of native TBA and modified TBA were prepared in 10 mM KCl and
annealed at 95 ◦C for 5 min and cooled down to room temperature to allow the structure to
refold. Further, 100 µM solution of Thrombin was also prepared in 10 mM KCl. All plots
were generated with SigmaPlot 12.0.



Molecules 2021, 26, 4620 4 of 13

2.4. Surface Plasmon Resonance (SPR) Binding Study

A carboxyl sensor chip was used for the experiment. Briefly, 50 µg/mL of Thrombin
was prepared in the activation buffer. Different concentrations of modified TBA (except
5′ FAM modifications), with 1, 2, 4, 8, and 16 µM analyte samples, were prepared in the
running buffer, 0.005% PBS TWEEN 20 10 mM KCl pH 7.4, then annealed at 95 ◦C for
5 min and cooled down to room temperature to allow the structure to refold. Binding of
modified TBA to Thrombin was studied with OpenSPR, a benchtop version of SPR from
Nicoya Lifesciences. First, the carboxyl sensor chip was washed with 80% isopropanol
(IPA) and dried with air. Priming the SPR system, taking new reference spectra, and filling
the flow cell were undertaken prior to experiment. To remove any air bubbles in the flow
cell and tubes, 80% IPA was injected at the maximum flow rate 150 µL/min. To activate
the carboxyl sensor chip, to clean the surface, and to block nonspecific binding, EDC/NHS
mixture (thaw and mix immediately), 10 mM HCl, and blocking agent were injected to
open SPR respectively at the lowest flow rate of 20 µL/min. For regeneration, 5 mM NaOH
was injected at flow rate 150 µL/min. After changing the flow rate to 20 µL/min, 1 µM
modified TBA was injected and left to dissociate for 6 min or more. Before every injection of
the next analyte, 5 mM NaOH was injected to remove any unbound TBA at the maximum
flow rate for 150 µL/min. The TBA analyte samples were injected in increasing order. SPR
data were kinetically analyzed by TraceDrawer software.

2.5. Molecular Modelling and Simulation Methods

To understand in detail the structural effects of the modifications on TBA, molecular
dynamics simulations were performed. First, AMBER [24] type force-field parameters
were developed for the modifications. The geometries of the modified nucleosides were
optimized using Hartree–Fock level theory and 6-31G* basis-sets. Partial charges on
the atoms were then obtained using the online RESP charge-fitting server R.E.D.D [25,26].
AMBER-99 force-field parameters with bsc1 modification [27] were used to generate bonded
and non-bonded interaction parameters for the modified nucleosides. Rotamer libraries for
the modifications were generated in MOE [28]. The initial structure of thrombin bound to
the unmodified TBA (PDB ID: 4DII) was downloaded from the protein data bank [29]. For
our MD studies, five structures of the modified TBA bound to thrombin were generated
using the initial unmodified structure and the rotamer library generated in MOE—three
with the NHS-Carboxy T modification at the 4th (4NHT), 13th (13NHT), and the 4th and
13th (413NHT) position of the aptamer, and two with the short (5TG) and the long trebler
group (5LTG) at the 5′ end of the TBA. A total of 12 initial structures were simulated,
namely the native, 4NHT, 13NHT, 413NHT, 5TG, and 5LTG, for the thrombin free and
thrombin bound aptamer.

Molecular dynamics simulations were performed using GROMACS 2019.4 [30] on
all twelve systems in a solution of 0.01 M KCl in a cubic box. The size of the box and the
number of ions and water molecules for the aptamer simulations were: 6.14 nm containing
15 K+ and 1 Cl− ions and ~7503 water molecules. For the thrombin bound simulations,
a box of size ~9 nm containing 14 K+ and 1 Cl− ions and 6136 water molecules was
used. The MD simulations incorporated a leap-frog algorithm with a 2-fs time step to
integrate the equations of motion. The system was maintained at 300 K, using the velocity
rescaling thermostat [31]. The pressure was maintained at 1 atm using the Berendsen
barostat for equilibration [32,33]. Long-range electrostatic interactions were calculated
using the particle mesh Ewald (PME) algorithm with a real space cut-off of 1.0 nm [34].
Lennard–Jones interactions were truncated at 1.0 nm. The TIP3P model was used to
represent the water molecules, and the LINCS algorithm was used to constrain the motion
of hydrogen atoms bonded to heavy atoms [35]. The system was subjected to energy
minimization to prevent any overlap of atoms, followed by a short equilibration (0.3 ns)
and 100-ns production run. Coordinates of the DNA and protein were stored every 2 ps
for further analysis. The simulations were visualized using Visual Molecular Dynamics
(VMD) software [36] and analyzed using tools from GROMACS [30]. Hydrogen bonding
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analysis was performed in VMD using a donor-acceptor distance cutoff 0.33 nm and the
hydrogen–donor–acceptor angle cutoff of 30 degrees.

To propose new modifications that can potentially enhance thrombin–aptamer interac-
tions, the minimized structures from the simulation were analyzed in MOE. The interaction
site was explored for the possibility of expanding the modification or adding functional
groups to introduce new hydrophobic and/or hydrophilic interactions between thrombin
and the aptamer. The interaction strength was then calculated using a local minimization
of the modification based on AMBER 10:EHT included within MOE [28].

3. Results
3.1. Modified TBA Constructs Maintain Native TBA Folding

The native TBA folds into an antiparallel G-quadruplex structure that can be identified
by its signature CD spectra profile in the wavelength range of 220 nm to 320 nm, with
a moderate positive peak at ~245 nm, a negative peak at ~267 nm, and an intense high
peak at ~293 nm [37], as shown in Figure 2A. To check for any changes in confirmation
of the aptamer upon protein binding, thrombin was added in increments of 2 µL from
100 µM Thrombin stock solution (200 pmoles at each increment) to the aptamer (1 nM),
and the corresponding CD spectra were collected. The experimental conditions, such as
concentration of the aptamer, Thrombin, and 10 mM KCl buffer, were finalized based on
initial trials at different concentrations as well as buffer conditions. The same process was
repeated for the different modified constructs. As shown in Figure 2, for each case, as
the amount of added thrombin increases, the intensity of the peaks is slightly affected,
but there is no shift in the peak wavelengths, indicating that the overall G-quadruplex
structure is well maintained across all modifications both in the absence of thrombin and
upon thrombin binding, despite some small local perturbations. More specifically, the
band intensities for the 5TG construct are relatively lower compared to the native TBA as
shown in Figure 2B. Though the spectra show patterns similar to that of the G-quadruplex,
there were intensity shifts in the range of 220–240 nm as a sign of local structural switches.
With the increasing amounts of thrombin, the 5TG can maintain its stable antiparallel
G-quadruplex structure in the process. In the case of the longer trebler group, 5LTG
(Figure 2C) and NHS constructs (Figure 2D–F), the overall band intensities are close to the
native TBA and similar intensity shift is observed as the 5TG case at lower wavelengths.

Figure 2. CD spectra of (A) TBA, (B) 5TG, (C) 5LTG, (D) 4NHT, (E) 13NHT and (F) 413NHT titrated
with increased equivalence of 100 µM thrombin solution.

3.2. Binding Affinities of Modified TBA Constructs Are Comparable to Native TBA

To measure the binding constants using SPR, the thrombin molecule was immobilized
on the carboxyl-coated sensor chip by the interactions with amine groups from Arg, Tyr,
Lys and Ile residues. Before the measurement, the blank binding test of TBA with the sensor
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chip was performed to eliminate the non-specific binding between TBA and chips. After
immobilization of thrombin, different concentrations of TBA solution ranging from 1–8 µM
were added to the complex for SPR analysis. The original binding curves are shown in
Figure 3 and the binding constants (KD) are summarized in Table 1.

The kinetic analysis was conducted using 1:1 binding model on the TraceDrawer
software provided by Nicoya Lifesciences. The average dissociation constant (KD) value
of native TBA was calculated as 99.8 nM, which is consistent with the previous literature
value, 102.6 ± 5.1 nM [19]. Under the same condition, the average dissociation constant
(KD) values of 5TG and 5LTG were 102 nM and 99.6 nM respectively. These close KD values
for the TBAs with the 5′ trebler modifications indicate that these modifications do not
alter the overall interactions between TBA and thrombin. Similarly, the 4NHT, 13NHT,
and 413NHT TBA constructs were also applied under the same conditions. Saturation of
binding was observed at the concentration of 8 µM in Figure 3d–f and the KD values for
4NHT, 13NHT and 413NHT TBA were 99 nM, 97.5 nM, and 99.8 nM, respectively, with
similar signal trend as the native TBA. A previous study that used unlocked nucleic acids
(UNA) at various positions of the TBA [19] showed that a UNA at the 4th position decreases
binding affinity of TBA to thrombin (Table 1), which was attributed to the flexibility of
the UNA that leads to the disruption of either the G-tetrad itself or TBA’s interaction with
thrombin. In the case of 4NHT, however, we observe that, for a modification at the same
position, the change in KD is insignificant. These observations together indicate that the
modifications investigated in this study maintain native TBA-like binding pattern and
affinity to thrombin.
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Table 1. Dissociation constant values (KD) for the different constructs.

Name of the Construct
Dissociation Constant KD

(Average Values Calculated from
Our SPR Experiments) (nM)

Reported KD
(from Literature [19] for

Unmodified/Modified TBA
at Same Locations) (nM)

TBA 99.8 (±8.96) 102.6 ± 5.1

5TG 102 (±2.22) -

5LTG 99.6 (±1.2) -

4NHT 102 (±2.21) 172.3 ± 8.1 a

13NHT 99.7 (±1.34) -

413NHT 102 (±2.22) -
a The values reported in this study are for an unlocked nucleic acid (UNA) modification at the 4th position.

3.3. Molecular Dynamics Simulations of TBA and Its Modified Constructs Agree with CD Data

In order to understand the biochemical observations of the effect of the modifications
on TBA, we performed molecular dynamics simulations of the TBA with and without the
modifications. Our simulations of the thrombin free aptamer agree with the observations
of the CD experiments described above. All the constructs of the TBA maintain a stable
G-quadruplex structure in the absence of thrombin. As shown in Figure 4a, all-atom
root mean square deviation (RMSD) of all the structures from the initial folded structure
is small (<5 Å). The root mean square fluctuations (RMSF) of the nucleotides involved
in the G-quartets are small, and the higher values coincide with the TT and TGT loop
nucleotides, and the trebler modified 5′ G (Figure 4b). Most native TBA interactions
within the aptamer are also maintained in the modified constructs as is evident from the
comparable hydrogen bond occupancies within the G-quartets for the modified and native
TBAs (Figure 4c). However, a few differences are observed. In the case of the trebler
modifications, the flexible trebler group on the 5′ end (5TG, 5LTG) prevents the H-bond
interaction within the G1 nucleotide between its O5′ and N3 atoms, that is present in
the unmodified TBA but an additional interaction is observed within G14 between the
nucleobase and the backbone. While these interactions can potentially offset each other’s
effects, it is interesting to note that the modification in the 5′ end adversely affects the
interaction between T4 and T13 on the other end of the aptamer, suggesting allosteric
effects are in play. The NHT modifications promote one additional h-bond interaction
between T4 and T13, which enhances its stacking to the adjacent quartet (GT2), leading
to a slightly more stable quartet as seen by the small increase in H-bond occupancies for
G11–G14 and G2–G5 pairs.
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3.4. Molecular Dynamics Simulation of Thrombin Bound TBA and Its Modified Constructs Agree
with SPR Experiments

Another set of simulations of thrombin bound TBA were performed to understand
the effects of modifications on the interaction of TBA with thrombin in structural detail.
The RMSD (Figures 5 and 6a) for the aptamer bound to thrombin is similar to that of
the thrombin free aptamer, suggesting that the structure does not deviate from its initial
configuration upon thrombin binding. In these simulations, the RMSF of TT loops which are
on the thrombin binding side of the G-quartets in the aptamer, is lower than in the thrombin
free aptamer simulations. This is expected as the aptamer interacts with thrombin via these
loops thus stabilizing the nucleotides. Surprisingly, for the 413NHT construct, we observe
that the TGT loop on the other side of the G-quartets has a higher RMSF compared to all
other variants (Figure 6b). To check the reproducibility of this unexpected effect, we ran
twenty simulations of the system with the 413NHT construct. We observe that indeed the
TGT loop has a high RMSF and thus appears to be destabilized by the NHT modifications
in the TT loops (Supplementary Figure S1). This alludes to the interdependence between
the TT and TGT loops of the aptamer where modifying one affects the stability of the other.

Next, we analyzed the interface of the thrombin–aptamer complex. The interaction
between TBA and thrombin consists of both polar (hydrogen bonds) and non-polar interac-
tions and has been reported in detail in several previous studies [38]. Specifically, the TT
loops of TBA interact with thrombin via a loop region formed by amino acid residues 74–80,
with T3 and T12 forming a pincer-like structure, while T4 and T13 establish hydrogen
bonding with the loop amino-acid side chains that occupy the space between the TT loops
in close contact with the aptamer. The interactions include: (i) hydrophobic contacts be-
tween T3 and Ile74, (ii) stacking interactions between T12 and Tyr76, (iii) hydrogen bonds
between T4, T13 and Arg75, Arg77 of thrombin (Figure 5a). In our simulations, we observe
that the modifications did not significantly disrupt the previously reported interactions
between thrombin and TBA, which is in agreement with the experiments—the dissociation
constants listed in Table 1, for the different modified variants of TBA, are comparable to the
unmodified TBA. The hydrophobic interactions are maintained throughout the simulation
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in all the modified variants of TBA. The most robust hydrogen bond interaction is that
between one of the terminal amines of Arg 77 and the carbonyl oxygen O2 on T4 which
is not affected by the presence of modifications. Arg77 is also held in position with a
supporting interaction between the other terminal amine on Arg 77 and the backbone of G5.
The interactions of the aptamer with residue Arg 75 are more prone to be affected by the
modifications. Arg75 is positioned such that it interacts with both T4 and T13 in the native
TBA. In the presence of the NHT modifications, Arg 75 adapts a configuration different
from the native, such that the native contacts are either aided by additional interactions or
replaced by a different set of similar hydrogen bond interactions (Figure 6c), thus leading to
a marginal improvement in the thrombin binding capacity of TBA. Interestingly, in case of
the long trebler modification, additional interactions are observed between the T3-T4 loop
nucleotides and amino acid residues Gly25 and Tyr117. The long trebler group, however,
does not have any direct contact to facilitate this interaction, suggesting allosteric effects
that were also observed in the case of the free aptamer simulations. However, the effect of
any new hydrogen bonds observed in the modified constructs is offset by the disruption of
hydrogen bond interactions of the native TBA with thrombin, thus having no significant
influence on the binding of the TBA to thrombin, as noted in Table 1.
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Figure 5. Structures of thrombin bound aptamers. The protein and the potassium ion are shown in yellow and the
unmodified aptamer in gray (a) The aminoacid residues and nucleotides involved in the interaction between thrombin and
the unmodified aptamer (hydrophobic interactions in shades of blue, and hydrophilic in red and wheat) (b–f) Structures of
the dominant conformation from the simulations for the modified aptamer systems overlaid on the unmodified aptamer
(gray). The modified nucleotides in each case are highlighted in orange.



Molecules 2021, 26, 4620 10 of 13

Molecules 2021, 26, x FOR PEER REVIEW 10 of 13 
 

 

(Figure 6c), thus leading to a marginal improvement in the thrombin binding capacity of 

TBA. Interestingly, in case of the long trebler modification, additional interactions are ob-

served between the T3-T4 loop nucleotides and amino acid residues Gly25 and Tyr117. 

The long trebler group, however, does not have any direct contact to facilitate this inter-

action, suggesting allosteric effects that were also observed in the case of the free aptamer 

simulations. However, the effect of any new hydrogen bonds observed in the modified 

constructs is offset by the disruption of hydrogen bond interactions of the native TBA with 

thrombin, thus having no significant influence on the binding of the TBA to thrombin, as 

noted in Table 1. 

 

Figure 6. MD simulation results for the thrombin bound aptamers. (a) Root mean square deviation from the initial struc-

ture; (b) Average root mean square fluctuations for each nucleotide in the native and modified aptamer. Trebler group is 

treated as a separate nucleotide; (c) Bond occupancies for inter-hydrogen bonds of in the aptamer with thrombin. Only H-

bonds with at least 25% occupancies are shown; (d) Schematic of the various interactions between the aptamer and throm-

bin. 

4. Discussions 

In this work, we introduced modifications on three locations in the TBA and investi-

gated the effect of the modifications on aptamer conformation and thrombin binding abil-

ity. In our CD experiments, we observed that the modifications do not alter the G-quad-

ruplex fold of TBA, which was promising, since the quadruplex fold is important for its 

interaction with thrombin, as previously reported [11]. Several previous studies have fo-

cused on optimizing the structural stability of the G-quadruplex of the TBA by the use of 

Fluorine modified bases [17], locked/unlocked nucleic acids [19,39,40], etc. These ap-

proaches have been able to enhance the stability of the G-quadruplex in specific cases but 

have not been as successful in improving the binding affinity of TBA with thrombin. In 

our approach, we hypothesized that the introduction of the dendrimeric and two NHS 

carboxy modifications at G1, T4, and T13 of the aptamer, respectively, would boost the 

binding affinity of TBA to thrombin by introducing additional hydrogen bonding interac-

tions. 

Our subsequent SPR experiments to measure the binding affinity of aptamer to 

thrombin, however, showed that thrombin binding is not affected by these modifications. 

This was surprising and contrary to our working hypothesis. We performed molecular 

dynamics simulations to investigate this further. Overall, the MD simulations were in 

Figure 6. MD simulation results for the thrombin bound aptamers. (a) Root mean square deviation from the initial structure;
(b) Average root mean square fluctuations for each nucleotide in the native and modified aptamer. Trebler group is treated
as a separate nucleotide; (c) Bond occupancies for inter-hydrogen bonds of the aptamer with thrombin. Only H-bonds with
at least 25% occupancies are shown; (d) Schematic of the various interactions between the aptamer and thrombin.

4. Discussions

In this work, we introduced modifications on three locations in the TBA and investi-
gated the effect of the modifications on aptamer conformation and thrombin binding ability.
In our CD experiments, we observed that the modifications do not alter the G-quadruplex
fold of TBA, which was promising, since the quadruplex fold is important for its interaction
with thrombin, as previously reported [11]. Several previous studies have focused on
optimizing the structural stability of the G-quadruplex of the TBA by the use of Fluorine
modified bases [17], locked/unlocked nucleic acids [19,39,40], etc. These approaches have
been able to enhance the stability of the G-quadruplex in specific cases but have not been
as successful in improving the binding affinity of TBA with thrombin. In our approach, we
hypothesized that the introduction of the dendrimeric and two NHS carboxy modifications
at G1, T4, and T13 of the aptamer, respectively, would boost the binding affinity of TBA to
thrombin by introducing additional hydrogen bonding interactions.

Our subsequent SPR experiments to measure the binding affinity of aptamer to throm-
bin, however, showed that thrombin binding is not affected by these modifications. This
was surprising and contrary to our working hypothesis. We performed molecular dynam-
ics simulations to investigate this further. Overall, the MD simulations were in agreement
with the experiments. In the simulations of the free aptamer, we observed that none of the
modified constructs deviated from antiparallel G-quadruplex structure of the unmodified
aptamer. In case of the thrombin bound aptamer simulations, however, we note subtle
differences in the overall stability of the aptamer and its interaction with thrombin in the
presence of the modifications. The NHS-carboxy T modifications on the TT loops at the
thrombin binding interface affect the fluctuations of the TGT loop on the opposite end of the
aptamer. In our constructs, the destabilizing effect was not substantial enough to adversely
affect thrombin binding. However, this suggests that when introducing modifications in
the aptamer, their effects on the loops on either end of the G-quartets must be taken into
account to ensure the intended outcome. In terms of the actual interaction with thrombin,
all the modifications that we studied were well tolerated in the aptamer in their respective
positions. Any disruption in existing thrombin–aptamer interactions in the presence of the
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modifications was compensated by additional interactions formed elsewhere within the
structure, thus illustrating the robustness of TBA–thrombin interaction.

Since we observed in our simulations that the interactions between one of the inter-
facial arginines (Arg 75) and TBA are dynamic and affected the most by changes to the
TBA, we used in silico modelling to explore additional modifications at T4 and T13 of
the aptamer that could improve local interactions near the binding site. Our preliminary
findings suggest that introducing small changes to the NHS carboxy group in the TT
loops can potentially enhance thrombin–aptamer interactions. For example, a carbonyl
group added to the second carbon of the NHS carboxy group on T4 not only allows for an
additional interaction with Arg75, but also increases its flexibility, allowing the carboxyl
group to interact with the phosphate backbone and provide ancillary support to hold T3 in
a favorable position (Supplementary Figure S2). The modelling results are encouraging
and testing the proposed modifications in vitro is part of our ongoing and future work.

5. Conclusions

The thrombin binding aptamer has shown a higher efficiency in clinical trials com-
pared to the existing small molecule anticoagulants like heparin. However, it requires a
very high dosage to attain the desired levels of anticoagulation. A number of studies have
since focused on improving the binding efficiency of the aptamer to thrombin as a potential
strategy to lower the dosage and improve efficacy. Neither the NHS carboxy T modifica-
tions at the thrombin binding interface nor the dendrimer linkers on the other 5′ end of
the aptamer improve thrombin binding, but at the same time they did not destabilize the
structure of the aptamer either. Using in silico modelling and simulations, we have gath-
ered insights concerning reasons for the ineffectiveness of our modified constructs and we
also have ideas for the type of modifications that can have the intended effect of increased
thrombin binding ability of TBA. Moving forward, we will use a combined approach of
computational modelling and experiments to design effective modified aptamers.

Supplementary Materials: The following are available online, Figure S1: Root mean square fluctua-
tions (RMSF) for the 413NHT construct compared with the unmodified construct (TBA). Figure S2:
Licorice representation of original NHT Carboxy and modified NHO Carboxy along with their
interaction diagrams.
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