
The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer’s
Disease and Other Neurodegenerative Disorders

Kinga Czubowicz1 & Henryk Jęśko2
& Przemysław Wencel1 & Walter J. Lukiw3

& Robert P. Strosznajder1

Received: 2 August 2018 /Accepted: 6 December 2018 /Published online: 5 January 2019
#

Abstract
Bioactive sphingolipids—ceramide, sphingosine, and their respective 1-phosphates (C1P and S1P)—are signaling molecules
serving as intracellular second messengers. Moreover, S1P acts through G protein-coupled receptors in the plasma membrane.
Accumulating evidence points to sphingolipids' engagement in brain aging and in neurodegenerative disorders such as
Alzheimer’s, Parkinson’s, and Huntington’s diseases and amyotrophic lateral sclerosis. Metabolic alterations observed in the
course of neurodegeneration favor ceramide-dependent pro-apoptotic signaling, while the levels of the neuroprotective S1P are
reduced. These trends are observed early in the diseases’ development, suggesting causal relationship. Mechanistic evidence has
shown links between altered ceramide/S1P rheostat and the production, secretion, and aggregation of amyloid β/α-synuclein as
well as signaling pathways of critical importance for the pathomechanism of protein conformation diseases. Sphingolipids
influence multiple aspects of Akt/protein kinase B signaling, a pathway that regulates metabolism, stress response, and Bcl-2
family proteins. The cross-talk between sphingolipids and transcription factors including NF-κB, FOXOs, and AP-1 may be also
important for immune regulation and cell survival/death. Sphingolipids regulate exosomes and other secretion mechanisms that
can contribute to either the spread of neurotoxic proteins between brain cells, or their clearance. Recent discoveries also suggest
the importance of intracellular and exosomal pools of small regulatory RNAs in the creation of disturbed signaling environment
in the diseased brain. The identified interactions of bioactive sphingolipids urge for their evaluation as potential therapeutic
targets. Moreover, the early disturbances in sphingolipid metabolism may deliver easily accessible biomarkers of neurodegen-
erative disorders.
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Introduction

Aging, which itself influences the central nervous system (CNS)
in a relatively subtle manner, creates vulnerable background for

the development of devastating disorders. Two of the most
widespread neurodegenerative diseases are Alzheimer’s (AD)
and Parkinson’s (PD). Dementia affects estimated 47 million
people worldwide [1], placing enormous burden on the affected
individuals, their families, societies, and healthcare systems. AD
is the most common neurodegenerative disorder, responsible for
up to 70% of dementia cases [1]. This disease is characterized by
the presence of aggregates of pathologically misfolded proteins,
including the extracellular senile plaques built mainly of amy-
loid β (Aβ), a product of proteolytic cleavage of the transmem-
brane Aβ precursor protein (AβPP) by β- and γ-secretase [2].
Neurons in AD also display cytoskeletal abnormalities that are
linked to hyperphosphorylation and aggregation of the
microtubule-associated tau protein into intracellular neurofibril-
lary tangles [3].

Parkinson’s disease is the most frequently occurring move-
ment disease and the second most widespread neurodegener-
ative disorder after AD [4]. It is estimated that PD affects up to
1% of people over the age of 60 and up to ca. 4% over 85 [5].
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PD is characterized by subcortical neurodegeneration, includ-
ing the characteristic loss of dopaminergic phenotype neurons
in substantia nigra pars compacta, loss of dopaminergic stria-
tum innervation, and histopathological aberrations in the form
of α-synuclein (ASN)-containing intracellular Lewy bodies
(LB)/Lewy neurites (LN) [4]. Disturbances in other neuro-
transmitter systems (serotoninergic, noradrenergic, and cho-
linergic) are increasingly being recognized along non-motor
symptoms, which—in later stages—may include dementia
[6]. Like AD, Parkinsonian neurodegeneration progresses in
a stealthy manner, and when clear symptoms appear the do-
paminergic neuron population is already decimated [4].

Bioactive Sphingolipids Biosynthesis

Once merely considered structural compounds, bioactive
sphingolipids are increasingly implicated as signaling mole-
cules in the brain, and play important roles in aging, neurode-
generative disorders, and the accompanying immune deregula-
tion [7]. Ceramide, ceramide-1-phosphate (C1P), sphingosine,
and sphingosine-1-phosphate (S1P) are the best described bio-
active sphingolipids regulating stress resistance, proliferation,
differentiation, and mature phenotypes of nervous system cells
[8, 9]. Sphingolipids have multiple ancillary roles in the regu-
lation of cell growth, death, senescence, adhesion, migration,
inflammation, angiogenesis, and intracellular trafficking in the
CNS [10, 11]. The sphingolipid rheostat model ascribed these
compounds clearly opposite roles in cellular survival signaling:
ceramide as a cell death activator, while C1P and S1P promoted
survival. The fact that single phosphorylation reaction turns
ceramide and sphingosine into their antagonistic counterparts
stresses the significance of the precise, successful control of
sphingolipid metabolism enzymes [8, 12]. Although the pro-
versus anti-survival roles have blurred somewhat in recent years
[13], the critical roles of sphingolipid signaling in nervous sys-
tem function have been confirmed by effects of mutations in
their biosynthesis and receptor genes [14–24]. The importance
of bioactive sphingolipids is also stressed by the accumulating
evidence about their involvement in aging and neurodegenera-
tive disorders [8, 25–29].

The rate of ceramide biosynthesis is controlled by the first step
of the pathway’s de novo branch, which is catalyzed by serine
palmitoyltransferase (SPT). SPT product dihydrosphingosine is
then metabolized by ceramide synthase (CERS) to
dihydroceramide, which is subsequently converted by
dihydroceramide desaturase (DES or DEGS) to ceramide.
Ceramide may be metabolized into sphingomyelin by
sphingomyelin synthase (SMS, or SGMS); the reverse reaction
( t he sph ingomye l i nase pa thway ) c a t a l yzed by
sphingomyelinases (SMases, SMPDs) is another major ceramide
source. Ceramide also serves as a precursor for the production of
sphingosine by ceramidases. CERS can perform the opposite
reaction, which is third ceramide source, termed the salvage

pathway. Sphingosine kinases (SPHK1, SPHK2) phosphorylate
sphingosine into S1P in a highly regulated fashion in various
cellular compartments; dephosphorylation is carried out by S1P
phosphatases (SGPP1 and SGPP2), while S1P can be also hy-
drolyzed irreversibly into ethanolamine phosphate and
hexadecenal by S1P lyase (SGPL) [9]. Activity of the enzyme
glucocerebrosidase (GBA) can be another ceramide source [30]
with significant links to Parkinson’s disease (see Pt. 'The role of
bioactive sphingolipids in Parkinson’s disease').

S1P and Ceramide in Neuronal Survival and Death
Signaling

Bioactive sphingolipids employ several mechanisms to exert
their influence on intra- and extracellular signaling pathways.
Plasma membrane is one of main cellular regions of SPHK
activation; S1P and probably C1P can bind cell surface receptors
[31, 32]. S1P receptors (S1PR1 to S1PR5) belong to the Edg
family and bind Gq, Gi, G12/13, and Rho proteins [31]. While
data on the postulated C1P receptor is scarce, all S1PR1 to -5
bindGi, S1PR2 and -3 bindGq and all but S1PR1 signal through
G12/13 (Fig. 1). Through either S1PR-binding G proteins or
through more direct interactions with intracellular enzymes,
sphingolipids also modulate signaling events such as cAMP
(cyclic adenosine monophosphate), MAPK (mitogen-activated
protein kinase), PKC (protein kinase C), PLD (phospholipase
D), and PI3 kinase–Akt–PKB (protein kinase B) [35, 36]. The
PI3K–Akt pathway is a crucial integrator of metabolic and stress
signals engaged in a plethora of physiological and pathological
processes ranging from energy metabolism through aging to
age-related diseases [8]. Sphingolipids are also structural com-
ponents of lipid bilayers. Changes in their local concentrations
modify membrane properties further modulating signaling
events that take part in these membranes.
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Fig. 1 Signaling pathways triggered by the cell surface receptors for
S1P (S1PRs) and C1P (C1PR). S1P through its G protein-binding
receptors modulates pathways known for their engagement in the
regulation of cellular metabolism oxidative/nitrosative stress and death/
survival. The depicted examples of S1PR-activated signaling pathways
are far from exhausting the spectrum of observed interactions (e.g.,
S1PR2 inhibits Akt while S1PR3 activates it; iNOS is typically induced
by NF-κB, but can also undergo S1P-/C1P-dependent suppression via
p38 MAPK [8, 33]). In contrast, C1PR, the cell surface receptor for
ceramide-1-phosphate, remains poorly characterized and it is generally
not known what part of C1P effects it mediates. According to [34],
modified

Mol Neurobiol (2019) 56:5436–5455 5437



Ceramide controls not onlymultiple cell death mechanisms
but also cellular senescence, differentiation, and aspects of
arborization in neurons [37, 38]. Sphingosine also seems to
be engaged in cell death modulation [39]. C1P has been
shown to stimulate cellular survival, growth, and may coun-
teract ceramide signaling also through downregulation of acid
sphingomyelinase and serine palmitoyltransferase activities
[40, 41]. S1P regulates cell viability, neuronal excitability,
and arborization [31]. Sphingolipids are also engaged in im-
mune phenomena, which critically alter the fate of brain cells
in neurodegenerative disorders [31, 37, 38, 42, 43].

The roles of S1P and ceramide in the survival of brain neurons
are far more complex than the antagonism described in the
sphingolipid rheostat model (Fig. 2) and dependent on the sig-
nalingmilieu (see below). However, it is highly probable that the
AD-linked changes in the metabolism of bioactive sphingolipids
should significantly alter the rates of neurodegeneration.

In most situations, S1P and ceramide antagonistically signal
cell survival or death largely via shared mediators (Fig. 3a, b).
Yet more strikingly, both can directly inhibit each other’s synthe-
sis [63, 64]. S1P is classically viewed as an anti-apoptotic agent
[65, 66] and has been shown to mediate the actions of numerous
anti-apoptotic compounds (Fig. 3b, reviewed in [67]). S1P typi-
cally opposes the pro-apoptotic role of ceramide presumably by
decreasing oxidative stress and modulating the expressions of
pro- and anti-apoptotic proteins of Bcl-2 family (Fig. 3) [47].

S1P can activate p38, ERK, and block Jnk in various tissues
by acting through its surface G protein-coupled receptors [67]
(however, S1P influence on Jnk can be more varied [68]) (Fig.

3b). ERK appears tomediate the pro-survival action of S1P [69].
S1PRs also stimulate the anti-apoptotic PI3K-Akt pathway [70],
whose disruption in AD may heavily contribute to the disease
pathomechanism [71, 72]. The nuclear transcription factors
targeted by S1P-sensitive pathways include FOXO3a (inhibited
by the PI3K-Akt pathway [70]), AP-1 (a transcription factor
receiving input from Jnk/p38/ERK [37, 73] and engaged in the
network of mutual co-regulation between sphingolipid-related
genes [48–50]), or NF-κB (nuclear factor κB, through direct
interaction between SPHK1 with TNF receptor-associated fac-
tor TRAF2, and through S1P acting as TRAF2 cofactor [74,
75]). Moreover, histone deacetylases (HDAC1 and -2) are
inhibited through S1P binding [59] and can block NF-κB via
its deacetylation [76]. NF-κB influence on cell death may vary
depending on the signaling context, immune activation, etc.

Through PI3K-Akt, S1PRs can inhibit GSK-3β (the cru-
cial tau kinase [77]) and the pro-apoptotic protein Bad. In
addition, S1P has been shown to inhibit ceramide production
by acid sphingomyelinase (aSMase) [63]. However, contrary
to the initial view on the clear-cut S1P-vs.-ceramide opposi-
tion, in some situations, S1P may actually exert neurotoxic
influence—depending on the spatiotemporal control of its
production and degradation, or when its concentration reaches
too high levels [78]. Moreover, it is necessary to bear in mind
the mentioned ambiguous nature of some of S1P’s mediators:
AP-1 [79], ERK [80, 81], or NF-κB [82, 83].

The roles of ceramides in cellular homoeostasis reach far
beyond just being pro-apoptotic molecules. Loss of physiolog-
ical ceramide concentrations can lead to structural disturbances

Fig. 2 The changes in bioactive sphingolipid levels observed in aging
and neurodegenerative disorders. Numerous observations in
postmortem brain tissues point to the imbalance in the ratio between the
concentrations of the apoptosis inducer ceramide, and the typically anti-
apoptotic S1P (see Pts. 'Bioactive Sphingolipids in the Pathomechanism
of Alzheimer’s Disease' and 'The Role of Bioactive Sphingolipids in

Parkinson’s Disease'). Much fewer works address the problem of
physiological brain aging, where the changes appear to be partially
gender-specific [44].The asterisk indicates clinical data about S1P in
PD is missing; however, in experimental disease models, reduced
SPHK activity leading to loss of Akt signaling was observed [45, 46].
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in mitochondria and reduced respiration [84]. Ceramides also
regulate membrane dynamics, thus influencing other aspects of
organellar function and life cycle such as mitochondrial fusion
and fission, or vesicular transport [85]. It is alsowell understood
that their (patho)physiological roles are highly dependent on
their chain length/CERS isoforms [86, 87]. When signaling
apoptosis, ceramides appear to use a spectrum of mediators
largely shared with S1P, albeit often in a contrasting way (Fig.
3a). Ceramides lead to dephosphorylation and inactivation of
Akt via the protein phosphatase PP2A; this relieves Akt’s in-
hibitory influence on Bad andGSK-3β [77]. On the other hand,
ceramide-associated increase in reactive oxygen species (ROS)
leads to the activation of p38 and Jnk and to ERK inhibition
[37]. The combined influence of p38, Jnk, and ERK modifies
the activities of p53 and AP-1 (c-Fos, c-Jun) transcription fac-
tors [88]. Together with Bad and GSK-3β activation, these
changes cause mitochondrial alterations and via cytochrome c
release and the activities of caspase-2, -3, -5, -8, and -9 may
lead to axonal degeneration or neuron death [37]. Ceramides
might also directly form pores in the outer mitochondrial mem-
brane, leading to the release of cytochrome c and other proteins

[89]. Other mitochondrial mediators of apoptosis known to be
released in neurons by ceramides include apoptosis-inducing
factor (AIF), the second mitochondrion-derived activator of
caspase (Smac), and the stress-regulated endoprotease Omi
[56]. Ceramide-induced apoptosis thus involves both caspase-
mediated and caspase-independent pathways.

As discussed above, changes in the balance between S1P
and ceramide (Figs. 2 and 3) may not only influence apoptosis
but also change the regulation of autophagy by the complex
interplay between mTOR, beclin, and Bcl-2. S1P-dependent
autophagy is thought to be a homeostatic, pro-survival re-
sponse involved in the clearance of intracellular debris (dam-
aged proteins/dysfunctional organelles) [67]. In AD, autoph-
agy can play critical role in the defense against oxidatively
damaged cellular components, and its disturbances may exac-
erbate Aβ and tau deposition [90, 91]. However, autophagy
can also const i tute a mode of cel l death, where
autophagolysosomal degradation of mitochondria is depen-
dent on the interaction between ceramide and LC3-II
(lipidated microtubule-associated protein 1 light chain 3β)
present on lysosomes [57] (Fig. 3).

MRC inhibition, ROS, AIF, cytochrome c,

caspase-2, -3, -5, -8, -9, beclin1, LC3-II 

b a

p53 Moderate 

ROS

High 

ROS

Inhibition of neuronal death

SS11PP

p38

SS11PPRRss

Jnk ERK

PI3K

Akt

FOXOs

SSpphhKKss

NF-κB

TRAF2

Bad, 

GSK-3β 

aSMase

AP-1 
HDAC1, 

HDAC2

SMase C1PP

SPT 

CERS 

DEGS 

Axonal 
degeneration

ROS

Neuronal 
death

CCeerr

AP-1 

SphK1

p38Jnk ERK

PP2A

Akt

p53 

Bax, Bad, 

GSK-3β

Fig. 3 The role of ceramide and S1P in neurodegeneration pathways.
aCeramide-induced axon loss and neuronal apoptosis. According to [37],
modified. b The roles of S1P and SPHKs in the modulation of neuronal
death. According to various authors (see text). Both S1P and ceramide(s)
exert major part of their opposing influence on cell survival through
multi-level modulation of the PI3K–Akt pathway, which integrates
sphingolipid-based signals with clues on the metabolic condition of the
cell, stress levels, etc. [8, 37, 47]. Moreover, sphingolipid signaling
displays links with the transcription factors AP-1 and NF-κB [48–52],
which regulate a plethora of processes including cell death and
inflammation. Akt targets FOXO1a, 3a, 4, and 6 are engaged in cell
death regulation in human tissues [53, 54]. The prevailing role of
elevated ceramide in cell degeneration/death is mediated by multiple
signals: inhibition of mitochondrial respiration and increased production
of reactive oxygen species [55]; the release of AIF, cytochrome c, or
SMAC from mitochondria; the Bcl-2-binding protein beclin1;

autophagosomal LC3-II (which binds mitochondrial ceramide to induce
lethal mitophagy) [56–58]. While inhibition of HDAC1 and -2 is engaged
in the pro-survival signaling of S1P, the role of HDAC3 is more
ambiguous [59–62]. AIF, apoptosis-inducing factor; AP-1, activator
protein-1; aSMase, acid SMase; LC3-II, lipidated microtubule-
associated protein 1 light chain 3β; C1P, ceramide-1-phosphate; C1PP,
C1P phosphatase; CERS, ceramide synthase; DEGS, dihydroceramide
desaturase; ERK, extracellular signal-regulated kinase; FOXO, forkhead
box protein O; GSK-3β, glycogen synthase kinase 3β; HDAC, histone
deacetylase; Jnk, c-Jun N-terminal kinase; MRC, mitochondrial
respiratory chain; NF-κB, nuclear factor κB; PI3K, phosphoinositide 3-
kinase; PP2A, protein phosphatase 2A; ROS, reactive oxygen species;
S1P, sphingosine-1-phosphate; S1PR, S1P receptors; SMAC, second
mitochondria-derived activator of caspases; SMase, sphingomyelinase;
SPHK, sphingosine kinase; SPT, serine palmitoyltransferase; TRAF2,
TNF receptor-associated factor 2
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Bioactive Sphingolipids in Aging

Bioactive sphingolipids have been investigated in the course
of aging and in association with extreme longevity [27, 92,
93]. Centenarians display altered fatty acid pattern in
ceramides and glucosylceramides—higher levels of
sphingolipid species possibly linked to stress resistance (low
oxidation susceptibility due to unsaturated fatty acid content)
[27], while increased concentration of sphingomyelins (cer-
amide precursors) has been observed during aging [94].
Sphingolipids appear to have significant influence on the
course of aging; research on lower organism models suggests
links between ceramide synthesis and longevity [8, 25,
95–97]. Importantly, bioactive sphingolipids are capable of
influencing the IIS (insulin/insulin-like signaling)–PI3K–
Akt, a highly conserved, versatile modulator of metabolism,
aging, and stress response (Fig. 3) [98–102]. IGF-I signaling
in the brain has been identified to negatively influence organ-
ism longevity also in mammals [103, 104], although some
controversies persist [105].Results obtained in humans appear
to support IIS role in aging [106, 107]. IIS seems to redirect
the vital resources away from long-term investment in favor of
more current needs such as metabolic regulation and cellular
survival. This leads somewhat surprisingly to the trophic in-
fluence of IIS in the brain [8, 108–111]. PI3K-Akt signaling
regulates SPHKs and S1PRs expression/activity and intracel-
lular sphingolipid transport [112–115]. In turn, S1P receptors
can differentially modulate Akt activity [116–118]. Ceramide
leads to inhibition of Akt-dependent pro-survival signaling
[47, 119, 120], while C1P stimulates it [121, 122].

The links between sphingolipids and cellular stress are an
extremely important aspect of their potential involvement in
aging (Fig. 3) [8, 67]. SPHK1 might inhibit ROS and reduce
sensitivity to DNA damage [123]. S1P and ceramides are
under positive influence of the stress sensor p53, and faulty
ROS control leads to alterations in S1P/ceramide signaling
[67, 124–126]. Even more than in aging, stress and inappro-
priate stress responses are central elements of the
pathomechanism of neurodegenerative disorders.

Bioactive Sphingolipids
in the Pathomechanism of Alzheimer’s
Disease

The pathogenesis of AD is not yet fully elucidated, and the
actual roles of many of the observed disturbances are not clear.
Accumulating evidence points to the involvement of bioactive
sphingolipids in AD starting from the earliest, prodromal
stages [127].

Well-documented mechanisms that induce neuronal and
synaptic degeneration in AD brain include the following: ox-
idative damage, altered redox signaling, mitochondrial

dysfunction, glucose hypometabolism/other metabolic stress-
es, Ca2+ deregulation, and inflammatory response. Many of
these pathways are triggered and propagated due to the actions
of soluble oligomers of Aβ peptide on neurons and glia. The
role of ceramide/S1P was analyzed in the context of these
damage pathways as well as the process of amyloidogenesis.

The Interactions Between Ceramide/S1P and AβPP/Aβ
Metabolism

Structural roles of sphingolipids in cellular membranes includ-
ing lipid rafts constitute an important aspect of their engage-
ment in AβPP/Aβ metabolism [128]. Lipid rafts are
cholesterol- and sphingolipid-enriched microdomains of the
plasma membrane described as signaling platforms [129,
130]. Rafts are strongly associated with Aβ production, and
both β- and γ-secretases are enriched in these structures [129,
131, 132]. Lipid rafts also seem to influence Aβ aggregation
[133]. In turn oligomeric Aβ42 associates with rafts [134]; Aβ
can change membrane fluidity, which may exert a feedback
influence on its own production [135].

Rafts are sensitive to fluctuations in sphingolipid levels,
leading, e.g., to changed properties of membrane-associated
enzymes or receptors. Sphingolipid/ceramide deficiency leads
to increased secretion of sAβPPα, the product of non-
amyloidogenic cleavage. However, it also leads to enhanced
secretion of Aβ42 possibly through modulation of raft-
associated proteins and changes in raft membrane properties
resulting in altered α- vs. β-cleavage ratio [136]. Exogenous
addition of ceramide and elevated endogenous ceramide in-
creased the level of Aβ. C6-ceramide, a cell-permeable cer-
amide analogue, increased the rate of Aβ biosynthesis by
affecting β-cleavage of AβPP. Lipid raft ceramides stabilize
BACE1 (β-site AβPP cleaving enzyme 1, a β-secretase)
[137]. Additionally, it was shown that synthetic ceramide an-
alogues may also function as γ-secretase modulators that in-
crease Aβ42 production [138]. FTY720 in turn has been dem-
onstrated to reduce hippocampal neuron damage and the
resulting learning and memory deficits in a rat model induced
by bilateral, stereotactic injection of pre-aggregated Aβ42 into
the hippocampus [139]. Some of the neuroprotective effect
might be ascribed to mobilization of extrasynaptic, N-
methyl-D-aspartate receptors to the synapse (a phenomenon
reducing cellular sensitivity to Aβ-induced neurotoxic calci-
um influx) [140]. Importantly, FTY720 and KRP203 (another
SPHK2 substrate that can bind S1PR upon phosphorylation)
have been shown to reduce neuronal Aβ generation [141].
However, the relationship between S1P and AβPP metabo-
lism is still obscure, as the compounds used may as well
downregulate S1PR-dependent signaling; moreover,
FTY720 increased Aβ42 in mice in addition to reduction in
Aβ40 [141]. Positive correlation between S1P production by
SPHK2 and AβPP processing has been reported [142]. S1P
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produced by SPHK2 may activate BACE1, thus leading to
higher release of Aβ peptides. S1P was shown to specifically
bind to full-length BACE1 and to increase its proteolytic ac-
tivity. The production of Aβ peptides can be reduced in N2a
neuroblastoma cells by pharmacological inhibition of sphin-
gosine kinases, homozygous SPHK2 gene deletion, or over-
expression of the S1P lyase gene and SGPP1 phosphatase
[142]. A shift in SPHK2 subcellular distribution from cytosol
to the nucleus was observed to correlate with Aβ deposition in
AD brains by Dominguez and collaborators [143]. In turn, Aβ
production correlates with low SPHK1 and high S1P lyase
protein [144]. Disturbances in S1P observed in AD may not
only critically regulate caspase-mediated AβPP cleavage. S1P
regulates lysosomal AβPP metabolism in a calcium-
dependent manner [145]. S1P is also a pro-secretory mole-
cule, and the dependence of AβPP secretion on S1P signaling
has direct potential significance in AD [146]. The regulation
of gene expression via S1PRs and through intracellular sig-
naling can also lead to complex changes in cellular metabo-
lism. AβPP modulates this process, as shown in FTY720-
treated mice overexpressing mutant (V717I) AβPP.
FTY720, which raises significant hopes as a repurposed neu-
roprotective drug in AD, increased the gene expression of
sphingosine kinases (SPHKs), ceramide kinase (CERK), and
the anti-apoptotic Bcl-2 in an age-dependent manner [147].

The milieu of the brain affected by AD provides multiple
stressors such as ROS and cytokines, which could in turn lead
to increased ceramide production (Figs. 3 and 4). Lee et al.
[152] showed ceramide-dependent death of oligodendrocytes

induced by Aβ. Activation of neutral sphingomyelinase
(nSMase) and increase in the level of ceramides was observed.
Moreover, it was also shown that suppression of ceramidase
activity additionally increased the toxicity of Aβ [152]. In the
studies of Jana and Pahan [153] superoxide-mediated activa-
tion of nSMase was observed in primary culture of human
neurons treated with Aβ1–42. NAPDH oxidase mediated the
effect, because gene silencing for the p22phox subunit by
antisense oligonucleotides inhibited the apoptosis of neurons
induced by Aβ1–42. The authors showed that the use of N-
acetylcysteine and the NADPH oxidase inhibitor prevented
the generation of ceramides and protected against neuron ap-
optosis. Similar results were obtained in primary rat cortical
neurons treated with Aβ oligomers where an increase in neu-
tral and acid sphingomyelinase activities was observed [63].
In another study, Gomez-Brouchet et al. [154] indicated that
exposure to Aβ25–35 induced strong SPHK1 inhibition and
ceramide accumulation in neuronal SH-SY5Y cells. In that
study, the cell death was prevented by overexpression of
sphingosine kinase, whereas downregulation of the enzyme
by RNA interference enhanced the cell death. Inhibitors of
both SMases and exogenously administered S1P demonstrat-
ed cytoprotection in the model. Ayasolla et al. [155] observed
that in the primary culture of rat astrocytes treated with
TNF-α/IL-1β, followed byAβ25–35, there is a greater increase
in the expression of induced nitric oxide synthase (iNOS) and
nitric oxide production (NO) than in TNF-α/IL-1β-only as-
trocytes. In a glial cell line treated with Aβ25–35 and LPS/
IFNγ, an increase in iNOS expression and NO production

Fig. 4 Changes in brain sphingolipid metabolism and signaling
observed in Alzheimer’s disease. Human postmortem brain material
was used by numerous authors to compare the levels of bioactive
sphingolipids, mRNAs, proteins, and enzyme activities. In the
hippocampus S1P levels, mRNAs for CERK, S1PR1, SPHK1, SPHK2,
and SPHK activity are reduced [65, 147, 148]. Lower S1P levels, S1PR1

protein, and SPHK protein/activities were observed along elevated S1P
lyase proteins in selected cortical areas and in the hippocampus [65, 144].
Increased ceramide (Cer) and sphingomyelin (SM) levels, mRNAs for
ceramide synthases (CERS1, 2), SGPL1, SPTLC2, aSMase, and
sphingomyelinase protein and activity were observed in brain cortical
areas, while ASAH1, CERK, and CERS6mRNAs were reduced [148–151]
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was observed. These phenomena were accompanied by an
increase in the level of ceramides as a result of the activation
of nSMase. Similar results were obtained in oligodendrocytes
treated with Aβ25–35 and TNF-α, or with C2-ceramide and
TNF-α [156]. TNF-α-induced ceramide production was also
observed by Martinez et al. [157].

The accumulated oligomerized Aβ peptide in AD brain
may also promote ceramide formation, as demonstrated both
in cell culture [148, 153–156] and animal models [158].
Imbalance in mRNA expression of enzymes responsible for
S1P to ceramide ratio, which potentially might decide of the
brain cell fates, is observed from the earliest clinically recog-
nizable AD stages (Fig. 4) [149]. Sphingomyelin hydrolysis
stimulated by Aβ appears to be the main source of ceramides
in the pathology of Alzheimer’s disease [155, 159, 160], along
with de novo synthesis (expression of the de novo enzymes
increases gradually during AD progression [149]). Activation
of SPT by Aβ peptides has been observed, resulting in neu-
rotoxic increase of ceramide levels via de novo pathway [148,
161]. Aβ induces apoptosis by activating aSMase and
nSMase, thereby contributing to the increase in ceramide
levels. Senile plaques contain aSMase and nSMase proteins
along with high levels of saturated ceramides [63, 162], and
aSMase activity is upregulated in human AD brains (Fig. 4)
[150]. Examples of genes upregulated by AD also included
ceramide synthases CERS1 and CERS2, S1P lyase SGPL1, or
serine palmitoyltransferase catalytic subunit SPTLC2, while
the acid ceramidase ASAH1, ceramide kinase CERK, or—
less obviously—CERS6 were reduced [131, 149]. However,
contrary to the abovementioned results, Couttas et al. [28]
have found an early loss of CERS2 activity at Braak stage
I/II (temporal cortex) to III/IV (frontal cortex, hippocampus).
An interesting but underexplored link has been identified be-
tween the still obscure physiological AβPP role and
sphingolipid metabolism, as AβPP intracellular domain is ca-
pable of reducing the expression of SPTLC2, potentially keep-
ing the whole sphingolipid metabolism under negative control
[131]. Aβ also disturbs S1P signaling, potentially shifting the
balance towards a much more pro-apoptotic state (Figs. 2 and
4) [148]. Aβ can downregulate the genes for SPHKs and
diminish the level of S1P as observed in wild-type and
AβPP-overexpressing PC12 cells in culture [163]. The study
by Couttas et al. [65] showed reduced S1P levels with increas-
ing Braak stage in tissue samples taken from the CA1 region
of the hippocampus, or gray and white matter of the inferior
temporal gyrus (Fig. 4). AD brains also display upregulated
expression of S1P lyase SGPL1 and S1P-metabolizing phos-
phatases [65, 149]. The studies of Ceccom et al. [144] showed
a decrease in immunoreactivity of SPHK1, S1P receptor 1,
and an increase in S1P lyase in samples taken from the frontal
and entorhinal cortices from human AD brains. However, the
complex influence of SPHK2 signaling on cell fate and neu-
rodegeneration is reflected by the study of Takasugi et al.

[142] who reported upregulation of SPHK2 activity in AD
brain cortex while other authors reported reduction of its ac-
tivity and mRNA in the hippocampus [65, 147].

Importantly, SPHKs’ roles include engagement in the regula-
tion of inflammation, a phenomenon already exploited in the
therapy of relapsing remitting multiple sclerosis [164]. The
known engagement of sphingolipids in the modulation of
NF-κB signaling by TNF-α [165] and other factors strongly sug-
gests widespread opportunities in this field. Aβ specifically mod-
ulates the expression of some S1P cell surface receptors in mono-
cytes [166]. Sphingolipid modulators inhibit the accumulation of
mononuclear phagocytes in response to Aβ, leading to proposals
of their use as therapeutic agents [166]. In turn, anti-ceramide
immunity might also contribute to the disease progression [167].

An important hint about the significance of sphingolipids in
AD is the association of apolipoprotein E (ApoE whose poly-
morphisms are strongly linked to AD risk [168]), with the
receptor-mediated signaling of secreted S1P [169]. Moreover,
correlation has been observed between SPHK activities/S1P
content and ApoE allele (2.5× higher S1P/sphingosine ratio in
the hippocampus of ApoE2 vs. ApoE4 carriers) in AD [65].
Sphingolipids might be useful, accessible AD biomarkers
[170–172] and—potentially—therapeutic targets [173].

S1P/Ceramide and the Exosome-Mediated Spread
of AD Pathology

Exosomes are sphingomyelin- and ceramide-enriched vesicles
created inside the multivesicular endosomes (MVE) and then
secreted when MVE membrane fuses with the plasmalemma.
Exosomes are engaged in intercellular communication and
carry microRNAs (miRNAs), messenger RNAs (mRNAs),
and protein- and lipid-based signaling molecules. Vesicles re-
leased by Aβ-treated astrocytes contain the pro-apoptotic
prostate apoptosis response 4 (PAR-4) protein and cause apo-
ptosis in naive cultures [174]. Rodent exosomes can contain
Aβ, BACE1, and presenilins 1 and 2 [175]. Amyloid plaques
in the AD brain contain an exosome marker [176]. These
results have led to a hypothesis that exosomes might seed
Aβ aggregation [177]. However, at least under some circum-
stances exosomes can also inhibit Aβ oligomerization and
promote its microglia-mediated clearance [178]. These results
might explain the observed association of exosomes with Aβ
as a physiological, neuroprotective phenomenon [179], at
least in the healthy tissue. It is also possible that exosomes
of various origin (e.g., neuronal vs. astrocyte) might exert
opposite influence or that the exosomal membranes might
facilitate Aβ aggregation independently of protein-mediated
exosomal functions (e.g., Aβ degradation by exosomal
insulin-degrading enzyme or neprilysin)—reviewed in [177].
Additionally, exosomes can serve as a vehicle for the extra-
cellular secretion and cell-to-cell transport of ASN and tau
protein, potentially further supporting the spread of
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aggregation pathology [180, 181]. S1P receptor signaling has
been implicated in exosomal cargo sorting: activity of the
S1PR-regulated Rho family GTPases was necessary for the
process, and Gβγ inhibitor blocked it [182]. Exosome secre-
tion can be modulated by the activity of neutral
sphingomyelinase 2 (nSMase2) and sphingomyelin synthase
2 (SMS2), suggesting unique roles for these enzymes in AD
[178, 183], and additional significance for the disturbed cer-
amide levels observed in the course of the disease, as
discussed above.

The Role of Bioactive Sphingolipids
in Parkinson’s Disease

The selective, spatially progressing neurodegeneration ob-
served in PD defies full explanation, although hypotheses have
been created that probably successfully identify and describe
important aspects of its mechanism [4]. Pathological aggrega-
tion of ASN inside neuronal cells is widely associated with PD;
ASN might also play some role in AD [184]. ASN binds lipid
rafts, and negatively regulates S1PR1 signaling there [130].
Moreover, the relatively recently recognized phenomenon of
ASN secretion suggests links with sphingolipid signaling, as
the engagement of sphingolipids in neuronal secretory path-
ways is well documented [7, 146]. ASNmay undergo regulated
secretion in a number of partially characterized mechanisms
[45, 185–190], possibly leading to the peptide being

functionally “addressed” for different destinations, allowing
passage of ASN (also oligomeric) into various compartments
of recipient cells [191]. This may have high significance for the
postulated spread of ASN-induced pathology along anatomical
connections [4].

Recent evidence suggests links between sphingolipids and
PD although data is relatively less abundant. PD is associated
with disturbances in sphingolipid metabolism (Figs. 2 and 5)
[192, 195, 196, reviewed in 12]. Lipidomic analysis has shown
that the levels of ceramides and sphingomyelins were altered in
postmortem PD brain tissue as compared to the control samples
(a tendency towards shorter acyl chain) [192]. Findings in body
fluids suggest the diagnostic value of sphingolipids in PD [197].
In blood plasma, several saturated ceramides and one unsaturat-
ed species were significantly higher in PD [198]. Additionally,
some blood ceramide species were higher in PD with dementia
than in non-demented PD patients and the levels of several
saturated ceramides associated with PD-linked psychiatric com-
plications [198, 199]. Mutations in the SMPD1 gene have been
repeatedly confirmed to correlate with PD risk [200–204]. The
expression and activity of SPHK1 are reduced in MPTP (1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced murine
model of PD (Fig. 5) [194], which can lead to enhanced ROS
as well as BAX and HRK (harakiri) mRNA expression [205].
Importantly, the possible similarities between AD- and PD-
linked disturbances of sphingolipid metabolism are not limited
to direct regulation of apoptotic signaling; products of S1P deg-
radation have been found to modulate autophagic/lysosomal

Fig. 5 Changes in brain sphingolipid metabolism/signaling observed
in Parkinson’s disease and its experimental models. Ceramide
synthase (CERS) mRNAs, ceramide (Cer), and sphingomyelin (SM)
species were measured in postmortem PD brains by Abbott et al.
Increased CERS1 expression was found along with a shift towards
shorter ceramide acyl chain lengths in brain regions most affected by

the disease, although reduction in total levels of ceramide and
sphingomyelin concentration was observed [192]. Reduced sphingosine
kinase-1 and -2 (SPHKs) and S1P receptor 1 (S1PR1) expression was
observed in the mouse MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine)-induced model [46, 193]. The MPTP model also
displayed lower protein levels and activity of SPHK1 [193, 194]
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degradation of both Aβ/AβPP and ASN [206]. Administration
of FTY720, a sphingosine analog metabolized in the tissue into
a S1P receptor modulator, protected against neurodegeneration
and behavioral defects in mouse PD models induced by MPTP,
6-hydroxydopamine, or rotenone—via S1PR1 and probably
Akt [194, 207, 208]. In turn, secreted ASN can inhibit S1PR1
signaling and disturb the receptor’s localization in lipid rafts
[130]. It is worth mentioning, however, that FTY720 failed to
offer protection in a model of PD induced by subacute (5 days)
MPTP administration [209].

The PD-linked changes may exert influence not only on neu-
ronal survival and phenotype, but also potentially on the central
mechanisms of PD pathology. Sphingomyelin has been demon-
strated to modify the expression levels of ASN [210].
Degradation of overexpressed or otherwise pathologically altered
ASN may be dependent on the sphingomyelinase [211].
Pharmacological inhibition of SPHK1/-2 activities in cells treated
with low concentrations of MPP+ leads to enhanced secretion of
ASN, which may strengthen the significance of the new, still
underestimated mechanism of Parkinsonian pathology [45].
Outside the CNS, FTY720 also reduced ASN burden in the
enteric nervous system, improving gut motility whose reduction
is an early peripheral symptom in PD [212]. Interestingly,
pramipexole (a dopamine D2/D3 receptor agonist) reversed
SPHK1 inhibition in the MPTP model [194], suggesting further
interactions between sphingolipid and dopamine signaling.

Glucocerebrosidase (GBA) is a lysosomal enzyme that pro-
duces ceramide fromglucocerebroside (glucosylceramide) [196].
GBA deficiency/mutations are among top genetic contributors to
the development of PD [196, 213, 214] and are statistically as-
sociated with Parkinson’s disease [215, 216], contributing to its
early development, rapid progression, and presence of additional
psychiatric symptoms [217, 218]. Interestingly, β-
glucocerebrosidase activity is reduced in the cerebrospinal fluid
(CSF) of PD patients even if they do not carry any GBA1muta-
tions [219]. Variants in theGBA genemay be highly useful in the
prediction of PD course [220]. Accumulation of glucosyl com-
pounds and cholesterol has attracted most attention as the
pathomechanism inGBAmutations/deficiency [221], but chang-
es in ceramide levels cannot be excluded as an important con-
tributing factor [214, 222]. The enzyme is important in ASN
degradation [223] and appears to protect against ASN aggrega-
tion [224]. Additionally, PD patients not carrying the GBA mu-
tation also display elevated glucosylceramides in their plasma
[198]. Small-molecule GBA chaperones have been suggested
as a possible means of therapy in synucleinopathies [225].

Sphingolipids in Huntington’s Disease
and Amyotrophic Lateral Sclerosis

In recent years, data has been accumulating on the engagement
of sphingolipids in Huntington’s disease (HD) and amyotrophic

lateral sclerosis (ALS). HD is a neurodegenerative brain disor-
der involving striatum and cortex and manifesting itself in mo-
tor and cognitive disturbances. It is caused by a dominant mu-
tation, a triplet expansion in the huntingtin (HTT) gene. HD
appears to disturb sphingolipid metabolism; increased SGPL1
protein has been observed in the cortex and striatum of ad-
vanced HD postmortem brains, accompanied by striatal reduc-
tion in SPHK1 [226]. Most data, however, has been obtained
from animal models. Results suggest, similarly to other neuro-
degenerative disorders, that imbalance in sphingolipid concen-
trations and enzyme expression levels occurs in early stages of
the disease development [227–230]. SPTLC1 and CERS1were
reduced in the brains of R6/2 mice [227], a HD model mice
transgenic for the first exon of huntingtin harboring ca. 160
CAG repeats [231]. The altered sphingolipid metabolism has
also been noted in a variety of other cellular and animal HD
models [226], although the changes seem to be less clearly
weighted towards cell death than in, e.g., AD [228]. However,
the reduced S1P levels observed in R6/2 mice [226] appear to
be a relevant potential therapeutic target, as FTY720 has been
demonstrated to improve neuronal activity, reduce brain atro-
phy, improvemotor function, and increase R6/2 animal survival
[232]. Moreover, S1PR agonists increased huntingtin phos-
phorylation and reduced its aggregation [232, 233]. FTY720
also increased the levels of brain-derived neurotrophic factor
(BDNF) levels and mitigated the upregulation of NF-κB,
iNOS, and TNF-α that would otherwise lead to the potentially
neurotoxic activation of astrocytes; FTY720 thus preserved
synaptic plasticity and memory in R6/1 mice (another model
with lower number of glutamine repeats in the first huntingtin
exon) [234]. The S1PR5 stimulator A-971432 preserved blood-
brain barrier integrity in R6/2mice [233]. These results have led
to proposal of S1P-modulating therapy of HD [235].

ALS is a neurodegenerative disorder encompassing motor
neuron degeneration, muscle wasting, and paralysis, charac-
terized by severe deregulation of metabolism, including lipid
metabolism [236]. Ceramides and their glucosyl and lactosyl
derivatives are increased in ALS patient spinal cords [237].
SOD mutant mouse model of ALS displays disturbances in
the expression of genes related to immune regulation,
exosomal secretion, or lysosomes. Importantly, disturbed
levels of ceramides and sphingosine were noted to correlate
with disease severity along with the expression of SPHK1, or
SGPP2 and sphingolipids—sphingosine and ceramides
(d18:1/26:0) [238]. Increased glucosyl ceramide synthase
(GCS) expression might hamper normalization of oxidative
metabolism and motor recovery [236]. Also in this case,
FTY720 improved neurological scores and survival in SOD
mutant mice [239]. It modified the mRNA expression of, e.g.,
iNOS (reduced by the treatment), ARG1 (increased), BDNF
(increased), and interleukin genes (IL-1β reduced, IL-10 in-
creased), despite administration starting in the symptomatic
phase [239].
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MicroRNA Signaling and Bioactive
Sphingolipids in Neurodegenerative
Disorders

miRNAs are increasingly viewed as central regulators of
neuronal homoeostasis, and their causal roles in neurode-
generative disorders are rapidly gaining attention.
Deregulation of miRNA-based gene expression control
may be a novel disease mechanism, but also delivers po-
tentially valuable biomarkers of its development
[240–242]. Considerable research interest has been gener-
ated concerning the role of miRNAs in the neuropatholo-
gy of bioactive sphingolipids in several progressive age-
related human neuropathological diseases, and especially
how specific miRNAs may contribute to the dynamic
molecular-genetic processes involving aberrant ceramide/
C1P/S1P metabolism in both AD and PD. In humans,
miRNAs are a family of 18–22 nt single-stranded RNAs
that posttranslationally interact with, and regulate, the ex-
pression of mature mRNAs. Single upregulated miRNA
can target multiple mRNAs to reduce their expression,
and multiple miRNAs can target a single mRNA
[243–245]. Whenever progressive neurodegeneration is
encountered in central nervous tissues undergoing patho-
logical change, progressive neuronal atrophy and brain
cell death the NF-κB-sensitive, pro-inflammatory and po-
tentially pathogenic miRNA species such as miRNA-34a,
miRNA-146a, miRNA-155, and several others have been
shown to be abundant (and readily detectable by hybrid-
ization methodologies) in the cytoplasm of degenerating
neurons, as well as in both the extracellular fluid (ECF)
and CSF, which is contiguous with ECF. While these
miRNAs are normally required for the homeostatic oper-
ation of brain cellular and membrane-signaling functions,
their upregulation and persistence in deteriorating nervous
tissues and the nature of their interaction with biological
membranes is associated with, and indicative of, the prop-
agation and spreading of neurodegenerative disease.
These miRNAs may be a diagnostic tool for the cytoplas-
mic status of brain cells at risk for neurodegeneration
[241–243].

In turn, the upregulated microRNAs such as miRNA-34a,
miRNA-146a, and miRNA-155 appear to antagonize both
individual mRNAs and small families of functionally related
mRNAs and, in doing so, affect entire systems of CNS-
membrane-relevant genes and plasma membrane processes.
Indeed, overexpression of miRNA-34a, miRNA-146a, and/
or miRNA-155 have been shown to affect the expression of
a large number of genes normally involved in glucose metab-
olism, innate-immune regulation, membrane integrity, normal
vascular function and endothelial cell permeability, oxidative
phosphorylation, synaptic plasticity, and exosome generation,
encapsulation, and release. All of these processes have been

shown to be altered in AD- and PD-affected brain cells and
tissues [177, 244–250]. Examples of target mRNAs include
[244, 245, 248]:

& Immune regulators such as NF-κB, interleukins 4 and 17a,
interleukin-1 receptor-associated kinase-1 (IRAK-1), or
complement factor-H (CFH)

& Neuronal activity/synaptic plasticity/scaffold genes such
as glutamate receptor genes NR2A, GluR1, synaptobrevin
2, and synaptotagmin 1

& Genes coding for glycolysis and oxidative phosphoryla-
tion proteins such as succinate dehydrogenase complex C,
ubiquinol-cytochrome c reductase binding protein and
ubiquinol-cytochrome c reductase complex III subunit
VII (UQCRB and UQCRQ, respec t ive ly) , or
phosphofructokinase-1

& Amyloidogenesis-linked genes such as themembrane protein
tetraspanin 12 (TSPAN12), or the master postsynaptic
membrane-organizing ankyrin-cytoskeletal protein SHANK3

Put another way, specific pathology-linked miRNAs ap-
pear to regulate a large number of plasma membrane-
resident and plasma membrane-organizing components
whose character is defined by sphingolipid composition, turn-
over, and metabolism.

Many CNS-abundant miRNAs have, in addition, important
regulatory functions in the expression of enzymes involved in
the generation of ceramide, sphingosine, C1P, S1P, and/or their
receptors, both in healthy brain aging and in neurological dis-
ease. For example, the pro-inflammatory and rapidly induced
NF-κB-regulated miRNA-155 (encoded in humans at chr
21q21.3) has been shown to regulate biosynthesis of the
S1PR1 which functions in the amelioration of pathogenic in-
flammation in systemic autoimmune disease [246–248, 251].
Interestingly, a five-member cluster of miRNAs encoded on
human chromosome 21 that includes let-7c, miRNA-99a,
miRNA-125b, miRNA-155, and miRNA-802 may help ex-
plain the complex phenotypic diversity of trisomy 21
(Down’s syndrome; DS) and the strong linkage between DS
and the aberrant sphingolipid and ceramide metabolism associ-
ated with trisomy 21 (DS) neuropathology [252–254].
Interestingly, some of the most recent brain biolipid research
describes the association between neurotoxins secreted by the
human gastrointestinal (GI) tract microbiome and inflammatory
neurodegeneration of nervous tissues, a complex pathogenic
process that is certain to involve CNS sphingolipid composi-
tion, their organization, and interactive metabolism [255, 256].

As mentioned earlier, sphingolipids are key regulators of
exosomal secretion. Their roles include exosome formation, en-
capsulation, and miRNA shuttling across the plasma membrane
[257]. Exosomes and other extracellular vesicles secreted into the
extracellular space fromboth neuronal and glial cells are enriched
with the sphingolipid ceramide, as well as other more complex

Mol Neurobiol (2019) 56:5436–5455 5445



glycosphingolipids such as gangliosides, and may also be
enriched in various species of pathogenic or “communicating”
miRNAs [177, 243–245]. Such exosomal vesicle-bound
miRNAs: (a) should be reflective of the sphingolipid and
miRNAcomposition of the brain cell cytoplasm fromwhich they
were originally derived; (b) may serve the role as a novel form of
intercellular communication among brain cells; (c) may carry
selective miRNA ‘cargos’ that regulate both bioactive
sphingosine/S1P and ceramide/C1P metabolism as well as other
miRNA-mRNA targets in adjacent cells; (d) have been implicat-
ed in the inter-neuronal “spreading” of pathogenic signals via
“paracrine” and related secretory effects in the diseased and
neuro-degenerating brain; (e) have considerable potential for be-
ing clinically useful as a predictor and non-invasive diagnostic
marker for AD and/or PD; and (f) may provide a “molecular-
genetic” signature for a defined group of miRNAs associated
with a particular neurological disease [177, 243–248].

Recently, data on the engagement of miRNA-based gene
regulation in HD and ALS begun to accumulate. Postmortem
HD cortex samples from Brodmann’s area 4 reveal disturbed
miRNA expression (reduced miR-9, miR-9*, miR-29b, miR-
124a, miR-132) that might stem from loss of huntingtin-
transcription factor interaction in neuronal cells [258].
Numerous deregulated circulating miRNAs have been found
in HD cases and might reflect not only the ongoing neurode-
generation but also altered communication with the periphery
[259]. Links between altered miRNAs and perturbations in ap-
optotic and cell cycle signaling have been proposed as a possi-
ble mechanism of cell loss in HD [260]. The R6/2 mouse HD
model displays reduction in miRNA-34a-5p, a member of
miRNA-34 family that is engaged in p53- and SIRT1-
dependent modulation of cell cycle, senescence, and apoptosis
[261]. A series of mouse models with various numbers of CAG
repeats in the huntingtin gene has shown a repeat number- and
brain part-dependent alteration in miRNA transcriptome (in-
cluding miRNAs engaged in neuronal development/survival
[262]). Altered miRNA levels in blood plasma and CSF have
been proposed as HD biomarkers [263, 264].

The engagement of microRNAs in the pathology not only of
neurons but alsomuscles is relatively better characterized inALS
[265]. A high-throughput next-generation sequencing project has
identified reduction in the blood levels of 38miRNAs in sporadic
ALS patients, including let-7 andmiR-26 families. The pattern of
reductions was dependent on the disease phenotypic expression
and progression rate, making them potentially useful for diagnos-
tic purposes [266]. In turn, upregulation of miR-223-3p, miR-
326, and miR-338-3p observed in tissue bank neuromuscular
junction samples of ALS patients may disturb HIF-1 and brain-
derived neurotrophic factor signaling [267]. Disruption of the
intraneuronal localization of RNAi machinery (leading to
deregulated axonal protein synthesis) has also been noted as an
important aspect of ALS pathology [268]. Moreover,
degenerating/dying neurons release miRNA-218 which leads to

changes in astrocyte phenotype such as reduced expression of
excitatory amino acid transporter 2 or peroxisome proliferator-
activated receptor gamma coactivator 1α and to astrogliosis
which likely contributes to the neuron loss [269].

Concluding Remarks

Neurodegenerative disorders belong to the most widespread,
devastating, and uncontrollable diseases. Alzheimer’s,
Parkinson’s, and Huntington’s diseases and amyotrophic lateral
sclerosis are, like physiological aging, increasingly associated
with pronounced disturbances in the metabolism of bioactive
sphingolipids (generally tending to augment the pro-apoptotic
ceramide signaling at the expense of survival signals mediated
by S1P). However, recent findings suggest a more complex pic-
ture, creating the need for refinement of current knowledge on of
the roles of S1P and ceramides in the various cell death modes.
The early appearance of sphingolipid alterations suggests their
engagement in upstream steps of disease development. These
observations raise hopes for identification of therapeutic targets
that would allow reaching beyond the current symptomatic treat-
ments. They also should help in the identification of highly us-
able biomarkers for the still elusive goal of early diagnosis.

Besides cell survival/death signaling, the roles of
sphingolipids are more obscure. Their significance in the metab-
olism of AβPP/Aβ and ASN, with both proteins’ physiological
roles still unclear, needs extensive insights before conclusions
can be drawn. Similar is the significance of sphingolipids’ links
with secretion mechanisms which can affect the spread of aggre-
gating proteins, death/survival signals, or metabolic regulators
such as noncoding RNAs. The significance of miRNAs for neu-
rodegenerative disorders, although gaining increasing recogni-
tion in the field, is still largely uncharacterized.

A final question is that about the availability of therapeutic
tools to manipulate the extremely complex network of
sphingolipid metabolism. Some of the most basic needs may be
metwith currently available repurposed drugs such as fingolimod;
however, it is highly possible that exploitation of sphingolipids as
therapeutic targets (as opposed to their use in diagnosis) may
require significant expansion of the current toolset.
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