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The importance of uremic toxin (UTx) removal in chronic kidney disease (CKD) is an
emerging topic in the literature, widely recognized over time as a strategy to slow-down
the disease progression towards end-stage renal disease and, consequentely, the occurence
of deleterious effects on cardiovascular (CV) system [1,2], brain [3], lungs, and gut [4]. UTx
start to accumulate in the blood of CKD patients, especially in advanced stages, where
kidneys are no longer able to manage UTs, activating inflammation, oxidative reactions,
and inducing profibrotic effects, all probable causes of kidney damage progression [5].
A bidirectional relationship between the gut microbiota and kidney, in both physiological
and disease conditions, has been consolidated by literature data, demonstrating a status
of dysbiosis of the CKD intestinal microbiota which overproduces proteolytic microbial
derivatives, contributing to disease progression [6]. Among these microbiota-derived
uremic toxins, indoxyl sulfate (IS) and para-cresyl sulfate (PCS) are being recognized as
nontraditional risk factors of cardiovascular disorder in CKD [1,2,5,6]. Due to their high
binding affinity to serum albumin, IS and PCS are not sufficiently removed by hemodial-
ysis (HD) treatment, and therefore therapeutic strategies reducing their production and
increasing their removal are expected to be advantageous. Moreover, HD treatment can
be largely inefficient in the case of high molecular weight toxins. In this Special Issue,
Yamamoto et al. [7] demonstrated that the protein binding properties of UTx in vitro were
pH-dependent, suggesting the modification of blood pH, while passing through the dia-
lyzer, as s future potential strategy to weaken UTx protein bonds and increase their removal
with HD treatment.

In a context other than that of CKD uremic patients, HD is also recommended as the
first-line treatment of acute hyperammonemia in neonates affected by inborn errors of
metabolism in order to avoid brain toxicity. To detoxify ammonia, Eloot et al. [8] developed
an algorithm useful for clinicians to conceptualize a specific protocol to treat acute neonatal
hyperammonemia based on a patient’s characteristics.

Improvements in dialysis membranes and techniques to remove medium–high molec-
ular weight uremic toxins without a significant albumin loss were shown by expanded
hemodialysis (HDx), a dialysis modality in which diffusion and convection are combined
inside a hollow-fiber dialyzer containing a medium-cut-off (MCO) high-retention-onset
membrane [9]. In contrast, vitamin E-bonded membranes showed no benefit in decreasing
by-products of oxidative stress and inflammation in dialysis patients lacking glutathione
transferase M1 enzyme activity [10]. A paradigm shift from conventional dialysis therapies
was represented by binding competitor-augmented hemodialysis. In this method, the bind-
ing competitor (i.e., ibuprofen, short-chain fatty acids, tryptophan) was infused upstream
of a dialyzer into an extracorporeal circuit, to increase the free PBUTs fraction, competing
with it for their albumin binding sites [11]. Although binding competition during dialysis
showed high potential for PBUT removal, more research is required before it can be used
in clinical practice. Even in peritoneal dialysis, new solutions containing L-carnitine and
xylitol are being developed to preserve the peritoneal membrane integrity, in this way
improving the removal of uremic solutes [12].
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Magnani and Atti [13] presented the state of the art for blood purification strategies,
showing that adsorption-based extracorporeal techniques, in particular hemodiafiltration
with endogenous infusion (HFR) and hemoperfusion (HP), integrated directly in the
current HD systems, adsorbed a significant amount of middle molecular weight molecules
and PBTUs. However, the authors concluded by emphasizing that blood purification
strategies used alone are not sufficient and future directions should include a synergic
approach by reducing PBUTs production in the upstream and increasing their clearance
in the downstream [13,14]. The same concept was supported by Eric and coworkers [15],
who, after a systematic review on the effects of the use of a medium cut-off membrane
(MCO) and dietary fiber on the serum level of PBUTs and inflammatory markers in HD
patients, presented a protocol for an interventional trial using a combination of the two,
namely MCO membrane dialysis and fiber supplementation.

Despite the progress in dialysis treatment of uremic patients, non-extracorporeal
therapies, such as medicament (intestinal chelators and activated charcoal adsorbent [16]),
nutritional therapy (i.e., low protein diet [17] or very low protein diet [18,19]) and sup-
plement therapies (prebiotic, probiotic, synbiotic [20,21]) alone, in combination with each
other [22] or in combinations with dialysis [14], are increasing, in order to reduce UTx
production, improve kidney function and prevent CV complications. Peripheral vascular
disease (PVD) developed by CKD patients could aggravate vascular complications and
increase mortality risk [23]. Wu and colleagues [23] reviewed the role of UTs in the patho-
genesis of PVD in CKD patients stressing the role of phosphorus and protein-bound uremic
toxins and showing their promising role as a therapeutic target.

Laville et al. [16], in a narrative review, described the lack of effectiveness of phosphate
binders sevelamer and, on the other hand, the efficacy of the sorbent AST-120 on the
decrease in uremic toxin levels. Nutritional therapy, specifically a low protein intake,
has been demonstrated to be effective in reducing the production of gut-derived UTs, in
CKD patients [19], as well as in animals [17], and was suggested by Cupisti et al. in a
combined approach with dialysis [18]. In their concept paper, the authors highlighted the
importance of protecting the residual kidney function (RKF) which is crucial for uremic
toxins excretion in stage 5 CKD patients. The strategy to decrease UTs suggested by the
authors was represented by the combination of protein restricted diet with infrequent
dialysis, useful for a “gradual, safe, and gentle beginning of dialysis” during the transition
phase from conservative management to full HD treatment [18]. Accumulating evidence
suggests the use of double approach as a successful strategy for the reduction of serum UTx,
which consists of the combination of different methods acting upstream, such as at gut-
microbiota level, and downstream, at a systemic level. Currently, in order to consolidate
the effectiveness and applicability of this strategy in clinical outcome studies, clinicians
need data derived from studies on extended treatment cycles with a larger number of
patients.

In conclusion, it is of interest to note the many alternative strategies to reduce UTx
serum levels that currently emerge as alternatives to traditional dialysis approaches. Nev-
ertheless, for most of them, an improvement in uremic toxin concentration does not
necessarily conform with a clinical benefit, and we should await confirmation in controlled
hard outcome or quality of life studies in CKD patients before we can truly appreciate their
relevance.
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