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The Tripartite motif (TRIM) protein family, which contains over 80 members in human
sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated
in regulating various cellular functions, including cell cycle process, autophagy, and
immune response. The dysfunction of TRIMs may lead to numerous diseases, such as
systemic lupus erythematosus (SLE). Lots of studies in recent years have demonstrated
that many TRIM proteins exert antiviral roles. TRIM proteins could affect viral replication by
regulating the signaling pathways of antiviral innate immune responses. Besides, TRIM
proteins can directly target viral components, which can lead to the degradation or
functional inhibition of viral protein through degradative or non-degradative mechanisms
and consequently interrupt the viral lifecycle. However, new evidence suggests that some
viruses may manipulate TRIM proteins for their replication. Here, we summarize the latest
discoveries on the interactions between TRIM protein and virus, especially TRIM proteins’
role in the signaling pathway of antiviral innate immune response and the direct “game”
between them.
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INTRODUCTION

Ubiquitination is an extraordinary essential post-transcriptional modification process that functions
in both innate and adaptive immune responses. The key enzymes required for the ubiquitination
process are classified into ubiquitin-activating enzyme E1, ubiquitin-conjugating enzymes E2, and
ubiquitin ligases E3 (Pickart and Eddins, 2004; Chernorudskiy and Gainullin, 2013) (Figure 1).
There are many E3 ligases in human cells due to their capability to recognize specific substrates and
transfer ubiquitin from E2 enzymes to those substrates (Davis and Gack, 2015). The E3 ubiquitin
ligase superfamily can be classified into three categories according to their specific domains: really
interesting new gene (RING) family, homologous to E6-AP C-terminus associated protein (HECT)
family (Berndsen and Wolberger, 2014; Mattiroli and Sixma, 2014), and those of unclassified type.

The tripartite motif (TRIM) proteins are a highly conserved superfamily of proteins, which is the
largest subfamily of the RING-type E3 ubiquitin ligase family (Esposito et al., 2017). TRIM protein
family is named for its specific RBCC domains at the amino-terminus, consisting of a RING finger
domain at the amino-terminus, one or two B-Box domains, and a coiled-coil domain (CCD)
(Figure 2A). The RING domain is essential for TRIM to exert its E3 ubiquitinase catalytic activity.
This domain contains two “zinc finger” structures that recognize and transfer the ubiquitins from
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ubiquitin-binding enzyme E2 to other proteins. However, not all
TRIMs proteins contain the RING finger domain, such as
TRIM14, TRIM29, TRIM44, etc. The second domain at the
amino-terminus of TRIM protein is the B-Box domain.
Although the B-Box domain contains the “zinc finger”
structure, it generally doesn’t exert E3 ubiquitin ligase activity.
There are two different subtypes of B-Box: B-Box1 and B-Box2.
Most TRIM proteins contain one B-Box2 domain or those two
B-Box domains, while a few TRIMs, such as TRIM69, don’t have
any of them. So far, the function of the B-Box domain is still a
mystery. The B-Box domain is assumed to be involved in the
TRIM’s assembly and interactions between TRIM proteins
and others.

In some cases, this domain can even exert the E3 ubiquitin
ligase activity [such as TRIM18 (Massiah et al., 2006)]. The
following CCD domain is a superhelix structure that is generally
considered to mediate homo and heterodimerization of TRIM
proteins, which is essential for biological function (Reymond
et al., 2001; Li et al., 2011b). CCD domain forms an antiparallel
dimer that can increase the molecular stability of TRIM proteins,
seeming like a common feature of TRIMs (Li et al., 2014; Weinert
et al., 2015).

Besides the domains at amino-terminus, those at carboxyl-
terminus are also diverse, including SPRY-associated domain
(PRY), SPIa and the ryanodine receptor domain (SPRY), C-
terminal subgroup one signature domain (COS), fibronectin type
III repeats domain (FNIII), etc. According to the various
domains in the carboxyl-terminal region, TRIM protein family
members are divided into 11 subgroups from Class I to Class XI
comprising about 80 members. Besides, there is an unclassified
group lacking the RING domain (no RING) (Figure 2B). Recent
studies have shown that these domains may play unique roles.
For example, the PRY-SPRY domain of TRIM21 (also known as
B30.2 domain) can bind to the Fc segment of immunoglobulin
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
(Ig) and limit the spread of the non-enveloped virus such as
adenovirus (Marina et al., 2013; Rhodes and Isenberg, 2017).
TRIM23, as the only protein possessing ADP-ribosylation factor
(ARF) family domain among family members, have both E3
ubiquitin ligase activity and GTPase activity. TRIM23 can
activate TANK-binding kinase 1 (TBK1) through its GTPase
activity and then induce autophagy and target viral proteins for
degradation (Kmj et al., 2017).

TRIM proteins could play multiple regulatory roles in various
cellular processes, particularly in innate immune responses and
carcinogenesis. The RING domain of TRIM proteins confers
them E3 ligase activity, which can mediate ubiquitination,
ISGylation, or SUMOylation of specific substrates (Chu and
Yang, 2011; Khanna et al., 2018; Wu et al., 2020). These post-
translational modifications can lead to the degradation of the
substrates via the lysosomal or proteasomal pathways (Khanna
et al., 2018; Wu et al., 2019a). Recent studies have shown that
RING-type E3 ubiquitin ligase can also ubiquitinate some
signaling proteins in a “non-degradative” way, thereby
regulating their activity or subcellular localization (Didier et al.,
2003; Liu et al., 2017). In this review, we’d like to highlight the
interactions between TRIM protein and virus. We mainly focus
on the following two aspects: TRIM proteins’ roles in regulating
the signaling pathway of innate immune responses and the direct
“game” between virus and TRIM proteins.
THE ROLES OF TRIM PROTEINS IN THE
SIGNALING PATHWAY OF INNATE
IMMUNE RESPONSES

The innate immunity makes up the first line of defense against
the invasion of pathogens. Upon invasion by pathogens,
FIGURE 1 | The Ubiquitin-Proteasome System. The conjugation reaction of ubiquitin is catalyzed by the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating
enzymes, and E3 ubiquitin ligases. E3 ubiquitin ligase could recognize substrates and transfer ubiquitin from E2 ubiquitin-conjugating enzymes to substrates,
resulting in the proteasome degradation of the polyubiquitinated substrates.
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pathogen-associated molecular patterns (PAMPs) are sensed by
pattern recognition receptors (PRRs) of innate immune cells,
including retinoic acid-induced gene-I-like receptor (RLRs),
Toll-like receptors (TLRs), and cytosolic DNA receptors
(Brennan and Bowie, 2010; Cai et al., 2014; Brubaker et al.,
2015). Triggering of PRRs culminates in the activation of various
signaling pathways and the transcriptional induction of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
proinflammatory cytokines and type I interferons (IFNs),
which together coordinate antimicrobial immune defenses
(Takeuchi and Akira, 2010; Paludan et al., 2011). Protein post-
translational modifications (PTMs), including phosphorylation,
methylation, ubiquitination, and acetylation, regulate this
process (Liu et al., 2018; McFadden and Horner, 2020; Song
et al., 2020; Wu and Li, 2020; Zhong et al., 2020). TRIM protein
A

B

FIGURE 2 | The Domain Structure and the Classification of Tripartite Motif (TRIM) Family Proteins. (A) Domain structure of TRIM proteins. Most TRIM proteins
possess conservative RBCC domains at the amino-terminus and diverse domains at the carboxyl-terminus. RBCC domains consist of a RING finger domain, a B-
box 1 and/or B-box 2 domain, and a coiled-coil domain (CCD). (B) Classification of TRIM proteins. TRIM proteins with the RING domain are classified into 11
subfamilies from Class I to Class XI according to their distinctive C-terminal domains. Besides, there is an unclassified group lacking the RING domain (no RING).
PRY, SPRY-associated domain; SPRY, SPIa and the ryanodine receptor domain; COS, C-terminal subgroup one signature domain; FN3, fibronectin type 3 domain;
ACID, acid-rich region; PHD, plant homeodomain; BROMO, bromodomain; FIL, filamin-type IG domain; NHL, NHL repeats; MATH, meprin, and tumor necrosis
factor receptor-associated factor (TRAF) homology domain; ARF, ADP-ribosylation factor family domain; TM, transmembrane region. Numbers indicate individual
TRIM proteins.
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family has E3 ubiquitin ligase activity, providing a structural
basis for participating in post-translational modification of
proteins and regulating innate immune response, especially
antiviral innate immune response (Figure 3).

At present, many studies have shown that there are mainly
three innate immune signal pathways regulated by TRIM
protein, namely, TLR signaling pathway, RLR signaling
pathway, and cyclic GMP-AMP synthase (cGAS)- stimulator
of IFN genes (STING) pathway.

The Roles of TRIM Protein in the TLR
Signaling Pathways
The sensors of TLR signaling pathways are TLRs that exist on the
surface of the cell membrane or in the intracellular
compartment. They sense nucleic acid, lipid, or protein
components derived from pathogens. TLR family members are
generally divided into six subfamilies based on their primary
structure, which are TLR1 subfamily (including TLR1 and
TLR2), TLR3 subfamily, TLR4 subfamily, TLR5 subfamily,
TLR7 subfamily (including TLR7, TLR8, and TLR9), and
TLR11 subfamily (including TLR11, TLR12, and TLR13).
TLR3, TLR7, TLR8, and TLR9 are mainly involved in viral
recognition (Gent et al., 2018). Upon binding to the ligand,
TLRs dimerize and trigger the activation of signaling cascade
reaction, ult imately result ing in the production of
proinflammatory cytokines and antiviral type I interferons
(IFNs) mediated by nuclear factor kappa-B (NF-kB) and
interferon regulatory factor (IRF). TLRs recruit kinase IL-1
receptor-associated kinase 1/4 (IRAK1/4) and E3 ubiquitin
ligase TNF receptor-associated factor 6 (TRAF6) via adaptor
molecule Myeloid differentiation primary response gene 88
(MyD88). TRAF6 catalyzes auto-ubiquitination. Ubiquitinated
TRAF6 recognizes TAK1/MAP3K7-binding protein 2 (TAB2)
and activates TGF-b-activated kinase 1 (TAK1), and ultimately
results in activation of IkB kinase a/b/g (IKKa/b/g) and NF-kB
(Kishida et al., 2005). TLR3 is such a unique receptor that can
recognize double-stranded RNA and poly(I:C). TLR3 transmits
signals via adaptor molecule TRIF (TIR-domain-containing
adaptor inducing IFNb), but not MyD88, which leads to
activation of transcription factors interferon regulatory factor 3
(IRF3) and interferon regulatory factor 7 (IRF7) through TNF
receptor-associated factor 3 (TRAF3) and transforming growth
factor-b- activated kinase 1/IkB kinase ϵ (TBK1/IKKϵ)
(Yamamoto et al., 2002; Yamamoto et al., 2003). A lot of
TRIM proteins can regulate the response process by targeting
these signaling molecules. For instance, TRIM8 inhibits TRIF-
mediated signaling transduction by disrupting TRIF-TBK1
interaction (Ye et al., 2017). TRIM32 could negatively regulate
TLR3/4-mediated immune responses by targeting TRIF to TAX1
binding protein 1 (TAX1BP1)-mediated selective autophagic
degradation (Yang et al., 2017). TRIM38 could regulate the
stability of signaling transduction proteins including TRIF
(Qinghua et al., 2012), TRAF6 (Zhao et al., 2012), nucleosome
assembly protein 1(NAP1) (Zhao et al., 2012), TAB2/3 (Ming-
Ming et al., 2014), and then negatively regulate TLR signaling.
TRIM29 induces NF-kB essential modulator (NEMO)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
degradation and negatively regulates the production of
proinflammatory cytokines in alveolar macrophages (Xing
et al., 2016). Besides above TRIM proteins that negatively
regulate the TLR/TRIF pathway, TRIM56 were found to
positively regulate the TLR3-mediated interferon pathway
through interacting with TRIF, which acts in an E3-ligase-
independently mechanism (Shen et al., 2012). Similar to TLR
signal pathways, TNFa and IL-1b also transmit signals via the
MyD88 molecule. TRIM8 can enhance TNFa and IL-1b
signaling transduction through mediating K63-linked
polyubiquitin modification of TAK1 (Li et al., 2011a).

The Role of TRIM Protein in the RLR
Signaling Pathway
RLR consists of three members: retinoic acid-inducible gene I
(RIG-I), melanoma differentiation-associated protein 5 (MDA5),
and laboratory of genetics and physiology 2 (LGP2). RLRs
harbor two N-terminal caspase recruitment domains (CARDs)
excepting LGP2, a central DExD/H-box helicase domain and a
C-terminal regulatory domain (RD). With the unique DExD/H-
box RNA helicase activity, they could sense single- or double-
stranded RNA from the virus to initiate immune response
(Goubau et al., 2013). When RIG-I and MDA5 recognize and
bind PAMPs, they undergo a conformational change that
exposes their caspase recruitment domain (Bharaj et al.) to
interact with mitochondrial antiviral signal transduction
protein (MAVS). They could then trigger the downstream NF-
kB signaling pathway and the IFN signaling pathway (Seth et al.,
2005; Hou et al., 2011). Although LGP2 lacks the CARD domain
for signal transduction, it could act as a positive regulator of RIG-
I and MDA5-mediated antiviral responses by facilitating viral
RNA recognition by RIG-I and MDA5 with its ATPase domain
(Satoh et al., 2010; Bruns et al., 2014).

RIG-I and MDA5 are strictly regulated by post-translational
modification, which ensures the rapid activation of RLR and
prevents excessive immune response (Chiang and Gack, 2017).
TRIM25 is the first identified immunomodulatory factor of the
TRIM protein family. The SPIa and the ryanodine receptor
(SPRY) domain at the carboxyl-terminus of TRIM25 (Gack
et al., 2007) catalyzes the K63-linked polyubiquitination of the
CARDs domain of RIG-I, induces RIG-I oligomerization to
integrate with MAVS, and then triggers downstream signaling
transduction (Zeng et al., 2010). The stability of TRIM25 protein
is precisely regulated by K48-linked ubiquitination, which
induces degradation of TRIM25 via the proteasome (Inn et al.,
2011). Ubiquitin specific peptidase 15 (USP15) could enhance
the stabilization of TRIM25 by counteracting its K48-linked
ubiquitylation and thereby positively regulate the TRIM25-
RIG-I signaling pathway (Eva-Katharina et al., 2011). However,
the role of USP15 in those responses remains controversial, and
it has been demonstrated to act as an inhibitor of the RIG-I
mediated interferon signaling pathway through deconjugating
the Lys63-linked polyubiquitin chains from RIG-I or physically
sequestering the RIG-I-MAVS interaction (Zhang et al., 2015).
TRIM25 can also be targeted by nonstructural protein 1 (NS1) of
influenza A virus (IAV), thus losing TRIM25’s positive
March 2021 | Volume 11 | Article 628275
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regulatory abilities in RIG-I ubiquitination and RIG-I signal
transduction (Gack et al., 2009). The ability of NS1 protein to
inhibit RIG-I signaling differs markedly between influenza A
virus subtypes. However, no matter whether NS1 can block RIG-
I activation, it can bind to TRIM25 protein (Kuo et al., 2010).
Furthermore, another study confirmed that influenza A Virus
NS1 protein interacts with TRIM25 in a species-specific manner.
Although NS1 protein cannot bind mouse TRIM25, it confers
its ability to block IFN production in mice (Rajsbaum et al.,
2012). Those results demonstrate that NS1-TRIM25 regulation
does not necessarily lead to the differential induction of IFNs
by influenza viruses and indicate that other host proteins (except
TRIM25) may be involved in regulating RIG-I signaling and be
targeted by NS1 of influenza A virus. Additionally, several
studies have uncovered some host proteins, such as Nuclear
Dbf2-related kinase 2 (NDR2), Nucleotide-binding
oligomerization domain, Leucine-rich repeat and pyrin domain
containing 12 (NLRP12), Caspase-12 and Lnczc3h7a, could
regulate the E3 ligase activity of TRIM25 (Wang et al., 2010;
Chen et al., 2019; Lin et al., 2019; Liu et al., 2019b).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
However, the positive regulatory role of TRIM25 in RIG-I
signaling is only observed when they use exogenous TRIM25.
Some studies showed that removing endogenous TRIM25 has no
impact on RIG-I activity in response to either RNA ligands or
infection with influenza virus or SeV (Shi et al., 2017; Cadena
et al., 2019; Hayman et al., 2019). In contrast, the removal of
endogenous Riplet has a profound effect on RIG-I signaling,
indicating that Riplet, but not TRIM25, is essential for RIG-I
ubiquitination and its signaling transduction (Hayman et al.,
2019). The current dogma stating a major requirement for
Trim25 as a positive regulator of RIG-I signaling may need to
be revised.

Other TRIMs proteins, such as TRIM4, TRIM21, TRIM26,
TRIM40, and TRIM65, also play crucial roles in regulating RLRs-
mediated innate immune response. TRIM4 is a positive regulator
of RIG-I mediated IFN induction by targeting RIG-I for K63-
linked polyubiquitination (Yan et al., 2014). TRIM21 could
interact with MAVS and catalyzes the K27-l inked
polyubiquitination of MAVS, thereby promoting the
recruitment of TBK1 to MAVS and positively regulate innate
FIGURE 3 | TRIM-mediated regulation of innate immune signaling pathways. TRIM proteins play a dual role in antiviral immune signaling pathways indicated by
black arrows. They could positively or negatively regulate antiviral immune signaling pathways, indicated by green arrows or red lines, respectively. Also, some TRAM
proteins can act as common pathogen PRRs, or as cytosolic Fc receptors (such as TRIM21) to recognize non-enveloped viruses bound by immunoglobulin (Ig).
DDX41, DEAD-box helicase 41; cGAS, cyclic GMP-AMP synthase; DHX33, DEAH-box helicase 33; NOD-2, nucleotide-binding oligomerization domain-containing
protein 2; RIG-I, retinoic acid-inducible gene I; MDA5, melanoma differentiation-associated protein; TLR, Toll-like receptors; STING, stimulator of IFN genes; MAVS,
mitochondrial antiviral signaling protein; TAK1, TGF-b-activated kinase 1; TAB2, TAK1/MAP3K7-binding protein 2; MyD88, Myeloid differentiation primary response
gene 88; TRIF, TIR-domain-containing adapterinducing interferon-b; NEMO, NF-kB essential modulator; NAP-1, nucleosome assembly protein; TNF, tumor necrosis
factor; TRAF, TNF receptor-associated factors; TANK, TANK-binding kinase 1; IkB, inhibitor of NF-kB; IKK, IkB kinase; TBK1, TANK binding kinase 1; IFN,
interferon; IRF, interferon regulatory factor; P, phosphorylation; Ub, ubiquitin; dsDNA, double-stranded DNA; dsRNA, double-stranded RNA; ssRNA, single-stranded;
ADV, adenovirus; IL, interleukin; AP-1, activator protein-1; PIN1, Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1; ECSIT, evolutionarily conserved signaling
intermediate in Toll pathway; CASPASE-1, cysteinyl aspartate specific proteinase 1; b-TrCP, b-transducinrepeats containing proteins.
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immune response (Xue et al., 2018). TRIM26 has also been
reported to regulate MAVS-mediated IRF3 activation during
RNA virus infection. RNA virus-triggered TRIM26
autoubiquitination could bridge TBK1-NEMO interaction,
which is essential for recruiting TBK1 to the MAVS
signalosome and its activation. Activated TBK1 dissociates
from TRIM26, phosphorylates IRF3, and induces type I IFNs
(Ran et al., 2016). However, there are also debates regarding the
role of TRIM26 in IFN-b production and antiviral immune
response. Gao’s group demonstrated that TRIM26 negatively
regulated the production of IFN-b by targeting nuclear IRF3 and
promoting its K48-linked polyubiquitination and degradation in
the nucleus (Wang et al., 2015). This dual effect of TRIM26 may
be related to its cellular localization. Cytoplasmic and nuclear
TRIM26 could target different proteins and ubiquitinate them
with different forms to exert their different roles. TRIM40 could
negatively regulate both MDA5- and RIG-I-induced signal
pathways by promoting K27- and K48-linked ubiquitination of
MDA5 and RIG-I, respectively, and increasing their proteasomal
degradation (Zhao et al., 2017). TRIM65 is essential for MDA5-
induced IRF3 activation by specifically interacting with MDA5
and promoting K63-linked ubiquitination of MDA5, critical for
MDA5 oligomerization and activation (Lang et al., 2017; Meng
et al., 2017).

Interestingly, TRIM13 exerts an opposite regulatory effect on
RIG-I (Versteeg et al., 2013) and MDA5 (Narayan et al., 2014)
signaling pathway. Although the precise molecular mechanism
hasn’t been clarified, the possible reasons are as follows: Firstly,
The dual-directional regulation of TRIM13 on RIGI and MDA5
may be related to the time course of infection. A recent study has
shown that MDA5 can substantially activate interferon
regulatory factor 3 during infection by Paramyxoviruses.
TRIM13 could initiate the innate immune response in the
early stage of infection by positively regulating the RIG-I
pathway. TRIM13 may inhibit the effect of persistent activation
of MDA5 on RIG I by negatively regulating the MDA5 pathway,
which represses excessive immune response and avoids
immunopathological damage in the late stage of infection.
Secondly, The targets of TRIM13 regulating the RIG-I pathway
and MDA5 pathway may be different. SUMOylation could
stabilize the substrate by inhibiting the K48-linked
polyubiquitination modification. Although TRIM38 acts as a
ubiquitin ligase, a recent report have shown that it also has E3
SUMO ligase activity and positively regulates antiviral immune
response by sumoylating RIG-I andMDA5 and suppressing their
K48-linked polyubiquitination and degradation in early-infected
cells (Hu et al., 2017a).

TRIM14, being one of the few TRIM protein family members
that lack the RING domain, performs regulatory function
independent of E3 ubiquitin ligase activity. It can provide a
docking platform for the assembly of the mitochondrial signaling
complex Werner helicase protein (WHIP)-TRIM14-protein
phosphatase PPP6C, which is essential for RIG-I K63
ubiquitination and activation of RIG-I-mediated innate
antiviral immunity (Zhou et al., 2014; Tan et al., 2017). During
RNA virus infection, TRIM31 can mediate K63-linked
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
polyubiquitination on MAVS at multiple sites, promoting
MAVS to form aggregates and inducing type I interferon
production (Liu et al., 2016b).

The Role of TRIM Protein in the cGAS-
STING Signaling Pathway
Studies have confirmed that the cGAS-STING signaling pathway
mainly recognizes DNA viruses. The cGAS possessing anti-
retroviral activity is essential for the recognition of DNA
viruses. Upon recognizing viral DNA, cGAS produces the
second messenger cyclic guanosine monophosphate-adenosine
monophosphate (cGAMP), which subsequently activates STING
and induce type I interferon production (Chen et al., 2016b).
TRIM38 can induce SUMOylation of cGAS and STING (Hu
et al., 2016), thereby preventing K48-linked polyubiquitination
and proteasome-mediated degradation of cGAS. Herpes simplex
virus (HSV-1) induces TRIM14 expression and recruits the
deubiquitinating enzyme USP14, which inhibits the K48-linked
polyubiquitination of cGAS to increase its stability and enhances
the immune response against HSV-1 (Chen et al., 2016a).
TRIM29, which is specifically expressed in alveolar
macrophages and airway epithelial cells, negatively regulates
the immune response against DNA viruses by mediating
polyubiquitination and STING degradation (Xing et al., 2017).
It has been previously reported that TRIM56 and TRIM32 can
promote K63-linked polyubiquitination of STING and increase
antiviral response during DNA virus infection (Tsuchida et al.,
2010; Zhang et al., 2012). However, recent studies have shown
that TRIM56 and TRIM32 do not directly ubiquitinate STING.
They can synthesize ubiquitin chains that bind to NEMO and
presumably mediate NEMO’s ubiquitination to activate IKKb,
finally leading to NF-kB and TBK1 IRF3 activation (Qiang et al.,
2014; Fang et al., 2017; Motwani et al., 2019).

Besides, many TRIM proteins directly regulate the
downstream interferon signaling pathway, which can work in
coordination with the three signaling pathways mentioned above
to precisely regulate the antiviral immune response.
TRIM PROTEINS PLAY A DIRECT “GAME”
WITH VIRUSES

TRIM Proteins Directly Antagonize the
Virus by Targeting Viral Components
Upon viral invasion, the sensors in the cell membrane and the
cytoplasm could recognize the virus to initiate a series of
response mechanisms. TRIM proteins play a regulatory role in
the innate viral immune response pathway and directly
antagonize the virus. TRIM5a, which can inhibit the infection
of retroviruses such as Human Immunodeficiency Virus 1 (HIV-
1) and N-tropic murine leukemia virus (N-MLV), maybe the first
and the most widely-studied protein in these aspects (Perron
et al., 2004; Stremlau et al., 2004; Yap et al., 2004). According to
the current research results , TRIM5a may form a
complementary lattice with the viral nucleocapsid hexamer
March 2021 | Volume 11 | Article 628275
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lattice, which induces the premature disassembly of viral capsid
disintegration of immature virus particles possibly through
ubiquitin degradation, and then inhibits viral replications
(Stremlau et al., 2004; David et al., 2005; Campbell et al.,
2015). TRIM5a also acts as a selective autophagy receptor
mediating HIV-1 restriction. On the one hand, TRIM5a
promotes autophagy by acting as a platform for the assembly
of active ULK1 and BECN1 complexes. On the other hand,
TRIM5a acts as a selective autophagy receptor targeting HIV-1
p24 to autophagosome and promoting its degradation (Mandell
et al., 2014a; Mandell et al., 2014b). Besides, viral PAMPs are
released to activate the innate immune signaling pathway
(Kutluay et al., 2013). A recent study shows that TRIM5a can
restrict flavivirus replication by targeting the viral protease for
proteasomal degradation (Chiramel et al., 2019). TRIM5a has
also been reported to act as a receptor to bind viral nucleocapsid,
catalyze the formation of unanchored K63 polyubiquitin chains,
and finally activate the signaling pathways mediated by TAK1,
activator protein 1 (AP1), and NF-kB (Thomas et al., 2011). And
this kind of restriction effects of TRIM5a on retroviruses appears
to be relatively obvious in primates (Matthew et al., 2004),
indicating that TRIM5 plays its role in specific species.

Besides TRIM5a, a multitude of other TRIM proteins have
been shown to antagonize the virus directly. TRIM56 could act as
an antiviral host restriction factor to inhibit the replication of
members of the Flaviviridae family, including Bovine viral
diarrhea virus (BVDV), dengue virus serotype 2 (DENV2), and
yellow fever virus (YFV) (Wang et al., 2011; Liu et al., 2014).
Beyond members of the Flaviviridae family, TRIM56 also
inhibits human corona virus (HCoV) OC43 replication (Liu
et al., 2014). Furthermore, TRIM56’s antiflavivirus effects
required both the E3 ligase activity that lies in the N-terminal
RING domain and the integrity of its C-terminal portion, while
the restriction of HCoV-OC43 relied upon the TRIM56 E3 ligase
activity alone. Distinct TRIM56 domains may confer differing
antiviral mechanisms. Current researches has demonstrated that
TRIM56 inhibits YFV/DENV2/BVDV replication by impairing
intracellular viral RNA replication, whereas it curbs HCoV-
OC43 progeny viral yield by targeting viral packaging and
release stages but not intracellular viral RNA accumulation
(Wang et al., 2011; Liu et al., 2014). C-terminal region of
TRIM proteins mediate protein-protein or protein-RNA
interactions between TRIMs and cellular and/or viral proteins/
RNA, and may hinder viral RAN replicaiton. Besides, TRIM
proteins’ E3 ligase activity may modulate a posttranslational
modification of viral proteins and/or host factors to suppress
positive-strand RNA virus replication. We speculated that
TRIM56 may antagonize different viruses by targeting different
viral or host protein. However, the interaction partners of
TRIM56 remain to be elucidated. Consistent with previous
researches, recent studies have shown that carboxy-terminal
domains of TRIM56 inhibit IAV and Influenza B virus (IBV)
replication by blocking viral RNA synthesis (Liu et al., 2016a).
Similarly, TRIM56 could also be a host restriction factor of the
Zika virus, depending on its RNA-binding activity (Yang et al.,
2019). TRIM22 can restrict retrovirus by interfering with viral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Gag protein transport by regulating transcription factor
specificity protein 1 (Sp1) (Sp1) (Kajaste-Rudnitski et al., 2011;
Turrini et al., 2015). Besides, TRIM22 can inhibit IAV and
encephalomyocarditis virus (EMCV) by targeting viral nuclear
proteins and 3C proteases, respectively (Eldin et al., 2009; Di
Pietro et al., 2013). TRIM19, also known as promyelocytic
leukemia (PML) protein, is a key component of the PML
nucleosome (Ishov et al., 1999). TRIM19 can restrict many
DNA virus replication, including herpes virus and adenovirus
and RNA viruses such as IAV and vesicular stomatitis virus
(VSV). The mechanism by which TRIM19 inhibits the virus is
multiple. TRIM19 can epigenetically silence the viral genome
and entrap the newly synthesized viral nucleocapsid (McNally
et al., 2008; Dutrieux et al., 2015). TRIM14 could inhibit hepatitis
C virus (HCV) replication by targeting the NS5a protein of HCV
for degradation (Wang et al., 2016). TRIM52 also inhibits the
Japanese encephalitis virus (JEV) replication by promoting the
ubiquitin modification of NS2A protein and its degradation (Fan
et al., 2016).

Latest evidence reveals that TRIM14 could also restrain IAV
replication by targeting its viral nuclear proteins for degradation
(Wu et al., 2019b). TRIM32 could ubiquitinate the polymerase
subunit PB1 of certain IAV strains to promote its degradation
and limit IAV replication (Fu et al., 2015). TRIM33 targets the
viral integrase of HIV-1 to restrains its infection (Ali et al., 2019).
TRIM2 interacts with the signal-regulating protein a (SIRPA),
which can inhibit phagocytosis, thereby blocking New World
arenaviruses (NWAs) from entering the host cell via endocytosis
(Sarute et al., 2019). During the infection of herpesvirus, TRIM43
could induce changing of nuclear lamina by ubiquitinating and
degrading centrosomal protein pericentrin, thereby restricting
viral infection by inhibiting the activities of viral chromatin (Full
et al., 2019).

Viruses May Manipulate TRIM Proteins for
Their Replication
In the long “game” between virus and host, the virus has evolved
a defense mechanism against TRIM proteins. Respiratory
syncytial virus (RSV) NS1 protein could interact with the
SPRY domain of TRIM25, interfering with TRIM25-mediated
K63-linked polyubiquitination on the CARD domain of RIG-I to
inhibit its signal transduction and preventing antiviral immune
response (Ban et al., 2018). The same phenomenon and
mechanism are also observed in IAV infection (Figure 4)
(Gack et al., 2009). Nucleocapsid (N) protein of severe acute
respiratory syndrome (SARS) virus (Hu et al., 2017b) and the
Middle East respiratory syndrome (MERS) virus (Santiago et al.,
2014) also target TRIM25 to inhibit its E3 ubiquitin ligase
activity. Nucleocapsid protein of porcine reproductive and
respiratory syndrome virus (PRRSV) can antagonize the
antiviral activity of TRIM25 by interfering with TRIM25-
mediated RIG-I ubiquitination (Chiramel et al., 2019).
Through structural mimicry, the immediate early protein IE1
of human cytomegalovirus (CMV) could bind to the CCD
domain of TRIM19 to prevent its auto-SUMOylation and
disrupt the function of PML nucleosome. Besides, IE1 could
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similarly target TRIM5a and TRIM33 to inhibit their function
(Francisco Puerta and Qiyi, 2014; Scherer et al., 2014; Scherer
and Stamminger, 2016; Schilling et al., 2017). The ICP0 protein
of HSV-1, with its own RING E3 ubiquitin ligase activity, targets
TRIM27 to mediate its polyubiquitination modification and
degradation (Conwell et al., 2015). The matrix protein of
Nipah Virus (NiV) could target TRIM6 to reduce the synthesis
of unanchored K48-linked polyubiquitin chains, thereby
blocking the activation of IKKϵ and subsequent type I IFN-
mediated antiviral responses (Bharaj et al., 2016).

Except for defensive, viruses can “domesticate” TRIM
proteins for their replications as well. For example, TRIM21 is
induced in JEV-infected human microglia cells CHME-3 to
inhibit IRF3-mediated IFNb production, thereby preventing
antiviral immune response (Gunjan Dhawan et al., 2014).
Epstein-Barr virus (EBV) could induce TRIM29 expression,
whose E3 ubiquitin ligase activity could mediate K48-linked
polyubiquitination of STING to promote its degradation and
consequently inhibits activation of the cGAS-STING pathway
(Xing et al., 2017). VP35 protein of Ebola virus (EBOV) could
serve as an essential cofactor of the viral polymerase and a potent
antagonist of RIG-I mediated innate immunity. VP35 protein
can hijack TRIM6 to promote its self-polyubiquitination and
then promote virus replication by enhancing viral polymerase
activity or decreasing its ability to antagonize innate immunity
(Bharaj et al., 2017) (Figure 5). UL144 protein of human
cytomegalovirus interacts with TRIM23 to induce K63-linked
polyubiquitination of TRAF6, activates the NF-kB signaling
pathway, upregulates the expression of macrophage-derived
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
chemokine (also known as CCL22), and finally inhibits Th1-
mediated immune response (Poole et al., 2009; Emma et al.,
2014). The Us11 protein of HSV-1 spatially disrupts the
TRIM23-TBK1 complex, which subsequently suppresses
autophagy and autophagy-mediated virus restriction (Liu
et al., 2019a).
CONCLUSIONS AND PROSPECTS

Since the first member of the TRIM protein family—Xenopus
laevis nuclear factor 7 (XNF7)—was identified in 1991 (Reddy
et al., 1991), more than 100 members (about 80 in the human
genome) have been discovered in nearly 20 years, and scientists
never stop exploring their structures and functions. Positioned as
hubs connecting cellular signaling, autophagy, metabolism, and
probably apoptosis, it is unsurprising that the TRIMs could play
various roles (Mandell et al., 2020). A recent study claims that
during LPS-induced inflammation in macrophages, TRIM7 can
upregulate the immune response of TLR4-mediated
inflammatory pathways (Lu et al., 2019). Many TRIM proteins
are found as relevant cancer biomarkers, showing decreased or
increased expression levels (Mandell et al., 2020). For instance,
the high expression of TRIM59 in cholangiocarcinoma cells
could regulate cell proliferation via the phosphatidylinositol-3-
kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)
signaling pathway (Shen et al., 2019).

Even in virus antagonism, TRIM protein is behaving multi-
dimensional functions. Emerging evidence has revealed that
FIGURE 4 | The NS1 protein of RSV or IAV prevents TRIM25-mediated activation of the RLR signaling pathway. IAV, influenza A virus; RSV, respiratory syncytial
virus; NS1, nonstructural protein 1.
FIGURE 5 | Viruses “domesticate” TRIM proteins for their replications. VP35 protein of Ebola virus (EBOV) could serve as an essential cofactor of the viral
polymerase, and a potent antagonist of RIG-I mediated innate immunity. TRIM6 can be recruited to ubiquitinate VP35 protein on K309, promoting virus replication by
enhancing viral polymerase activity or decreasing its ability to antagonize RIG-I mediated innate immunity.
March 2021 | Volume 11 | Article 628275

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Shen et al. TRIM Protein in Immune Signaling
TRIM protein could regulate virus-induced autophagy, therefore
indirectly playing an antagonistic or promoting role in viral
replication. Besides, several studies show that TRIM32
(Schwamborn et al., 2009), TRIM65 (Shitao et al., 2014), and
TRIM71 (Chang et al., 2012) can participate in microRNA
processing and RNA interfering, suggesting that TRIM
proteins may potentially directly target viral-coded microRNA
to affect virus replication. In short, the functions of the TRIM
proteins warrant further studies.

It has been well-known that some viruses are involved in
carcinogenesis, so is there any possibility that TRIM proteins
participate in cancer progression by affecting virus replication?
Could TRIM protein be a new molecular target for cancer
therapy? Different TRIM proteins function diversely in different
cell lines, and even the same TRIM protein plays opposite roles in
different cell lines. What is the underlying mechanism? As the
studies on TRIM proteins in vivo are relatively rare, and it is still
unknown whether TRIM protein’s physiological roles revealed in
vivo studies are consistent with those revealed in vitro studies.
Elucidating the interaction and mechanism between TRIM
proteins and viruses will provide new molecular targets for
preventing and treating viral infectious diseases and tumors.
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