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An interpretable machine learning
pipeline based on transcriptomics predicts
phenotypes of lupus patients

Emily L. Leventhal,1,2,* Andrea R. Daamen,1 Amrie C. Grammer,1 and Peter E. Lipsky1

SUMMARY

Machine learning (ML) has the potential to identify subsets of patients with distinct phenotypes from gene
expression data. However, phenotype prediction using ML has often relied on identifying important genes
withouta systemsbiologycontext. Toaddress this,wecreatedan interpretableMLapproachbasedonblood
transcriptomics to predict phenotype in systemic lupus erythematosus (SLE), a heterogeneous autoimmune
disease.Weemployedasequentialgroupedfeature importancealgorithmtoassesstheperformanceofgene
sets, including immuneandmetabolicpathways andcell types, knowntobeabnormal in SLE inpredictingdis-
ease activity and organ involvement. Gene sets related to interferon, tumor necrosis factor, the mitoribo-
some, and T cell activationwere the best predictors of phenotypewith excellent performance. These results
suggestpotential relationshipsbetween themolecularpathways identified ineachmodel andmanifestations
of SLE. This ML approach to phenotype prediction can be applied to other diseases and tissues.

INTRODUCTION

Gene expression analysis holds the promise of identifying subsets of patients with specific clinical phenotypes and understanding their

distinct pathologies. However, to date, it has not generated consensus information in most circumstances. In some studies, the characteriza-

tion of patient subsets has relied on differential expression of a small number of genes in a limited number of patients, without considering

whether these changes are representative across multiple patient populations.1,2 Others have attempted to create machine learning (ML)

models to predict phenotype by selecting individual genes to use as features, rather than considering how those genes fit into the broader

context of disease pathogenesis.3–5 In this article, we aim to establish an ML pipeline to identify and understand the specific molecular

pathways implicated in phenotypic subsets of patients by using a systems biology lens.

Given its multitude of phenotypes and their largely unknown molecular pathologies, we use systemic lupus erythematosus (SLE) as a test

case for our pipeline. SLE is a complex autoimmune disease characterized by multi-organ inflammation and a wide range of clinical manifes-

tations.6,7 Additionally, the course of SLE is characterized by flares of disease activity with variable outcomes interspersed with periods of

disease quiescence.8 Because of the heterogeneity and complexity of the disease, recognition of SLE is oftentimes delayed or inaccurate.

Physicians must rely on a combination of criteria, consisting mostly of clinical evaluations and measurements of autoantibodies to arrive at

a diagnosis of SLE. In practice, this is a prolonged process that can delay definitive identification.9–12 Earlier and more accurate detection

of SLE and SLE subtypes is important, as prompt recognition is paramount for effective treatment and to prevent irreversible damage.8

Additionally, delayed treatment is associated with worse prognosis, decreased survival, and worsened quality of life.

As a clinically heterogeneous, multi-system disease, SLE can affect many organs of the body, including the skin, joints, kidneys and the

nervous system. However, the detection of organ manifestations of SLE often relies on invasive tests, such as biopsies, to confirm disease

after clinical findings suggest organ dysfunction. For example, lupus nephritis (LN) is a severe organ manifestation of SLE that affects up

to 50% of patients with SLE.7,13 The gold standard for diagnosing LN is the kidney biopsy, which is usually carried out after the detection

of signs of organ dysfunction in the urine.14 However, LN can be present in patients without clinical suggestions of kidney disease.7

Therefore, diagnosis based on clinical presentation is not always adequate. Furthermore, early recognition of LN is particularly important,

as LN is a major source of morbidity and mortality in SLE, and late diagnosis is a risk factor for end-stage renal disease.7

Blood-based molecular classification of SLE pathogenesis and organ involvement using gene expression data offers a promising

alternative to traditional methods of characterizing various presentations of SLE. Gene expression in the blood of patients with SLE has

been shown to be quite variable (15). However, coupled with ML, this approach has the potential to unravel some of the heterogeneity of

the systems involved in lupus.4,16,17 An interpretableMLmodel can uncover patterns in gene expression not otherwise observable and further,

can provide insight into the biological profiles of patients with SLE.17 Both supervised and unsupervised ML learning algorithms have been
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applied to SLE transcriptomes in previous studies. However,many of the previous studies have not reported all the accuracymetrics necessary

for validation or have employed small datasets from a single center and, thus, may be over-fitted.3,4,18 As a result, noML algorithms based on

blood gene expression have been adapted in the clinic to aid in the diagnosis of SLE or the recognition of lupus phenotypes.

Instead of assessing the performance of individual genes, it can bemore biologically reliable and informative to assess the performance of

gene sets.19 Selecting grouped features instead of individual features for ML is especially helpful for interpreting high-dimensional data, such

as gene expression data. Uniquely, we have previously created 46 gene sets comprised of immune pathways, metabolic pathways, and in-

flammatory cell types that are potentially involved in the pathogenesis of SLE.20,21 To understand the diverse pathways involved in various

clinical manifestations of SLE in greater detail, we apply the sequential grouped feature importance (SGFI) algorithm to determine the

best combinations of these gene sets to predict SLE and SLE clinical phenotypes.22 SGFI sequentially adds gene sets as features to themodel

in terms of leave-one-in-importance until the performance no longer improves. As such, SGFI allows for the selection of the best and sparsest

combination of gene sets to classify samples into the correct clinical phenotype.

Here, we describe a systems biology approach utilizing interpretable, supervised ML to predict SLE clinical phenotypes from blood gene

expression data. We additionally use this approach to differentiate SLE from another inflammatory autoimmune disease, namely, rheumatoid

arthritis (RA). Notably, the models identify gene sets with potential physiologic importance in each disease subtype, providing new insights

into the molecular pathways and individual genes most relevant to the classification of SLE disease pathology.17 Moreover, the excellent

performance of these models suggests that this approach could be used to support decision making in clinical care of patients with SLE

and those with other diseases.

RESULTS

Predicting systemic lupus erythematosus from healthy control blood from gene expression profiles

Data preparation

To create an ML model to predict SLE from CTL whole blood samples, we developed a pipeline to normalize, combine, and batch correct

publicly available gene expression datasets across different microarray platforms (Figure 1; Table S2A).23–28 Each dataset was pre-processed

separately before merging the datasets by genes shared between all arrays to yield a final merged dataset with 13,111 gene features and 943

samples (765 SLE and 178 CTL samples) (Figure S1A).

Visualizing the merged data by both principal component analysis (PCA) and sample density plots (Figure S1B) revealed a batch effect.

After adjusting for the batch effects with ComBat, the explained variance of the first principal component decreased dramatically from

35.7% to 5.2%, and the samples across different batches had similar distributions (Figure S2C). We split the merged, batch-corrected dataset

into train (70%) and test (30%) sets and standardized the train and test sets.

Feature selection

In selecting the features, or genes, to use in the ML model, we chose to leverage our knowledge of sets of genes with similar functions or

expressions. Instead of selecting the best individual features (genes), we selected the best feature groups (gene sets) using SGFI.22 Utilizing

gene sets rather than individual genes allows for a more interpretable model. The inputs were 46 gene sets of curated immune pathways,

metabolic pathways, and cell types with relevance to lupus pathology (Table S1).20,21

The Sankey diagram in Figure 2A demonstrates the SGFI algorithm workflow. For each of 100 subsample iterations, the algorithm begins

from the null model and then sequentially adds in the next best feature group in terms of leave-one-group-in importance (LOGI) if the mean

misclassification error (MMCE) improves beyond a threshold. In most iterations, genes upregulated in response to interferon (IFN) (52

iterations),Monocyte (21 iterations),Unfolded Protein (7 iterations), and genes upregulated in response to tumor necrosis factor (TNF induced

genes) (6 iterations) were chosen as the best single feature group to predict SLE from CTL blood samples in the first round. Combining these

gene sets or adding in genes from a different second or third gene set (e.g., mitochondrial ribosome-large subunit (Mito Large Ribo), TCA

cycle) often further improved performance (Figure 2A). We extracted all feature group combinations that were selected by the algorithm in

five or more of the 100 iterations as the possible feature sets to use in the final model (Figure 2A; Table S2B). These feature sets advanced to

the next step of hyperparameter tuning and cross-validation on the train set.

Hyperparameter tuning and cross-validation

For each feature set, we created a radial support vector machine (SVM) model and carried out hyperparameter tuning. We then ran 10-fold

cross-validation (CV) of each tuned model on the train set to predict how the features might perform on new, unseen data, and to determine

the combination of features with the best overall performance metrics. The model created with the genes from the combined IFN, TNF

induced genes, and Mito Large Ribo gene sets had the highest average F1 score (F1 = 0.88) for predicting SLE from CTL in the train set,

so it was chosen as the final model (Table S2B).

Evaluation on the test set

To predict how theMLmodel will perform on future data, we evaluated themodel performance on an unseen test set, that had not been used

in the creation of themodel.We trained the final model on the train set using the 189 genes from the IFN, TNF induced genes, andMito Large

Ribo gene sets and the hyperparameters determined from hyperparameter tuning. Themodel achieved excellent classification of SLE vs. CTL
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samples with an area under the curve (AUC) of 0.979 and an accuracy, sensitivity, and specificity above 0.9 (Figure 2B). The receiver operating

characteristic (ROC) curve and precision-recall curve are shown in Figures 2C and 2D.

Analysis of genes that classify systemic lupus erythematosus vs. control blood samples

To interpret the feature selection results and determine how the selected gene sets may be differentially enriched in SLE samples compared

to CTLs, we ran gene set variation analysis (GSVA) on all the datasets used in themodel with the IFN, TNF induced genes, andMito Large Ribo

Figure 1. Pipeline to predict disease status using machine learning

The datasets are quantile normalized, merged by common gene symbol, batch-corrected, and split into a train and test set. The scaled train set is inputted into

SGFI. For each feature group combination chosen (nR 5) in SGFI, a tuned radial SVMmodel is created, and 10-fold cross validation (CV) is performed. Themodel

with the best F1 score is chosen as the final model and is evaluated on the test set.
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gene sets and merged the GSVA scores (Figures 2E–2G). IFN and TNF induced genes were significantly higher in SLE compared to CTL

blood, whereasMito Large Ribowas significantly lower in SLE compared to CTL. Additionally, we conducted differential expression (DE) anal-

ysis of the genes within the top gene sets across all datasets, and all 189 selected genes were differentially expressed in at least one dataset

with both SLE and CTL samples (Figure S1D).

Independent validation on a new dataset

To further validate that these genes could distinguish SLE from CTL blood, we tested how the ‘‘locked’’ model, or the model with the same

hyperparameters and features, would perform using a completely independent dataset (Table S2C). We carried out the same pre-processing

procedure and trained the radial SVM model with the same hyperparameters and features on 70% of the merged validation dataset and

Figure 2. Results from the SLE vs. CTL pipeline

(A) Sankey plot of the results from feature selection. Gene set combinations chosen in five or more subsamples are shown in the plot. Gene sets are separated by

the symbol, ‘‘+.’’ For each gene set combination, theMMCE, averaged across the subsamples in which that gene set combination was chosen, and the number of

subsamples (n) is shown.

(B) Accuracy metrics from the evaluation of the final model on the test set.

(C–G) (C) ROC and (D) PR curves of the final model on the test set. GSVA results of (E) IFN, (F) Mito Large Ribo, and (G) TNF induced genes. Unpaired t-test,

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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tested it on the remaining 30% of the data. The lockedmodel performed extremely well in classifying the independent validation data with an

AUC of 0.992 in 10-fold CV on the train set and 0.985 on the test set (Figures S2A and S2B).

Distinguishing inactive systemic lupus erythematosus from control blood

Because of the excellent performance of the model generated from the SGFI pipeline in classifying patients with SLE from CTLs, we next

determinedwhether this approach could also distinguish I-SLE fromCTL blood.We normalized, combined, and batch-corrected threemicro-

array datasets with patients with I-SLE (SLEDAI <6) and CTL (Table S3A; Figures S3A–S3C).25,29 The final merged dataset consisted of 285

patients with I-SLE, 127 patients with CTL expressing 14,725 genes.

Next, we applied the SGFI algorithm to the train set (70%) of the merged I-SLE vs. CTL dataset. In all 100 iterations, IFNwas the best single

gene set to distinguish I-SLE from patients with CTL (Figure 3A). However, including genes from a second gene set (e.g., Anergic/Activated

T cells, Plasma Cells, Inflammasome) often improved performance. Gene set combinations chosen in five or more iterations were considered

possible feature sets for the finalmodel (Table S3B). Then, we created a radial SVMmodel for each feature set and performed hyperparameter

tuning followed by 10-fold CV on the tuned model (Table S3B). The tuned model created with the Anergic/Activated T cells and IFN gene

sets achieved the highest F1 score at 0.865 and was thus chosen as the final model. Finally, we applied this model using 39 genes from

Figure 3. Results from the inactive SLE vs. CTL pipeline

(A) Sankey plot of the results from feature selection. Gene set combinations chosen in five or more subsamples are shown in the plot. Gene sets are separated by

the symbol, ‘‘+.’’ For each gene set combination, theMMCE, averaged across the subsamples in which that gene set combination was chosen, and the number of

subsamples (n) is shown.

(B) Accuracy metrics from the evaluation of the final model on the test set.

(C–F) (C) ROC and (D) PR curves of the final model on the test set. GSVA results of (E) Anergic/Activated T cells and (F) IFN. Unpaired t-test, *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.
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the Anergic/Activated T cells and IFN gene sets as features on the train set and evaluated it on the test set. The model achieved excellent

classification on the test set with an AUC of 0.965, a sensitivity of 0.929, and a specificity of 0.868 (Figures 3B–3D).

To characterize the differences between I-SLE and CTL in the selected gene sets, we ran GSVA on each dataset and merged the GSVA

scores.We found that the IFN signature was significantly higher in I-SLE compared to CTL whole bloodwhereas theAnergic/Activated T Cells

signature was not significantly different (Figures 3E and 3F). When further analyzingDE of individual genes, 38 of the 39 genes used in the final

model were significantly different in I-SLE compared to CTL in at least one of the datasets with both I-SLE and CTL samples (Figure S3D).

Notably, although the Anergic/Activated T Cells signature was not significantly different by GSVA, the individual genes within the gene

set were significantly differentially expressed between I-SLE and CTL.

Predicting active systemic lupus erythematosus from patients with inactive systemic lupus erythematosus

After creating amodel to distinguish inactive from control patients, we sought to determinewhich gene sets best predictedwhether a patient

had low or high disease activity.Wemerged availablemicroarray datasets with active (SLEDAIR6) and inactive (SLEDAI <6) patients to create

a final dataset with 14,733 features and 437 patient samples (Table S4A; Figures S4A–S4C).25,28 Similar to the results from feature selection for

I-SLE vs. CTL, IFN was chosen in all iterations as the best gene set in the first round of SGFI to differentiate active SLE from I-SLE (Figure 4A).

Then, for each gene set combination chosen more than five times in all rounds of SGFI, models were created using the train set, hyperpara-

meter tuned, and assessed with 10-fold CV (Table S4B). The top performingmodel on the train set was that created with IFN genes (F1 = 0.86)

andwas chosen as the finalmodel. The final SVM classifier was then evaluated on the test set. Themodel achievedgood classification of active

from patients with I-SLE with an AUC of 0.842 (Figures 4B–4D). We found the GSVA scores for the IFN signature were significantly higher in

patients with active SLE compared to I-SLE (Figure 4E).

Distinguishing lupus nephritis from control blood

Next, we created a model to distinguish LN from CTL whole blood samples, using six microarray datasets that were processed to yield a final

combined dataset with 14,632 features and 277 samples (Table S5A; Figures S5A–S5C).29–32 The SGFI algorithm revealed that the IFN, TNF

induced genes,Monocyte,Oxidative Phosphorylation, and B cells gene sets were the best feature groups to predict LN from CTL samples in

the first round, and combining these gene sets often improved themodel (Figure 5A). Many of the gene sets chosen as the best predictors of

LN from CTL samples were also chosen when evaluating the best predictors for SLE fromCTL (e.g., IFN,Monocyte, TNF induced genes). The

feature group combinations chosenmore than five times were considered as possible feature sets for the final model (Table S5B). After hyper-

parameter tuning and 10-fold CV on the train set, the model created with genes from the IFN and TNF induced genes gene sets had the

highest F1 score (F1 = 0.898) and was thus chosen as the final model (Table S5B).

We trained the final model on the train set with the 143 genes from IFN and TNF induced genes as features and the hyperparameters

determined from hyperparameter tuning, and evaluated the model by its prediction of the test set samples. The model achieved excellent

classification of LN vs. CTL on the test set with an AUC of 0.943 (Figures 5B–5D). GSVAwith the gene sets used in the final model revealed that

both the IFN and TNF induced genes gene sets were significantly enriched in LN samples compared to CTL samples (Figures 5E and 5F).

Through DE analysis, we found that expression of 119 of the 143 genes used in the model were significantly changed in at least one dataset

with both LN andCTL samples (Figure S5D). IFN genes were consistently higher in LN samples compared to CTL samples, whereas some TNF

induced genes were significantly higher and others were significantly lower in LN compared to CTL.

Discriminating lupus nephritis from non-renal lupus blood

We then created amodel to predict LN fromNRL whole blood, combining six microarray datasets with LN and confirmedNRL blood samples

(Table S6A; Figures S6A–S6C).24,28,30–32 The final batch-corrected, merged dataset had 14,632 features and 415 samples (138 LN, 277 NRL).

The results of the SGFI pipeline revealed that the IFN, B cells,Mito Large Ribo,Mito Small Ribo, TCA cycle, TNF induced genes, andUnfolded

Protein gene sets were most often the best single feature group to predict LN from NRL blood (Figure 6A). Adding a second gene set of

immune cell populations or metabolism signatures such as Inflammatory Cytokines, Anergic/Activated T Cells, B cells or Mito Large Ribo

to IFN often increased the performance of the model. We conducted hyperparameter tuning and performed 10-fold CV on the possible

gene set combinations (Table S6B). The model created with the 80 genes from the IFN and Mito Large Ribo gene sets had the highest F1

score at 0.917 to predict LN from NRL, and was chosen as the final model to evaluate on the test set. We found that the model worked

well in classifying LN from NRL in the test set with an AUC of 0.894 (Figures 6B–6D).

GSVA revealed that Mito Large Ribo was significantly lower in LN compared to NRL samples, whereas IFN was not significantly different

(Figures 6E and 6F). DE analysis revealed that 73 of the 80 genes were significantly different in at least one of the datasets with both LN and

NRL samples (Figure S6D). Although IFN was not significantly different when considering the gene sets as a whole, by examining individual

gene differences we found that many IFN genes were significantly downregulated in LN compared to NRL in the blood.

Using protein-protein interaction clusters to predict lupus nephritis from non-renal lupus

Next, we wanted to a use a secondary, unsupervised approach to creating gene sets able to distinguish LN from NRL and explore whether it

would perform as well as our previously published gene sets. We created a network of protein-protein interactions (PPIs) derived from the

STRING database using the top 2,000 variable genes from the merged LN/NRL dataset. We then carried out MCODE clustering on the
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network to create gene clusters to be used as feature group inputs for SGFI. The MCODE clusters were annotated based on overlap with our

curated gene sets and gene ontology (GO) terms (Figure 7A). Then, to evaluate whether the PPI-basedMCODE gene clusters would be effec-

tive feature groups for an ML model to predict disease status, we ran SGFI with the same input datasets and train set previously used to pre-

dict LN from NRL (Figure S6A), but with MCODE clusters as feature group inputs.

Clusters A, AA, L, P, and D best classified LN from NRL in the train set (Figure 7B). In most cases, adding a second MCODE cluster did

not improve the model performance, but combining clusters L and P created a better model in 8 iterations. For each feature set, we created

a radial SVM model and tuned the hyperparameters. The results from 10-fold CV indicated that cluster A was the best feature group with an

F1-Score of 0.922 (Table S6C). The tuned model with cluster A, which overlapped with gene sets IFN, TNF induced genes, Mito Large Ribo,

Mito Small Ribo, Mito Translation, GO MITO FISSION, and Cell Cycle, was chosen as the final model. After evaluation on the test set, the

model achieved excellent classification of LN and NRL samples, with an AUC of 0.956 (Figures 7C–7E).

Figure 4. Results from the active SLE vs. I-SLE pipeline

(A) Sankey plot of the results from feature selection. Gene set combinations chosen in five or more subsamples are shown in the plot. Gene sets are separated by

the symbol, ‘‘+.’’ For each gene set combination, theMMCE, averaged across the subsamples in which that gene set combination was chosen, and the number of

subsamples (n) is shown.

(B) Accuracy metrics from the evaluation of the final model on the test set.

(C–E) (C) ROC and (D) PR curves of the final model on the test set. GSVA results of (E) IFN. Unpaired t-test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Predicting differential recognition of rheumatoid arthritis and systemic lupus erythematosus

Finally, we used this ML approach to differentiate SLE from a different chronic, inflammatory autoimmune disease, namely, RA. We applied

the pipeline to a merged dataset with 809 RA samples, 518 SLE samples, and 16,761 features (Table S7A; Figures S7A–S7C).24,25,33 In the first

round of SGFI, IFN best predicted RA and SLE samples in two-thirds of the iterations, while TNF induced genes best predicted RA versus SLE

in 16 iterations. In 28 iterations, combining IFN and TNF induced genes improved the performance (Figure 8A). Models were created for each

gene set combination selected in more than five iterations, and they were hyperparameter tuned and assessed via 10-fold CV on the train set.

The tunedmodel with IFN and TNF induced genes had the highest F1 score (F1 = 0.944) and was chosen as the final model. When evaluated

on the test set, the model achieved excellent classification with an AUC of 0.989 and all other accuracy metrics above 0.91 (Figures 8B–8D).

GSVA revealed that IFN was significantly de-enriched in patients with RA as compared to patients with SLE whereas the TNF induced genes

signature was not significantly different between patients with SLE and RA by GSVA (Figures 8E and 8F). The differential expression results

indicated that IFN genes were consistently downregulated in RA compared to SLE, whereas genes within the TNF induced genes signature

were either up- and down-regulated in RA (Figure S7D). The variability in the differential expression of TNF induced genesmost likely contrib-

uted to the lack of significant GSVA score differences, which highlights the ability of SGFI to consider the expression of individual genes and

Figure 5. Results from the LN vs. CTL pipeline

(A) Sankey plot of the results from feature selection. Gene set combinations chosen in five or more subsamples are shown in the plot. Gene sets are separated by

the symbol, ‘‘+.’’ For each gene set combination, theMMCE, averaged across the subsamples in which that gene set combination was chosen, and the number of

subsamples (n) is shown.

(B) Accuracy metrics from the evaluation of the final model on the test set.

(C–F) (C) ROC and (D) PR curves of the final model on the test set. GSVA results of (E) IFN and (F) TNF induced genes. Unpaired t-test, *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.
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preserve their variability while also considering the genes as ameaningful functional group. TheML approachwe have described in this article

was able to distinguish patients both within and across autoimmune diseases with high accuracy.

DISCUSSION

ML has promising implications for creating accurate predictions about disease status from non-invasive blood samples. However, previous

efforts that have usedML for the classification of patients with SLE have been difficult to generalize or have only focused on the contribution of

individual genes to predict disease status. In this study, we introduced an interpretable ML approach that leveraged the SGFI algorithm to

predict disease status from merged gene expression datasets using a systems biology lens.22 Though interpretable ML cannot distinguish

between causal and noncausal effects, it can be used to suggest potential causal relationships.17 Therefore, through the process of selecting

disease-associated gene sets with the greatest capability of identifying groups of patients, our results additionally highlight potential path-

ogenic mechanisms with particular relevance to SLE and SLE clinical phenotypes that can be further analyzed through causal inference

methods or additional experiments.

Figure 6. Results from the LN vs. NRL pipeline

(A) Sankey plot of the results from feature selection. Gene set combinations chosen in five or more subsamples are shown in the plot. Gene sets are separated by

the symbol, ‘‘+.’’ For each gene set combination, theMMCE, averaged across the subsamples in which that gene set combination was chosen, and the number of

subsamples (n) is shown.

(B) Accuracy metrics from the evaluation of the final model on the test set.

(C–F) (C) ROC and (D) PR curves of the final model on the test set. GSVA results of (E) IFN and (F) Mito Large Ribo. Unpaired t-test, *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.
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The SGFI algorithmwas highly successful at selecting well-performing combinations of gene sets to predict clinical phenotype. In addition

to being biologically informative, selecting for gene sets may also be more accurate than using an individual gene approach for a number of

reasons. For instance, disease pathogenesis is often associated with changes in expression of sets of genes with similar functionality, so

Figure 7. Results from the LN vs. NRL pipeline using MCODE clusters as feature group definitions

(A) MCODE clusters from protein-protein interactions, annotated with our curated gene sets.

(B) Sankey plot of the results from feature selection. Gene set combinations chosen in five or more subsamples are shown in the plot. Gene sets are separated by

the symbol, ‘‘+.’’ For each gene set combination, theMMCE, averaged across the subsamples in which that gene set combination was chosen, and the number of

subsamples (n) is shown.

(C) Results from the evaluation of the final model on the test set.

(D and E) (D) ROC and (E) PR curves of final model on the test set.
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differences in a group of genes may be more reliable than changes in an individual gene. Additionally, many genes are multi-functional, so

their individual selectionmay lead to ambiguous conclusions.19 Finally, SGFI provides a way tomeaningfully reduce the high dimensionality of

gene expression datasets, combatting the ‘‘curse of dimensionality’’ present in biological datasets in which the number of features far ex-

ceeds the number of samples. A common approach in computational modeling is to leverage prior knowledge of the system into the model,

as it can help find the optimal solution.34 The SGFI algorithmprovides amethod to incorporate a priori knowledgeof biological processes and

functions into the data while also selecting pathways for themodel in an unbiasedmanner, explaining how themethod can achieve such high

performance. Thus, our approach in utilizing curated gene sets indicative of disease-relevant cell types and pathways integrates previous

knowledge of processes potentially involved in SLE pathogenesis into a novel pipeline that selects those with the greatest efficacy in patient

classification.

Previous studies have attempted to predict clinical phenotypes and disease activity from gene expression data. One study sought to char-

acterize the molecular heterogeneity of SLE in a longitudinal cohort but was limited to pediatric patients. They used mixed models to stratify

patients based on immune sets that best correlate with disease activity, and they identified a plasmablast signature as the best marker of

disease activity in pediatric patients.35 Another study postulated that common determinants contribute to both vaccine response and disease

activity in SLE. As such, they identified gene signatures related to vaccine response and correlated those with disease activity in SLE.36 A third

study reported signatures related to disease state and disease activity, but the analysis was limited to isolated cell types.37 The current study is

Figure 8. Results from the RA vs. SLE pipeline

(A) Sankey plot of the results from feature selection. Gene set combinations chosen in five or more subsamples are shown in the plot. Gene sets are separated by

the symbol, ‘‘+.’’ For each gene set combination, theMMCE, averaged across the subsamples in which that gene set combination was chosen, and the number of

subsamples (n) is shown.

(B) Accuracy metrics from the evaluation of the final model on the test set.

(C–F) (C) ROC and (D) PR curves of the final model on the test set. GSVA results of (E) IFN and (F) TNF induced genes. Unpaired t-test, *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.
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the first effort applying an ML approach to whole blood samples from adult patients to identify gene sets that clearly separate patients with

SLE and identify various clinical phenotypes.

Many of themodels described here outperform previous attempts at predicting SLE status based on blood gene expression. In a previous

study, we classified patients as active SLE or I-SLE by using a random forest classifier using all available gene expression data, which achieved

an AUC of 0.89, or by using gene modules generated by Weighted Gene Co-expression Network Analysis (WGCNA), which had a peak AUC

of 0.77.38 Another group distinguished SLE from CTL patients using a six gene signature, achieving an AUC of 0.913 in the validation cohort,

but no other accuracy metrics were reported.5 A different study distinguished LN fromCTL blood samples by using a single gene (HERC5, an

interferon response gene) selected from traditional feature selection techniques, and obtained an area under the curve (AUC) of 0.880. How-

ever, no other accuracy metrics were reported.3 In contrast, our models developed using expression of genes grouped by disease-relevant

cell types or functions achieved higher overall accuracies (with AUCs ranging from 0.842 to 0.989) and presented interpretable results that

could be translated to improved understanding of the molecular systems involved in SLE pathology.

Interestingly, subsets of the gene sets IFN, TNF induced genes, Mito Large Ribo, and Anergic/Activated T cells were chosen as the best

predictors of disease status for all six classification problems (SLE vs. CTL, I-SLE vs. CTL, active SLE vs. I-SLE, LN vs. CTL, LN vs. NRL, and RA vs.

SLE; Table 1). The idea that common gene sets were chosen for many classifications implies that these four gene sets may play essential roles

in the pathogenesis of SLE and SLE clinical phenotypes.17 However, other feature sets chosen by SGFI also performed well in classifying the

train set samples in some cases and, therefore, may also be viable predictors of disease status. To choose the best gene set combinations

overall from the SGFI results, we carried out CV on all combinations selected by SGFI and chose the model with the highest F1 score. Addi-

tional investigation of the other potential gene set combinations highlighted by SGFI might lead to interesting biological interpretations

about the interplay of different gene sets. We expect that as more data becomes available, the confidence in these results will increase.

The use of PPI-based MCODE clusters as feature group inputs instead of our curated gene sets also created an excellent model for pre-

dicting LN fromNRL in the blood (AUC= 0.956), implying that this pipeline can be applied to gene expression datasets by using unsupervised

clustering methods to create gene sets. Additionally, using MCODE clusters led to the selection of genes that significantly overlapped with

our curated IFN andMito Large Ribo signatures. Therefore, using both our curated gene sets and unsupervised MCODE clusters led to the

selection of genes with similar functions, validating our initial results and suggesting that these gene sets are meaningful in the development

of LN.

It is not surprising that IFN was chosen as an important gene set in all classification problems, as the overproduction of IFN is a major hall-

mark of SLE.39,40When further interpreting the results from feature selection, we found that IFN signature genes were significantly enriched in

SLE compared to CTL, I-SLE compared to CTL, active compared to I-SLE, LN compared to CTL, and SLE compared to RA, which corresponds

to previous work describing the upregulation of Type I IFNs in SLE and SLE subtype patients.39 The IFN gene set was chosen across all sub-

sample iterations as the best single gene set to predict both I-SLE fromCTL and active from I-SLE, pointing to its stability in predicting disease

phenotype across different data architectures. Though SLE is extremely heterogeneous and patients with I-SLE do not show many clinical

indications of disease, it appears that the IFN signature is stably enriched across most patients with I-SLE. This conclusion is consistent

with previous studies that have detected the IFN gene signature in the blood of inactive lupus patients.41 Additionally, the finding that

IFN response genes can accurately predict disease activity corresponds to studies that have determined that IFN levels are positively corre-

lated with SLEDAI.42 The ability of the IFN gene signature to distinguish SLE from patients with RA was also in line with past studies that found

SLE has significantly higher IFN activity compared to RA, and that IFN activity in patients with RA is no different than healthy controls.42

The pro-inflammatory cytokine TNF has also been well-documented to be linked to SLE, but the direction of this relationship is unclear.

Whereas some studies have found that TNF expression is related to SLE susceptibility, others have found that TNF expression is protective

against SLE.43 Another recent study found that TNF was the best discriminator of SLE fromCTL patients out of 26 biomarkers, and it positively

correlated to SLEDAI.44 Likewise, we found that the module of TNF induced genes was one of the best discriminators of both SLE from CTL

and LN from CTL blood. In this case, using both traditional laboratory methods and bioinformatics results yielded the same results. In the

datasets used in this study, in general the TNF induced genes signature was significantly enriched in patients with SLE compared to CTL

and in patients with LN compared to CTL via GSVA. However, some TNF induced genes, such asCD38, HP, and LGALS3BP, were significantly

upregulated, whereas others, such as FCER2, INSIG1, andMAP3K4, were generally significantly downregulated across datasets. Additionally,

Table 1. Summary of the accuracy metrics in the seven machine learning models constructed in this article for different classification problems

Classification problem Gene sets No. Genes F1 Accuracy Sensitivity Specificity AUC

SLE vs. CTL IFN, TNF induced genes,

and Mito Large Ribo

189 0.828 0.929 0.934 0.906 0.979

I-SLE vs. CTL IFN and Anergic/Activated T Cells 39 0.857 0.911 0.929 0.868 0.965

Active SLE vs. I-SLE IFN 30 0.869 0.824 0.711 0.884 0.842

LN vs. CTL IFN and TNF induced genes 143 0.848 0.831 0.929 0.731 0.943

LN vs. NRL IFN and Mito Large Ribo 80 0.888 0.847 0.732 0.904 0.894

LN vs. NRL PPI Cluster A 212 0.905 0.871 0.78 0.916 0.956

RA vs. SLE IFN and TNF induced genes 147 0.925 0.942 0.963 0.91 0.989
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TNF is the main therapeutic target in RA, so it is not surprising that it was selected as a main differentiator of RA and SLE.45 Similarly to SLE vs.

CTL and LN vs. CTL, some TNF induced genes in RA as compared to SLE were upregulated, such as NR3C1, PTGS2, and EREG, whereas

others were downregulated, such asMMP19,MRPS15, andMSC. Despite this variability, it is clear that the expression levels of TNF induced

genes are important predictors of disease status in SLE.

The role of the mitochondria in SLE and LN has been extensively studied. However, the role of the large subunit of the mitoribosome,

specifically, has not been elucidated.46 Defective mitophagy, or mitochondrial death, has been reported in SLE, and disease severity is

thought to be driven by excess reactive oxygen species that result from defective mitophagy.47,48 Additionally, extracellular oxidized

mitochondrial DNA can induce Type I IFN signaling in lupus mouse models.47 Mito Large Ribo was found to be de-enriched from SLE to

CTL and from LN to NRL. No other mitochondria-related signatures were chosen across SGFI subsamples in SLE vs. CTL, whereas the small

subunit of the mitoribosome (Mito Small Ribo) was also chosen in LN vs. NRL in some iterations. Therefore, there may be a specific role of the

mitoribosome in the pathogenesis of SLE or it may be a specifically potent marker of mitochondrial dysfunction.

T cells have also been reported to contribute to SLE, as they amplify inflammation and help B cells generate autoantibodies.49 The Aner-

gic/Activated T cells gene signature consists of genes that have either inhibitory or activating effects on the immune system, depending on

the context, and it was assessed because patients with SLE have dysfunctions in T cell anergy and activation.50 The Anergic/Activated T cells

was used in the final model classifying I-SLE and CTL samples. Although the GSVA signature was not significantly different between groups,

half of the genes (CD160, CD244, CTLA4, and KLRG1) from Anergic/Activated T cells were downregulated, whereas the others (HAVCR2,

ICOS, LAG3, and PDCD1) were upregulated in I-SLE. This might indicate a compensatory response to autoimmunity, in which the inactive

disease state is maintained, but patients are still poised to return to an inflammatory state if the balance shifts to favor inflammatory signals.

Our approach exemplifies the power of ML in detecting subtle differences in blood gene expression between disease status groups that

may point out new areas of research investigation. Some differences between gene sets were undetectable by GSVA, yet the radial SVMma-

chine learning algorithm could uncover patterns by projecting the data into a higher feature space. Additionally, although in some cases

GSVA scores were not different from class to class, oftentimes the individual genes within that gene set were differentially expressed. This

approach of leveraging knowledge of gene sets with similar expression or function, while retaining the individual expression differences

of each gene, ensures that we create an interpretable model without removing true biological variation in the genes within those sets.

Overall, we constructed five ML models classifying clinical phenotypes of SLE using expression of genes grouped by disease-relevant cell

types or function that all performed with extremely high accuracy (AUCs >0.842). Additionally, we demonstrated that this ML pipeline can be

applied to diseases with shared pathways and common symptoms, such as RA and SLE.51 These models lay the framework for a potential

approach to creating non-invasive diagnostic tests for SLE that may support clinical decisions and improve patient care, if more reproducible

gene expression data becomes available. As demonstrated here, because the pipeline involves selecting molecular pathways that best

predict disease status, the ML models are interpretable and point to future areas of research for SLE and SLE clinical phenotypes. We

have focused on SLE, but the approach described in this study can be applied to other diseases or tissues to create an interpretable model

that predicts disease status based on gene expression. Namely, it may be applied to other rheumatic autoimmune/inflammatory diseases

with similarities to lupus, such as Sjögren’s syndrome or dermatomyositis.

Limitations of the study

This study outlines a validated approach to predict disease status based on gene expression data and identifies potential pathways involved

in SLE manifestations. However, there are limitations to this study. First, this method has not been externally validated, in that a completely

independent, separately run gene expression dataset was not used as the test set. In order for our model to perform well on an unseen test

set, both the train and test set needed to be comprised of a random sample of patients from all datasets, rather than using n-1 datasets in the

train set and using the nth dataset as the test set. One potential reason for this requirement is that ComBat does not completely remove the

batch effect, and in the case of multiple datasets in the train and test set, the classifier can learn patterns specific to each dataset. Therefore,

better normalization methods or more reproducible gene expression data would be important to translate this methodology to a diagnostic

test. A leave-one-dataset-out approach may achieve higher accuracy using RNA-seq rather than microarray data, as RNA-seq has less tech-

nical variation across datasets and is typically more reproducible.52 However, we did not have enough RNA-seq samples available for all SLE

subtypes to test this hypothesis. Another potential limitation of the study relates to the known effect of standard of care medication on gene

expression profiles.20 To obviate this potential issue, we avoided the use of gene modules that were most impacted by medications and

focused on those that were detected in most patients and more affected by patient intrinsic processes than by medication. Despite these

caveats, our study simulates the potential performance of an interpretable diagnostic test based on gene expression data that is standardized

and reproducible. Additionally, because we had additional data available with SLE and CTL samples, we were able to externally validate the

‘‘locked’’ model, which used the same genes and hyperparameters determined from the pipeline but was trained (70%) and tested (30%) on

new data, implying that these genes were not just discriminatory in the original data but rather perform well in predicting SLE from CTL

samples in other datasets as well.
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Further information and requests should be directed to the lead contact, Emily Leventhal (emily.leventhal@ampelbiosolutions.com).

Materials availability
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Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Data pre-processing

The publicly available microarray gene expression datasets used for each model are listed in Table S2A (SLE vs. CTL blood), Table S3A (I-SLE

vs. CTL blood), Table S4A (active SLE vs. I-SLE), Table S5A (LN vs. CTL blood), Table S6A (LN vs. non-renal lupus [NRL] blood), and Table S7A

(RA vs. SLE). We used all microarray datasets found in GEO that were collected using either the Affymetrix or Illumina platforms and had sam-

ples from either cohort for each classification problem. I-SLE was defined as Systemic Lupus Erythematosus Disease Activity (SLEDAI) < 6 and

active SLE was defined as SLEDAIR 6.Whenwe had information on nephritis, we excluded nephritis patients from the SLE vs. CTLmodel. For

the LN vs. NRL model, we chose to only include GEO: GSE185047 and GEO: GSE110174 as they were the only datasets with SLE patients

confirmed as non-nephritic. For the RA vs. SLE model, we split GEO: GSE45291 into two batches given the apparent batch effect between

SLE and RA samples implying the samples were run at different times. We additionally included GEO: GSE110174 in the RA vs. SLE model to

balance the number of SLE samples.

For each model, we combined microarray datasets across different platforms. Figure 1 shows the method for normalizing, merging, and

batch-correcting microarray data. For each model, every dataset was normalized independently with a quantile normalization method. For

Affymetrix chipmicroarray datasets, we applied themultichip average (RMA) pre-processingmethod from the rma package to carry out back-

ground correction, quantile normalization, and probe summarization to each raw microarray dataset (CEL files).53 For Illumina BeadChip

microarray datasets, we applied the neqc() function from the limma package, which performs background correction using negative control

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Microarray data Gene Expression Omnibus GEO: GSE22098

Microarray data Gene Expression Omnibus GEO: GSE29536

Microarray data Gene Expression Omnibus GEO: GSE61635

Microarray data Gene Expression Omnibus GEO: GSE39088

Microarray data Gene Expression Omnibus GEO: GSE69683

Microarray data Gene Expression Omnibus GEO: GSE185047

Microarray data Gene Expression Omnibus GEO: GSE72326

Microarray data BioStudies BioStudies: E-MTAB-11191

Microarray data Gene Expression Omnibus GEO: GSE72747

Microarray data Gene Expression Omnibus GEO: GSE99967

Microarray data Gene Expression Omnibus GEO: GSE45291

Microarray data Gene Expression Omnibus GEO: GSE93272

Microarray data Gene Expression Omnibus GEO: GSE110169

Microarray data Gene Expression Omnibus GEO: GSE110174
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probes and quantile normalization using negative and positive control probes.54 In the case of GEO: GSE72326, the quantile normalized data

was already available on GEO.

Genes with an interquartile range (IQR) of 0 were filtered out, which includes genes not expressed over the detection level of the micro-

array. In the case of duplicate gene symbols, we kept the probe with a higher IQR across samples.

We merged the datasets by gene symbol. To adjust for batch effects, we used the ComBat method from the sva package on the merged

dataset.55 We then split the data into train (70%) and test (30%) sets with class stratification. After splitting the data, we standardized the train

and test set separately according to the following:

x0test =
xtest � xtrain

strain

x0train =
xtrain � xtrain

strain

We standardized the test set based on the mean and the standard deviation of the train set because the train and test set come from

the same population, and this would simulate testing an individual sample in which the mean and standard deviation of the test set are not

known.

Support vector machine (SVM)

To classify samples into disease status, we implemented a support vector machine (SVM) model because of its previous success in predicting

disease status from gene expression data and its effectiveness in classifying high-dimensional data in which the number of features is greater

than the number of samples.56 We employed the Radial Basis Function (RBF) kernel as a non-linear transformation to convert the features to a

higher dimensional space.56

Feature selection

To select the genes to use in the SVM model, we employed the SGFI algorithm implemented in R on the train set.22 SGFI aims to find well-

performing combinations of feature groups. SGFI starts from the null or ‘featureless’ model, and then sequentially adds the next best feature

group in terms of leave-one-group-in importance (LOGI) until no further improvement in mean misclassification error (MMCE) over an

improvement threshold, d, is achieved. We set d to 0.0001. Here, the genes are the features, and the feature groups are pre-defined gene

sets. The gene sets we used as inputs were 46 curatedgroups of genes previously reported to identify immunepathways,metabolic pathways,

and immune/inflammatory cell types.20,21 To account for the potential effects of glucocorticoid treatment on immune cell gene expression

signatures, gene sets for low-density granulocytes (LDGs) and neutrophils were excluded from the analysis.

Because LOGI is a refitting-based method requiring retraining the model to determine the expected gain from adding in a feature

group, the results of SGFI depend on the learner used. We used the default hyperparameters (degree = 3, cost = 1) of the SVM clas-

sifier implemented in the mlr package, ‘classif.svm,’ with a radial (RBF) kernel during feature selection.57 To account for variability intro-

duced by the model, we used repeated subsampling (67%) with 100 repetitions with an inner resampling approach of 10-fold cross

validation.

We extracted all combinations that were chosen in 5 or more of the 100 subsampling repetitions as possible feature sets. This generated a

list of possible feature group combinations to use in our final model (Figure 1).

Hyperparameter tuning and 10-fold cross validation on the train set

For each combination of feature groups, we tuned the hyperparameters, Cost (C) and gamma (g), using tuneParams() of the mlr package.We

used the following parameter sets:

� C: {C ˛ R r 2-5 < C < 215}
� g: {g ˛ R r 0 < g < 0.01}

After tuning C and g, we then tuned the threshold, or the probability above which samples are classified as the positive (disease) class to

adjust for the class imbalance. To determine the best threshold, we did a search of the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and identified

the threshold with the best geometric mean. We repeated this with 50 different train (70%) and validation (30%) sets, each being a subset of

the original train set, and took the average best threshold of all 50 subsamples as the final threshold used.

Geometric mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity3 specificity

q

10-fold cross validation was then run on each tuned model with the optimal hyperparameters. In 10-fold cross validation, the train set is

divided into 10 parts, and the model is trained using nine of the folds and tested on one of the folds, and this process is repeated 10 times.

We recorded the F1 score, F1 standard deviation across the folds, accuracy, sensitivity, specificity, and area under the curve (AUC) for each
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model. The best model was chosen from these tunedmodels by selecting the model with the highest F1 score (rounded to 3 decimal places)

and lowest F1 standard deviation (if there was a tie).

F1 = 23
precision3 recall

precision+recall

Evaluation of final model on the test set

The best model by 10-fold cross validation on the train set was then evaluated on the test set. The F1 score, F1 standard deviation, accuracy,

sensitivity, specificity, and AUC on the test set were recorded.

QUANTIFICATION AND STATISTICAL ANALYSIS

Gene set variance analysis (GSVA)

We used the GSVA package from R/Bioconductor (v1.44.5) as a non-parametric, unsupervised method to estimate the enrichment of gene

sets in microarray data.58 The inputs for GSVA were log2 expression values from each dataset and curated gene sets used in the final model

(Table S1). After runningGSVA on each dataset, the GSVA values from each dataset were combined. P values and visualizations of GSVAwere

generated via GraphPad Prism 9.4.0 software. Comparisons between GSVA scores between classes were calculated using an unpaired t test.

The number of samples used for each classification problem can be found in the supplemental tables.

Differential expression

Differential expression analysis of the genes used in the final model was carried out in R using the limma package.54 Significance was

considered as an adjusted p-value of less than 0.2.

Network analysis and visualization

To create protein-protein interaction (PPI) clusters for the LN vs. NRL datasets, the top 2000 genes with the highest variance across samples

were extracted from themerged dataset and inputted into Search Tool for the Retrieval of InteractingGenes/Proteins (STRING) (V11.5).59 The

STRING output was inputted into Cytoscape (V3.8.2). with the clusterMaker plugin, and clusters were generated with Molecular Complex

Detection (MCODE) clustering algorithm within clusterMaker.60 The clusters were annotated with the top significant curated gene sets by

a Fisher’s exact test, p < 0.05.
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