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Abstract: In the present work, the nonlinear vibration behavior of elastic-viscoelastic-elastic sand-
wich (EVES) beams is studied. A finite element (FE) equation taking intoaccount the transverse
compression deformation of the viscoelastic core for the EVES beams is derived. In order toaccu-
rately characterize the frequency-dependent feature of the viscoelastic materials layer, athird-order
seven-parameter Biot model isused. A 2-node 8-DOF element is established to discretize the EVES
beams. The experimental testing onEVES beams validates the numerical predication of the FE
model. Numerical and analytical investigations are carried on a series of EVES beams with different
thicknesses. The results indicate that the presented FE model has better accuracy in predicting the
natural frequency of the sandwich beams, and in predicting damping, the accuracy is related to the
thickness of each layer. The results of this paper have important reference values for the design and
optimization of the viscoelastic sandwich structure.

Keywords: compression damping; transverse vibration; viscoelastic sandwich beam; finite
element method

1. Introduction

Sandwich structure is a special type of composite structure. It has the ability to sig-
nificantly reduce weight while maintaining mechanical properties. That is, it has typical
characteristics of light weight, high rigidity, and high strength [1].The weight reduction
in the sandwich structure brings many benefits, including increased stroke, greater load,
and reduced fuel consumption. All of these have a positive impact on costs and reduce
the impact on the environment. In addition to the high stiffness-to-weight ratio, sand-
wich composites can also achieve different functions by choosing different core materials.
For example, the use of foam [2–4], functionally graded materials [5–7], and viscoelastic ma-
terials [8–10] for the core material can achieve the effects of flame retardant, heat insulation,
vibration, and noise reduction. Therefore, sandwich composite structures are more and
more widely used in aerospace, automotive, marine, naval industries, and civil engineering.

Figure 1 shows a typical elastic-viscoelastic-elastic sandwich (EVES) beam structure.
When the base beam vibrates, the viscoelastic layer will produce the corresponding defor-
mation to dissipate vibration energy. However, what deformation of the viscoelastic layer
dissipates energy is a question. There are two main assumptions for the energy dissipation
mode of the viscoelastic layer: shear and compression energy dissipation assumptions.
When the relative movement of the constraining layer and the base beam layer is parallel to
the neutral plane of the sandwich beam, the viscoelastic core layer will produce shear defor-
mation to dissipate vibration energy. When the relative movement of the constrained layer
and the base beam layer is perpendicular to the neutral plane of the beam, the viscoelastic
core layer will produce compression-tension deformation to dissipate vibration energy.
Simply put, the former considers the viscoelastic layer to be incompressible, and the latter
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considers the viscoelastic layer to be compressible. The former dissipates vibration energy
through shear deformation, and the latter dissipates vibration energy through compression
deformation.
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Most studies adopt the shear energy dissipation assumption. They believe that the
transverse displacement of all points on the same cross-section of EVES structure is the
same, so there is no compression/tensile deformation in the viscoelastic layer. The relevant
research work can be traced back to the 1950s. Ross Kerwin Ungar’s (RKU) model is
considered the first analytical model of EVES structure [11–14]. Later, Ditaranto extended
Kerwin’s work and proposed a sixth-order linear homogeneous differential equation to
study the free vibration of sandwich beams. However, the calculation results of the model
show that the structural loss factor does not depend on the boundary conditions, which
is obviously not in line with reality [15]. Mead and Markus modified Ditaranto’s model
and proposed the famous Mead-Markus model, which can be applied to various boundary
conditions [16,17]. The above-mentioned RKU model and Mead-Markus model were
based on the shear assumption in the processing of the displacement domains of the
three different layers of the EVEC beam structure. Later, many scholars such as John-
son et al. [18], Galucio et al. [19], Kumar et al. [20], Bilasse et al. [21], Kpeky et al. [22],
Hamdaoui et al. [23], and Huang et al. [24,25] developed the FE method for viscoelastic
sandwich structure, which were still based on the assumption of shear energy dissipation.
Recently, some scholars have also carried out related researches on viscoelastic sandwich
structures based on the shear hypothesis. Karmi et al. [26] carried out a dynamic analysis
of sandwich beams with a viscoelastic core subjected to a moving load, and the mathe-
matical formulation was based on shear deformation theory. Mario et al. [27] studied the
fractional viscoelastic characterization of sandwich beams under time-varying loading. The
fractional viscoelasticity is incorporated in the analytical model of a three-layer laminated
beam. Maleki-Bigdeli et al. [28] presented an analytical model for the bending problem of
a viscoelastic sandwich plate. The generalized Maxwell model was used to describe the
viscoelastic response. Amanieh et al. [29] studied the nonlinear vibrationof a sandwich
plate. The four-parameter fractional derivative model was used to determine the frequen-
cydependence of the viscoelastic core. Garbowski et al. [30,31] studied the transverse shear
stiffness in sandwich plates.

The above-referred papers deal with the analysis of the sandwich structures under
theshear energy dissipation assumption. On the other hand, some scholars have found the
compression damping of EVES structure. In the 1970s and 1980s, Douglas and Yang [32,33]
proved the existence of compression damping through experiments on EVES beams. In
addition, based on the assumption of compression energy dissipation, an analytical model
(Douglas-Yang model) of the EVES beam was established, ignoring the shear deformation
of the viscoelastic layer. They believed that compression damping is the main form
in a narrow frequency band centered on the compression resonance frequency of the
viscoelastic layer. However, their work did not attract people’s attention at the time. Later,
Sisemore et al. [34,35] conducted a more in-depth study on the cantilever EVES beam
structure. They not only proved the existence of compression damping experimentally but
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also established an analytical model of the EVES beam structure based on the assumption
of compression energy dissipation. The Sisemore model assumed that the viscoelastic layer
was a compressible spring, and the vibration energy was dissipated through the transverse
compression of the spring, and there was no shear effect. They proved that the analytical
model can predict the resonance frequency of the structure well, but it cannot predict the
loss factor well Funari et al. [36] presented a nonlinear approach to investigate the behavior
of composite sandwich structures. The core was considered compressible.

It can be seen from the above literature that the research based on the shear energy
dissipation assumption of the viscoelasticis relatively in-depth. However, the research
based on the assumption of compression energy dissipation is still in its infancy. There
are only a few analytical models, and FE models are rarely seen. In engineering practice,
EVES structures that need to be designed or analyzed often have complex geometric
shapes and boundary conditions and bear complex loads. The analytical method cannot
effectively solve these problems. The FE method has shown its excellent applicability
and has become the most important method for studying the vibration problems of EVES
structures. The study of the FE compression model of the EVES structures has great
engineering significance.

In order to make up for this deficiency, in this work, a FE model for EVES beam
is established based on the compression energy dissipation assumption. A sandwich
composite element with two-node eight degrees of freedom is established. In the process
of modeling, it is considered that the energy dissipation is caused by the compression
deformation of the viscoelastic layer, and the transverse displacement of the viscoelastic
layer is a linear interpolation between the transverse displacement of the constraining
layer and base beam layer. The Biot model is used to characterize the frequency-dependent
characteristics of viscoelastic materials. Finally, the FE model is verified by comparing with
the analytical solutions and experimental values, and some useful conclusions are obtained.

2. FE Model for an EVES Beam
2.1. Fundamental Assumptions

The present analysis is based on the following assumptions:

1. The structural damping is only caused by the transverse compression/tensile defor-
mation of the viscoelastic sandwich layer;

2. The constraint layer and the base beam are regarded as Euler-Bernoulli beams;
3. Considering the compression deformation of the viscoelastic layer perpendicular to the

neutral plane of the beam, it is considered that the base beam layer, the damping layer,
and the constraint layer have different deflection functions, and the transverse dis-
placement of the viscoelastic layer is the linear interpolation of the two surface layers;

4. The materials of each layer are firmly pasted, and there is no relative sliding between
the layers;

5. The influence of the moment of inertia of each layer is ignored.

2.2. Kinematics

The geometric and deformation relationship of the EVES beam is shown in Figure 2.
According to the above assumptions, for the viscoelastic core layer, the transverse

displacement of the mid-plane and the compressive strain can be respectively written as:

y2 =
1
2
(y1 + y3), ε2 = w1 − w3 (1)

where y2 and ε2 are the transverse displacement and the compressive strain of the vis-
coelastic layer, respectively. y1 and y3 are the transverse displacement of the beam and the
constraining layer, respectively.
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2.3. Degrees of Freedom and Shape Functions

The elementof the EVES beam is established, as shown in Figure 3. It is a sandwich
composite element with two nodes. The length and width of the element are le and b,
respectively. The thickness of the base beam, viscoelastic layer, and the constraining layer
of the element are h1, h2, and h3, respectively. Each node of the element has four degrees
of freedom (DOF), representing the transverse displacement and the rotation angle of the
base beam layer and the constraining layer, respectively.
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The node displacement vector of the element is given by

∆e =
{

y1i θ1i y3i θ3i y1j θ1j y3j θ3j
}T (2)

In the element, the transverse displacement y1 and y3, the rotation angle θ1 and θ3 of
the base beam layer and the constraining layer are expressed in the nodal displacements
by FE shape functions

y1 = N1∆e, θ1 = N2∆e, y3 = N3∆e, θ3 = N4∆e (3)

N1 =

[
2
(

x
le

)3
− 3
(

x
le

)2
+ 1 x3

le2 − 2
(

x2

le

)
+ x 0 0 −2

(
x
le

)3
+ 3
(

x
le

)2 x3

le2 − x2

le
0 0

]
N2 =

[
6
(

x2

le3

)
− 6
(

x
le2

)
3
(

x
le

)2
− 4
(

x
le

)
+ 1 0 0 −6

(
x2

le3

)
+ 6
(

x
le2

)
3
(

x
le

)2
− 2
(

x
le

)
0 0

]
N3 =

[
0 0 2

(
x
le

)3
− 3
(

x
le

)2
+ 1 x3

le2 − 2
(

x2

le

)
+ x 0 0 −2

(
x
le

)3
+ 3
(

x
le

)2 x3

le2 − x2

le

]
N4 =

[
0 0 6

(
x2

le3

)
− 6
(

x
le2

)
3
(

x
le

)2
− 4
(

x
le

)
+ 1 0 0 −6

(
x2

le3

)
+ 6
(

x
le2

)
3
(

x
le

)2
− 2
(

x
le

) ]
(4)
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where the shape functions are given by substituting Equation (3) into Equation (1) gives

y2 = N5∆e, ε2 = N6∆e (5)

where
N5 =

1
2
(N1 + N3), N6 = N1 −N3 (6)

2.4. Energy Terms
2.4.1. The Strain Energy

The potential energy from the bending of the base beam layer and the constraining
layer are respectively written as

U1 = 1
2 E1 I1

∫ le
0

(
∂2y1
∂x2

)2
dx = 1

2 ∆eTKe
1∆e, U3 = 1

2 E3 I3
∫ le

0

(
∂2y3
∂x2

)2
dx

= 1
2 ∆eTKe

3∆e
(7)

where U1 and U3, E1 and E3, I1 and I3 and the potential energy from bending, the elastic
modulus, and the moment of inertia of the base beam layer and the constraining layer,
respectively. Ke

1 and Ke
3 are the stiffness matrix of the base beam and the constraining layer,

respectively. Applying the shape functions, they can be expressed in the form

Ke
1 = E1 I1

∫ le

0

[
∂2N1

∂x2

]T[
∂2N1

∂x2

]
dx, Ke

3 = E3 I3

∫ le

0

[
∂2N3

∂x2

]T[
∂2N3

∂x2

]
dx (8)

The viscoelastic layer is transversely compressed or stretched to dissipate energy.
Therefore its potential energy from compression or stretching can be expressed as

U2 =
1
2

E2b
h2

∫ le

0
(y1 − y3)

2dx =
1
2

∆eTKe
2∆e (9)

where U2, E2, and Ke
2 are the potential energy, the elastic modulus, and the stiffness matrix

of the viscoelastic layer, respectively. Applying the shape functions, and the Ke
2 can be

obtained as

Ke
2 = E2b

h2

∫ le
0

(
N6

TN6
)
dx = Gv

2b(1+ν2)
h2

∫ le
0

(
N6

TN6
)
dx = GvKe

vv

Ke
vv = 2b(1+ν2)

h2

∫ le
0

(
N6

TN6
)
dx

(10)

where Gv, v2, and Ke
vv are the shear modulus, the Poisson’s ratio and the viscous stiffness

matrix of the viscoelastic core layer.
Obviously, the total stiffness matrix of the element is the sum of the stiffness matrix of

each layer. It can be written as
Ke = Ke

1 + Ke
3︸ ︷︷ ︸

Ke
e

+ Ke
2 (11)

where the sum of the first two terms on the right side of the equation is the elastic stiffness
matrix Ke

e.
The total potential energy of the element is the sum of the potential energy of each

layer. It can be written as
U = U1 + U2 + U3 (12)

2.4.2. The Kinetic Energy

The kinetic energy from the transverse vibration of the element is given by
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T1 = 1
2 ρ1 A1

∫ le
0

(
∂y1
∂t

)2
dx = 1

2

.
∆

eTMe
1

.
∆

e

T2 = 1
2 ρ2 A2

∫ le
0

(
∂y2
∂t

)2
dx = 1

2

.
∆

eTMe
2

.
∆

e

T3 = 1
2 ρ3 A3

∫ le
0

(
∂y3
∂t

)2
dx = 1

2

.
∆

eTMe
3

.
∆

e

(13)

where T1, T2, and T3, Me
1, Me

2, and Me
3 are the kinetic energy and mass matrices of the base

beam layer, the viscoelastic layer, and the constraining layer, respectively. These mass
matrices are written as

Me
1 = ρ1 A1

∫ le

0
NT

1 N1dx, Me
2 = ρ2 A2

∫ le

0
N5

TN5dx, Me
3 = ρ3 A3

∫ le

0
NT

3 N3dx (14)

where ρ1, ρ2 and ρ3, A1, A2, and A3 are the density and the cross-sectional area of the base
beam layer, the viscoelastic layer, and the constraining layer, respectively.

Obviously, the total mass matrix of the element is the sum of the mass matrix of
each layer.

Me = Me
1 + Me

2 + Me
3 (15)

The total kinetic energy of the element is the sum of the kinetic energy of each layer.

T = T1 + T2 + T3 (16)

2.5. Equation of Motion

The FE dynamic equation of viscoelastic composite structure can be expressed in
Laplace domain as [15,16](

s2Me + Ke
e + sG̃(s)Ke

vv

)
X(s) = Fe(s) (17)

where x(s) is the displacement vector, Fe(s) is the excitation vector. sG̃(s) = G∗(s) is the
complex shear modulus of the viscoelastic material, which is frequency dependent.

The frequency-dependent characteristics of viscoelastic materials can be expressed by
the Biot model

sG̃(s) = G∞

[
1 +

N

∑
i=1

ais
s + bi

]
(18)

where G∞ is the steady-state value of the shear modulus of the viscoelastic material, N is
the number of series items, {ai, bi} are positive constants.

Substituting the Biot model Equation (18) into Equation (17) and then introducing
an auxiliary coordinate Ẑk(s) = ak

s+bk
X(s), (k = 1, 2, 3 · · · N), the Formula (17) can be

extended as
−
M

..
q +

−
D

.
q +

−
Kq =

−
f (19)

where

−
M =


Me 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

,
−
D =


0 0 · · · 0
0 a1

b1
Λ · · · 0

...
...

. . .
...

0 0 · · · aN
bN

Λ



−
K =


Ke

e + K̃
(

1 +
N
∑

K=1
ak

)
−a1R · · · −aNR

−a1RT a1Λ · · · 0
...

...
. . .

...
−aNRT 0 · · · aNΛ

, q =


x

Z1
...

ZN

,
−
f =


Fe

0
...
0



(20)
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where Λv is a diagonal matrix, which is composed of the positive eigenvalues of the viscous
stiffness matrix Ke

vv, and Rv is a matrix with the corresponding orthogonal eigenvector as
the column, Zj = RT

vẐj, (j = 1, 2, · · · , N).
Assembling all of the elements, the overall dynamic equation of the viscoelastic

sandwich beam structure can be obtained as

M
..
x + D

.
x + Kx = F (21)

where M, D and K are the overall mass matrix, damping matrix, and stiffness matrix,
respectively, F is the external force of the viscoelastic sandwich beam.

The numerical strategy used to extract the transverse vibration and damping charac-
teristics was described in detail in reference [37].

3. Experiment

The experiment is designed to test the response of an EVES beam. Figure 4 shows
the experimental setup. In the experiment, use a self-made lightweight, soft hammer with
a rubber head to lightly hit the end of the EVES beam to excite vibration. A lightweight
acceleration sensor is pasted at the free end to measure the vibration signal, which is
collected and adjusted by the LMS SCADAS III 316 data acquisition system, and then
analyzed by the LMS test. Lab vibration and noise test analysis system to obtain the natural
frequencies and damping ratios.
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The material and mechanical properties are shown in Table 1. The viscoelastic layer
material is ZN-1, and its frequency-dependent Biot model parameters are given in ref-
erence [24]. The FE compression model is used to calculate the first three order natural
frequencies and damping ratios of the EVES beam. A total of 30 finite elements are used
for discreting it. The experimental and calculation results are listed in Table 2.

Table 1. Material parameters of experimental specimen.

Material Properties Constraining
Layer Base Beam Viscoelastic Layer

(ZN-1)

Elastic modulus (GPa) 699 699 Biotmodel [24]
Density (kg/m3) 2700 2700 1010
Poisson’s ratio 0.3 0.3 0.3

Thickness (mm) 4.91 4.85 4.91
Length (mm) 290 290 290
Width (mm) 25 25 25
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Table 2. Comparison of experimental results and FE calculations.

Order

Experimental Result FE Model This Paper

Natural
Frequency

(Hz)

Damping
Ratio

Natural
Frequency

(Hz)
Error (%) Damping

Ratio Error (%)

1 52.5 0.1350 51.6 1.7 0.1265 6.3
2 315.5 0.0846 279.8 1.1 0.0124 85.3
3 842.0 0.0546 747.5 3.36 0.0009 98.4

It can be seen from Table 2 that in the prediction of natural frequency, the calculation
results are in suitable agreement with the experimental results. The prediction error is less
than 4%. However, in the prediction of damping, the FE model shows deficiencies. It is
only adequate for the first damping ratio, and for the second and third damping ratios, it
shows a poor predictor of damping for the tested beam.

4. Numerical and Analytical Investigations

In order to study the compressive damping of EVES beams, Sisemore [35] carried out
experiments on cantilever EVES beams with different thicknesses. They established an
analytical model to study the transverse vibration. The thickness of the base beam layer of
these beams is the same. The constraining layer and the viscoelastic layer have different
thicknesses. The viscoelastic material is EAR-C1002. Table 3 shows the material parameters
of the EVES beams, and Table 4 shows the thickness parameters.

Table 3. Structure and material parameters of cantilever EVESbeams.

Material Properties Constraining Layer Base Beam Viscoelastic Material
Layer (EAR-C1002)

Elastic modulus (GPa) 71 71 Frequency dependent
Density (kg/m3) 2710 2710 1280
Poisson’s ratio 0.3 0.3 0.3
Length (mm) 314 314 314
Width (mm) 25.4 25.4 25.4

Table 4. Thickness of each layer of cantilever EVES beams.

Number Thickness of Base
Beam (mm)

Thickness of the
Viscoelastic Layer (mm)

Thickness of the
Constraining Layer (mm)

1 6.350 0.381 1.588
2 6.350 0.381 3.175
3 6.350 0.381 6.350
4 6.350 3.048 1.588
5 6.350 3.048 3.175
6 6.350 3.048 6.350
7 6.350 6.350 1.588
8 6.350 6.350 3.175
9 6.350 6.350 6.350

Reference [38] shows that at the temperature of 23.9 ◦C, and the frequency range of
f = 0, · · · , 2000 Hz, the storage modulus and loss factor of the complex shear modulus of
the viscoelastic material layer (EAR-C1002) are, respectively,

Gv
′ = (44.4− 17.6/a) N/mm2 (22)

ηv = 1.643− 0.6025z2 − 0.2557× 10−20

z16 +
0.1260× 10−9

z8 − 0.1959× 10−4

z4 (23)

where a = 0.4 + 0.0003 f , z = 0.05 + 0.000475 f .
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The FE method presented in this paper is used to calculate the natural frequencies
and damping ratios corresponding to the first two modes of the 9 beams listed in Table 2.
The Biot model is used to describe the frequency-dependent characteristics of viscoelastic
materials. Based on Equations (22) and (23), the Biot model parameters (Equation (18)) of
EAR-C1002 can be fitted according to the method introduced in reference [24]. Table 5 lists
these parameters.

Table 5. Fitted parameters of the Biotmodel for EAR-C1002 at 23.9 ◦C.

k = 1 k = 2 k = 3

G∞ 4 × 105

ak 8.2244 1.1116 × 103 4.8334 × 102

bk 2.2936 × 105 1.7267 × 106 5.9245 × 106

Taking the experimental data in the reference [35] as the standard, the calculation
results of the FE model presented in this paper are compared with the calculation results
of the Sisemore model [35] and Mead-Markus model [16]. The last two models are both
analytical models, in which the Sisemore modelisthe compression model, and the Mead-
Markus model is the shear model. When calculating with the FE method in this paper, the
EVES beams are discretized into 31 elements. The calculation results of the first two natural
frequencies and damping ratios are presented in Tables 6 and 7, respectively.

It can be seen from Table 6 that the accuracy of the compressional model is better than
that of the Mead-Markus model in predicting the first two natural frequencies. Most of
the prediction errors of the 9 beams are within 10%, the error range is 0.73–14%, and the
average error is 7%. In comparison, the error of the Mead-Markus model is mostly larger
than that of the compression model. The error range is 13–51%, and the average error is
28.5%. The error range of the Sisemore model is 0.1–11%, and the average error is 6%. The
accuracy of the compressional model is close to the Sisemoremodel. This is because they
are based on the same assumption of compressive energy dissipation.

Table 6. Natural frequencies of the first two modes for cantilever EVES beams: comparison of experimental and calcu-
lated results.

Beam
Experiment [35] Sisemore Model [35] Mead-Markus Model [16] Compressional Model

Frequency
(Hz)

Frequency
(Hz)

Error
(%)

Frequency
(Hz)

Error
(%)

Frequency
(Hz)

Error
(%)

First natural frequency
1 47.3 47.3 0.1 55.7 18 47.8 1.0
2 44.5 45.2 1.5 56.6 27 43.8 1.6
3 44.2 48.5 9.7 66.9 51 48.6 9.9
4 43.0 44.0 2.4 48.4 13 44.5 3.4
5 40.9 42.3 3.6 47.6 17 41.2 0.73
6 40.7 44.1 8.5 55.4 36 45.6 12
7 39.6 40.7 2.8 45.0 14 41.2 4.0
8 38.1 39.5 3.6 44.4 17 38.5 1.0
9 37.8 41.0 8.5 52 38 41.7 10

Second natural frequency
1 329 297 9.8 376 14 299 9.0
2 319 284 11 423 33 274 14
3 350 313 11 528 51 301 14
4 293 276 6.0 357 22 278 5.1
5 284 266 6.2 364 28 257 9.5
6 305 293 4.0 419 37 280 8.2
7 270 255 5.3 344 28 258 4.4
8 262 249 5.0 344 32 241 8.0
9 286 276 3.6 388 36 259 9.4
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Table 7. Damping ratios of the first two modes for cantilever EVES beams: comparison of experimental and calculated results.

Beam
Experiment [24] Sisemore Model [24] Mead-Markus Model [11] Compressional Model

Damping Ratio Damping
Ratio Error (%) Damping

Ratio Error (%) Damping
Ratio Error (%)

Damping ratio corresponding to the first natural frequency
1 0.0223 0.001 2200 0.0462 110 0.0146 35
2 0.0267 0.0015 1700 0.0768 190 0.0197 26
3 0.0215 0.0151 42 0.0914 330 0.0190 12
4 0.0214 0.0002 11000 0.0576 170 0.0288 35
5 0.0226 0.0023 880 0.0663 190 0.0326 44
6 0.0226 0.0203 11 0.0663 180 0.0271 20
7 0.0229 0.0003 7500 0.0663 190 0.0308 34
8 0.0224 0.0028 700 0.0702 210 0.0325 45
9 0.0231 0.0223 4 0.0596 160 0.0242 5

Damping ratio corresponding to the second natural frequency
1 0.0513 9 × 10−5 57000 0.0392 24 0.0551 7
2 0.0826 0.0011 74000 0.0654 21 0.0765 7
3 0.1084 0.0073 1400 0.0809 25 0.0801 26
4 0.0914 0.0002 46000 0.0809 7 0.0879 4
5 0.1055 0.0015 6900 0.0980 18 0.1303 23
6 0.1027 0.0074 1300 0.1243 24 0.1474 43
7 0.0977 0.0005 19000 0.1274 23 0.1287 31
8 0.0967 0.0018 5300 0.1205 77 0.1218 26
9 0.1070 0.0072 1400 0.1707 12 0.1350 26

According to Euler-Bernoulli beam theory, the first two natural frequencies of the base
beam without additional damping layer and constraint layer is given by

fn =
An

2πL2

√
EI
ρA

(24)

where fn(n = 1, 2) is the first two natural frequencies of the base beam (Hz), E is the
Young’s modulus, I is the moment of inertia of section, ρ is the density, A is the cross-
sectional area, An = {3.52, 22.4} is modal factor. Substituting the material parameters of
the base beam in Table 1 into Equation (24), the first two natural frequencies of the base
beam are 53 and 333 Hz. With the addition of the viscoelastic layer and the constraining
layer, the stiffness and mass increase accordingly. It can be seen from Equation (24) that the
increase in additional stiffness will cause the natural frequency of the system to increase,
but the increase in additional mass will lead to the decrease in the natural frequency. It can
be seen from Table 1 that the density of the viscoelastic layer is about 50% of the base beam.
However, the stiffness of the viscoelastic layer is only 0.01% of it. Obviously, the effect of
the additional mass on the natural frequency far exceeds the additional stiffness. Therefore,
after adding a viscoelastic layer, the natural frequency of the structure will decrease. It
can be seen from Table 4 that the natural frequency values obtained by the experiment are
all smaller than the theoretical value of the natural frequency of the base beam, which is
in line with the above analysis. The predicted value of the natural frequency of the FE
compression model is very close to the experimental results. On the contrary, the natural
frequencies of most sandwich beams predicted by the shear model are higher than those of
the base beam, and the error is larger than that of the compression model. Therefore, it is
obvious that under the geometric conditions, the shear model will overestimate the natural
frequency of the EVES beams, while the compression model has higher accuracy.

Table 7 presents a comparison of the predicted and experimental damping ratios of
the nine EVES beams. The results indicate that all three models are not accurate enough to
predict the damping ratio. However, some laws can still be seen from it. In the prediction
of the damping ratio corresponding to the first-order natural frequency of the beams, the
compression damping model only predicts beams 3, 6, and 9 relatively accurately. The
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common point of the three beams is that their constraint layers have the maximum thickness.
This shows that when the stiffness of the constrained layer increases, the prediction accuracy
of the compression damping model will improve. This is because when the stiffness of
the constraint layer increases, it helps to make the viscoelastic layer produce transverse
tension and compression deformation, which is closer to the assumption of the compression
damping model. When the constraining layer is relatively thin, its stiffness is small, and at
this time, it will produce bending deformation under the action of the viscoelastic layer,
which is contrary to the assumption of the compression damping model. Therefore, in
beams 3, 6, and 9, compression damping accounts for the main proportion. In addition, it
can be seen that in these three beams, when the viscoelastic layer is thicker, the compression
damping is more obvious, and the prediction accuracy of the FE compression model for
the damping ratio is higher. Similarly, in beams 1, 4, and 7, the thickness of the constrained
layer is the smallest, and the prediction accuracy of the FE compression model is the worst.
In addition, the average prediction error of theMead-Markus model for the first-order
damping ratio exceeds 130%. Obviously, the shear model overestimates the first-order
damping ratio of the EVES beams. This overestimation may have a bad influence on the
design and optimization of the EVES beam structures.

In the prediction of the second-order damping ratio, the compression models for all
beams are distorted. However, in comparison, the Mead-Markus model is more adequate.
This shows that in the second-order mode, the shear damping accounts for the main
proportion, and in this case, the compression model is not applicable. This can be explained
by the vibration mode of the cantilever beam. In the second-order vibration mode, the
constraining layer and the foundation beam are more likely to produce relative axial
displacement. In this case, the shear deformation of the viscoelastic layer dissipates more
vibration energy, which means that the shear damping is dominant. This also shows that
the vibration mode is also a factor that determines the damping mechanism of the EVES
beam. This also shows the complexity of the damping mode of the viscoelastic sandwich
beam, which is related not only to the thickness of each layer of the structure but also to
the vibration mode.

5. Conclusions

A FE compressional model of EVES beams is established to study its transverse vi-
bration and damping characteristics. The FE is a three-layer two-node beam element
with four degrees of freedom at each node. It is considered that the viscoelastic material
is compressible, and the damping of the EVES beam is only caused by the transverse
compression/tension of the viscoelastic layer.Biot model is used to describe the frequency-
dependent characteristics of viscoelastic materials. Nine numerical examples are intro-
duced to compare the calculation results of the FE model in this paper with those of a
compressional analytical model and a shear analytical model. Finally, an EVES beam is
experimentally studied. Some conclusions are obtained:

1. The transverse compressional vibration is a broadband existence in EVES beams;
2. The FE compressional model presented inthis paper is in suitable agreement with

the analytical model. It is a relatively accurate and simple method for predicting the
natural frequencies of EVES beams. However, it is quite poor for damping predictions
because it ignores shear damping;

3. The geometry and the vibration mode determine the damping mechanisms. The shear
model and the compressional model have different applicable conditions, which are
related to the thickness of each layer and the vibration mode of the structure. In
general, the shear energy dissipation assumption is applicable to EVES thin-walled
beams, and the compression energy dissipation assumption is applicable to EVES
beams with relatively thick constraining layer and base beams;

4. When the base beam and the constrained layer are relatively thick, and the viscoelastic
layer is relatively thin, neither the current shear model nor the compression model can
accurately predict the damping. A model including shear damping and compressional
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damping should greatly improve the accuracy of damping prediction, which needs
further research.

The EVES structure studied in this paper is in a simple environment. In fact, they
sometimes work in a state of motion or a special environment. When they are moving in a
straight line or rotating, their dynamic characteristics need further research. In addition,
when the structure is in strong airflow, flutter may occur, and buckling may occur in an
aero-thermal environment. These special behaviors also need to be further studied. The
work proposedin this paper can be used in these studies.
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