JACC: BASIC TO TRANSLATIONAL SCIENCE VOL. 8, NO. 9, 2023
© 2023 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN

COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER

THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

STATE-OF-THE-ART REVIEW

Inflammasome Signaling, R
Thromboinflammation, and i
Venous Thromboembolism

Nicola Potere, MD,* Antonio Abbate, MD, PuD,” Yogendra Kanthi, MD,® Marc Carrier, MD, MSc," Stefano Toldo, PuD,?
Ettore Porreca, MD,® Marcello Di Nisio, MD, PuD?

HIGHLIGHTS

o Inflammation is intricately intertwined with coagulation and plays a critical role in venous thrombogenesis.

e NLRP3 inflammasome activation, pyroptosis, and IL-1 are emerging contributors to thromboinflammation and VTE.

o This review provides an overview of preclinical and clinical evidence supporting IL-1 and the NLRP3 inflammasome
as potential therapeutic targets in VTE.

e Studies exploring inflammasome signaling blockade for the prevention and management of VTE and ensuing

complications are warranted.

SUMMARY

Venous thromboembolism (VTE) remains a major health burden despite anticoagulation advances, suggesting
incomplete management of pathogenic mechanisms. The NLRP3 (NACHT-, LRR- and pyrin domain-containing
protein 3) inflammasome, interleukin (IL)-1, and pyroptosis are emerging contributors to the inflammatory patho-
genesis of VTE. Inflammasome pathway activation occurs in patients with VTE. In preclinical models, inflammasome
signaling blockade reduces venous thrombogenesis and vascular injury, suggesting that this therapeutic approach
may potentially maximize anticoagulation benefits, protecting from VTE occurrence, recurrence, and ensuing post-
thrombotic syndrome. The nonselective NLRP3 inhibitor colchicine and the anti-IL-1B agent canakinumab reduce
atherothrombosis without increasing bleeding. Rosuvastatin reduces primary venous thrombotic events at least in
part through lipid-lowering independent mechanisms, paving the way to targeted anti-inflammatory strategies in
VTE. This review outlines recent preclinical and clinical evidence supporting a role for inflammasome pathway
activation in venous thrombosis, and discusses the, yet unexplored, therapeutic potential of modulating inflamma-
some signaling to prevent and manage VTE. (J Am Coll Cardiol Basic Trans Science 2023;8:1245-1261) © 2023 The
Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBREVIATIONS
AND ACRONYMS

ADP = adenosine diphosphate

ASC = apoptosis-associated
speck-like protein containing a
caspase recruitment domain

ATP = adenosine triphosphate
CRP = C-reactive protein

DAMP = damage-associated
molecular-pattern

DOAC = direct oral
anticoagulant

DVT = deep vein thrombosis
GSDMD = gasdermin D

ICAM = intercellular adhesion
molecule

IL = interleukin

IL-1RA = interleukin-1 receptor
antagonist

IL-1RI = interleukin-1 receptor
type |

IL-18R = interleukin-18
receptor

LRRs = leucine-rich repeats

NET = neutrophil extracellular
trap

NF-kB = nuclear factor-
kappa B

NLRP3 = NACHT-, LRR-, and
pyrin domain-containing
protein 3

NLR = NOD-like receptor

NOD = nucleotide-binding
oligomerization domain

PAMP = pathogen-associated
molecular-pattern

PE = pulmonary embolism

PBMC = peripheral blood
mononuclear cell

PRR = pattern recognition
receptor

PTS = post-thrombotic
syndrome

PYD = pyrin domain
P2X7R = P2X7 receptor

SARS-CoV-2 = severe acute
respiratory syndrome
coronavirus 2

TF = tissue factor

TFPI = tissue factor pathway
inhibitor

TLR = toll-like receptor
VKA = vitamin K antagonist

VTE = venous
thromboembolism

VWEF = von Willebrand factor

nflammation triggers coagulation to

limit pathogen dissemination."” During

infection, this physiological, protective
host response—immunothrombosis—is the
result of the interplay between innate immu-
nity, platelets, and the endothelium that syn-
ergistically trigger blood coagulation leading
to thrombosis."” Excessive immunothrombo-
sis results in pathologic hypercoagulabili-
ty.»*> This paradigm has come to the
forefront during the severe acute respiratory
syndrome coronavirus 2 pandemic, as the
clinical phenotype of patients with severe
COVID-19 is often characterized by hyperin-
flammation and hypercoagulability.>* Aber-
rant activation of innate immunity and
coagulation may also occur in the absence
of invading pathogens and is referred to as
thromboinflammation. During the last
decade, thromboinflammation has emerged
as a key contributor to sterile thrombosis
(venous, arterial, microvascular).'?

NLRP3 (NACHT-, LRR-, and pyrin domain-
containing protein 3) is an intracellular
innate immune receptor that serves as a
sensor.”” In response to cellular stress or
damage, NLRP3 forms a macromolecular
complex—the NLRP3 inflammasome—which
produces active interleukin (IL)-1p and IL-18,
2 potent proinflammatory, procoagulant cy-
tokines of the IL-1 family, and induces a form
of inflammatory cell death termed pyropto-
sis.>” NLRP3 inflammasome activation and
downstream molecular events can enhance
recruitment and activation of leukocytes and
platelets, increase vascular permeability, and
favor a prothrombotic endothelial pheno-
type.*®® Inflammasome activation also pro-
motes thromboinflammation by inducing
release of tissue factor (TF) by monocytes
and macrophages, and generation of neutro-
phil extracellular traps (NETs).°'" These
vascular processes prime a prothrombotic
milieu, eventually leading to formation and
propagation of venous thrombosis. Recent
preclinical studies show that inhibition of the
NLRP3 inflammasome and IL-1 signaling re-
duces venous thrombogenesis, and may
favor vein wall healing, suggesting that these
therapeutic approaches may have the po-
tential to reduce the occurrence and recur-
rence of venous thromboembolism (VTE), as
well as long-term complications such as the
post-thrombotic syndrome (PTS)."'

JACC: BASIC TO TRANSLATIONAL SCIENCE VOL. 8, NO. 9, 2023
SEPTEMBER 2023:1245-1261

Landmark trials in patients with coronary artery
disease have demonstrated a reduction in athero-
thrombosis associated with pharmacologic agents
that target the NLRP3 inflammasome pathway,
thereby reinforcing the inflammatory hypothesis of
atherothrombosis, and shedding light on the poten-
tial, yet largely unexplored, of inflammasome
pathway-targeted therapeutics across a larger spec-
trum of thrombotic disorders including VTE.*®

In this review, we summarize the preclinical and
clinical evidence on the emerging role of the NLRP3
inflammasome and IL-1 in the pathogenesis of venous
thrombosis. We also provide insights on the thera-
peutic potential of targeting inflammasome signaling
to prevent and manage VTE.

VENOUS THROMBOEMBOLISM

VTE, comprising deep vein thrombosis (DVT) and
pulmonary embolism (PE), affects approximately 10
million people every year worldwide, and is the third
leading vascular disease after acute myocardial
infarction and stroke.'””'® Despite therapeutic ad-
vances, the incidence of VTE continues to rise with
increased life expectancy and prevalence of condi-
tions that predispose to VTE.'7'® VTE remains the
first cause of preventable hospital death, and is
associated with short- and long-term morbidity,
disability, and health care system costs."”” Up to 10%
and 25% of patients experience recurrent VTE at 1 and
5 years, respectively, with an associated case fatality
rate of 5%." PTS is a highly morbid complication of
VTE that occurs in 20% to 50% of patients with DVT.
Patients with PTS experience persistent inflammation
and chronic venous dysfunction ranging from leg
swelling and pain, to ulceration and gangrene.”
Larger thrombi, incomplete thrombus clearance, and
vein scarring have been linked to the development of
PTS after DVT.?° Similarly, the post-PE syndrome,
comprising chronic thromboembolic pulmonary hy-
pertension, complicates up to 16% of PEs, impacting
prognosis and quality of life."”

VTE AS AN INFLAMMATORY DISEASE

In the pathogenesis of VTE, multiple factors can
interact to reach the so-called thrombosis threshold.
Active cancer, major trauma and surgery, and
restricted mobility are frequently associated with
provoked VTE.'”'® However, an apparent risk factor is
not identified in approximately one third of VTE ep-
isodes, which are classified as unprovoked.'”:*¢
Inflammation could be regarded to as a pathogenic
substrate common to several VTE-predisposing
conditions (Figure 1).”?*> Surgery is a potent
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proinflammatory stimulus associated with increased
risk of VTE that extends for several months after the
procedure.”® Acute infections account for a 15-fold
increased VTE incidence, with a legacy effect lasting
for up to 1 year.?**> Low-grade, chronic inflammation
also provides a strong prothrombotic milieu promot-
ing VTE as observed in patients with cancer, obesity,
heart failure, chronic kidney disease, or autoimmune
disorders.?°3°

C-reactive protein (CRP), an acute-phase protein
induced by IL-6 downstream of IL-1f, is an inflam-
matory biomarker widely used for cardiovascular risk
stratification.' In COVID-19, CRP predicts in-hospital
VTE and mortality, with residually elevated CRP at
discharge predicting postdischarge VTE.?>**3 In hos-
pitalized patients, CRP independently correlates with
the 90-day risk of VTE regardless of the cause of
hospitalization.®* Chronically elevated CRP, as it may
occur in cancer and obesity, is associated with
VTE.?%?’ A positive correlation between CRP and VTE
is also found among apparently healthy individuals.
CRP >3 mg/L vs <1 mg/L doubles VTE risk.>> A meta-
analysis comprising 81,635 subjects from 8
population-based prospective cohorts estimated a
23% increased risk of VTE per 5 mg/L increase in
CRP.3® Taken together, clinical and subclinical
inflammation may mark a population of patients at
higher risk of VTE.

Venous thrombus formation and vein wall injury are
capable of inducing a robust inflammatory response,
reflected by systemic elevations in leukocytes and
proinflammatory cytokines shortly after VTE.37:3® In
patients with DVT, IL-6 and CRP levels correlate with
thrombus extension, residual venous obstruction, and
severity of clinical manifestations.?®** A proin-
flammatory state can persist in the subacute and
remote post-thrombotic phases, with sustained
increases in CRP independently associating with long-
term venous dysfunction.***3 Excessive inflammation
is found to parallel with persistent alterations in the
markers of hypercoagulability (factor VIII, von Wille-
brand factor [VWF]), fibrinolysis (fibrinogen,
D-dimer), endothelial activation (E-selectin, intercel-
lular adhesion molecule 1 [ICAM-1]), and vascular
proteolysis.** Unopposed inflammation might, there-
fore, simultaneously affect coagulation and fibrino-
lysis, sustain vascular dysfunction, and impair vein
wall healing after VTE. Patients with PTS exhibit
higher IL-6, IL-8, and ICAM-1 when compared with
those without PTS.*° In the BioSOX study (Biomarker
Substudy of the Compression Stockings to Prevent the
Post-Thrombotic Syndrome [SOX] trial) including
including 803 participants followed for 24 months af-
ter DVT, elevated CRP at 1 month and IL-6 at 1 and
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Complications of VTE

FIGURE 1 Inflammation as a Substrate for the Development, Progression, and
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Created with BioRender.com. VTE = venous thromboembolism.

6 months associated with higher incidence of PTS.*®
CRP >5 mg/L at 12 months after unprovoked DVT has
been independently linked to an 8-fold increased risk
of developing PTS within the following year, regard-
less of anticoagulant regimen.*” Inflammation may
also play a role in VTE recurrence.*® High-sensitivity
CRP >4.5 mg/L, measured after withdrawal of antico-
agulant therapy, independently predicted a 10-fold
increased risk of recurrence in patients with cancer.*®
Increased levels of proinflammatory cytokines are
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also found after acute PE,”° and appear to correlate
with right ventricular dysfunction and worse prog-
nosis.”’ These observations may collectively suggest
that exaggerated inflammation after VTE may be
associated with, and perhaps contribute to, the
development of ensuing complications.

OVERVIEW OF THE NLRP3
INFLAMMASOME PATHWAY

The NLRP3 inflammasome pathway plays a key role in
the development and progression of several cardio-
vascular diseases.®”">? Innate immunity is mediated
by evolutionarily conserved receptors, the pattern
recognition receptors (PRRs), that sense tissue injury
by recognizing “danger” molecules sharing similar
chemical properties.”®> These include pathogen-
associated molecular-patterns (PAMPs), generated
during infection, and damage-associated molecular-
patterns (DAMPs), generated in sterile injury. Binding
of DAMPs or PAMPs to PRRs initiates an innate im-
mune response.’® The most characterized PRRs are
NOD-like receptors (NLRs) and Toll-like receptors
(TLRs; reviewed elsewhere).”®> NLRs include proteins
forming the NLRP3 inflammasome, an intracellular
macromolecular complex that produces active cyto-
kines of the IL-1 family and promotes pyroptosis.>”
NLRP3 is the most studied and engaged in cardio-
vascular pathology, however, other inflammasomes
such as NLRP1, NLRC4, and AIM2 have been
identified.”*

NLRP3 consists of 3 main domains: the C-terminal
leucine-rich repeats (LRR) domain, the central
NACHT domain (also known as NOD, nucleotide-
binding oligomerization domain), and the pyrin
domain (or PYD) serving as the N-terminal effector
domain.>” Inflammasome assembly is finely regu-
lated and, depending on the cytotype, it requires 2
distinct signals: priming and triggering. Priming in-
duces the production of a reserve of inflammasome
components in cells expressing low basal levels.””
Priming can be induced by PRRs (eg, TLRs), cyto-
kine receptors, or other receptors not conventionally
linked to inflammatory pathways such as angiotensin
receptor type 1 receptor and f-adrenergic receptor
(Figure 2).°”7 Nuclear factor-kappa B (NF-kB) regulates
the transcription of inflammasome core components
and substrates. When priming is completed, a variety
of signals can trigger inflammasome activation. These
include extracellular stimuli such as adenosine
triphosphate (ATP)-mediated activation of the P2X
purinoreceptor (P2X7R), and intracellular stimuli
such as reactive oxygen species, mitochondrial or
lysosomal damage, and disruption of autophagy.>”’
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These perturbations induce K* intracellular decline
or lysosomal destabilization, which are sensed by
NLRP3 that undergoes conformational changes, and
forms a macromolecular effector platform, the NLRP3
inflammasome.>” NLRP3 interacts with the PYD
domain of apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC),
leading to ASC polymerization into filaments. These
star-like filamentous structures, through the caspase
recruitment domain of ASC, engage pro-caspase-1,
which undergoes autocatalytic activation to mature
caspase-1.°”7 Within the inflammasome, caspase-1
cleaves pro-IL-1p and pro-IL-18 into active IL-1p and
IL-18.57

Caspase-1 also cleaves gasdermin D (GSDMD) into
N-terminal fragments, which migrate to the cell
membrane and form pores that facilitate extracellular
release of IL-1f and IL-18 (Figure 2).°” IL-1a. is another
proinflammatory cytokine of the IL-1 family and an
inducer of IL-1f. Pro-IL-1a is constitutively expressed
by mesenchymal cells (eg, endothelial cells), and is
inducible in myeloid lineages.”” In contrast to IL-1B,
pro-IL-1a. lacks a caspase-1 processing site and is
already active in its precursor form, which acts as an
“alarmin” in an autocrine or paracrine fashion when
released by damaged or dead cells.>” IL-1a can be also
found membrane-anchored and signal through cell-
cell interactions.””

Both IL-1f and IL-1a signal through the IL-1 re-
ceptor, a heterodimeric type I transmembrane re-
ceptor formed by the IL-1 receptor type I (IL-1RI)
and the IL-1 receptor accessory protein.°” Binding of
IL-1f or IL-10 triggers the heterodimer to recruit
myeloid differentiation factor 88, resulting in the
translocation of NF-kB to the nucleus, where it
regulates the transcription of several
flammatory genes (Figure 3).°”7 The IL-1 receptor
antagonist (IL-1RA) is a decoy ligand that binds and
sequesters IL-1RI, serving as an endogenous coun-
terpoint to IL-1 signaling. IL-18 signals through the
heterodimeric IL-18 receptor (IL-18R). IL-18 binding
protein is a natural IL-18 antagonist that sequester

proin-

IL-18 into a stable complex, preventing the interac-
tion with IL-18R.>”

The series of events that follow inflammasome
activation, caspase-1 activation, and GSDMD pore
formation may result in pyroptosis, which can also
occur through noncanonical pathways (eg, caspase-
4/-5 in humans, caspase-11 in mice).>”’ Unlike pro-
grammed cell death, pyroptosis is associated with cell
rupture and release of proinflammatory molecules in
the extracellular milieu, where they contribute to
modulate thrombogenesis and cellular responses to
vascular injury.”*>°
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FIGURE 2 Schematic of the NLRP3 Inflammasome Pathway
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kappa B; NOD2 = nucleotide-binding oligomerization domain-containing protein 2; P2X7R = P2X7 receptor.
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oligomerize and form cell membrane pores, which enable extracellular release of IL-1 and IL-18. Caspase-1 and GSDMD pores also mediate pyroptotic cell death.
Created with BioRender.com. ASC = apoptosis-associated speck-like protein containing a caspase recruitment domain; ATP = adenosine triphosphate; CARD = caspase

IL-1R = interleukin-1 receptor; MyD88 = myeloid differentiation factor 88; NLRP3 = NACHT-, LRR-, and pyrin domain-containing protein 3; NF-kB = nuclear factor-

CELL-SPECIFIC THROMBOINFLAMMATORY
CONTRIBUTIONS OF
INFLAMMASOME SIGNALING

INNATE IMMUNE CELLS. Venous thrombus formation
can be initiated by the extrinsic coagulation pathway
via TF, which leads to proteolytic activation of coag-
ulation factors VIla, Xa, and IIa (thrombin). These
sequential reactions ultimately result in thrombin-
mediated fibrin formation.'®°® Under pathologic
conditions, activated myeloid cells, primary circu-
lating monocytes, and extracellular vesicles are crit-
ical sources of intravascular TF.°°° Inflammasome
assembly and caspase-1 activation in monocyte-
lineage cells induce robust TF exposure and release,
triggering clotting in vitro.°° In mice, activation of

canonical (caspase-1) and noncanonical (caspase-11)
inflammasome pathways results in macrophage
release of TF-rich extracellular vesicles and wide-
spread thrombosis.® Deletion of GSDMD, but not of
IL-1/IL-18  receptors, was protective during
endotoxemia-induced thrombosis.® Although await-
ing confirmation in sterile thrombosis models, this
finding suggests that NLRP3-mediated TF release by
monocytes may depend on pyroptosis, and supports a
role for inflammasome-mediated, IL-1-independent
thrombosis pathways. Tumor cells also release
abundant TF-positive extracellular vesicles, which
correlate with VTE in patients with cancer.®' Further
investigation is, however, warranted to appraise the
potential role of the NLRP3 inflammasome pathway in
cancer-associated VTE.
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FIGURE 3 Pharmacologic Agents Targeting the NLRP3 Inflammasome and IL-1, and Their Mechanism of Action
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Macrophages, neutrophils, and platelets require
minimal priming for inflammasome activation and
rapid cytokine release after injury.>” Early in throm-
bogenesis, IL-1¢. derived from damaged cells (eg,
vascular endothelial cells) can favor recruitment and
activation of macrophages, neutrophils, and platelets
at the site of thrombus formation.'®-®? IL-18 and IL-18
released by recruited leukocytes and platelets work to
increase vascular permeability, endothelial adhesion
molecule expression, and additional release of
proinflammatory mediators. These perturbations may
in turn further promote leukocyte and platelet
recruitment, endothelial dysfunction, amplification
of tissue injury, and triggering of coagulation.'®-°?
This feed-forward cycle appears critical to the

thromboinflammatory pathogenesis of VTE (Central
Illustration).'¢-22-5¢

Venous thrombi are rich in fibrin, platelets, eryth-
rocytes, and innate immune cells.”® Neutrophils
expressing TF can bind to the injured endothelium
and platelets, supporting platelet aggregation and
thrombus formation.®®> Neutrophils also sustain
thrombogenesis through generation of reactive oxy-
gen species and NETs.'®°® NET formation is an
evolutionary defense mechanism that occurs when
neutrophils encountering pathogens release their
DNA as web-like structures, comprising a DNA core,
histones, and proteases.’®°® Also under sterile con-
ditions, NETs contribute to thrombogenesis. They can
capture and present TF to blood, promote factor XII
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Thromboinflammatory Effects in VTE
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autoactivation, and proteolytically disrupt endoge-
nous anticoagulant factors such as antithrombin
and TF pathway inhibitor. These processes culminate
in a procoagulant microenvironment that boosts
thrombin and fibrin generation.'®->® The DNA core of
NETs also interacts with VWF and fibrin, providing a
fibrinolysis-resistant scaffold for thrombus stability
and accretion.'®>® NETs are also implicated in cancer-
associated VTE.®* Evidence suggests that inflamma-
some activation and NETosis are interconnected.
NLRP3 inflammasome induction in neutrophils is
requisite for some forms of NETosis.'®"" Vice versa,
NETs can license NLRP3 inflammasome activation

and subsequent release of IL-1f and IL-18, resulting
in a feed-forward thromboinflammatory loop
(Figure 4).'%"" Accordingly, genetic deletion or phar-
macologic inhibition of NLRP3 suppresses NETosis
in vitro, and mice lacking NLRP3 form smaller venous
thrombi containing fewer NETs."

PLATELETS. Activated platelets exhibit NLRP3
inflammasome activation and are capable of releasing
IL-1B, IL-18, and IL-1¢.°°°7 Collagen and thrombin
were shown to trigger, through TLR4 and Bruton’s
tyrosine kinase, inflammasome activation, caspase-1
cleavage, and subsequent IL-1f release by plate-
lets.®>®® Although representing a matter of debate
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FIGURE 4 Proposed Role of the NLRP3 Inflammasome and IL-1 in Venous Thrombogenesis
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Early in thrombogenesis, multiple DAMPs and PAMPs (eg, extracellular FNA, ROS, proinflammatory cytokines), promote inflammasome activation in innate immune
cells, primarily macrophages, and neutrophils. IL-1B and IL-18 released by infiltrating leukocytes induce endothelial IL-1 production and expression of adhesion
molecules and prothrombotic factors, facilitating platelet recruitment. In a feed-forward loop, activation of platelet NLRP3 inflammasome, mediated by TLR4 and BKT,
induces platelet IL-1 release and aggregation. IL-1a. is abundantly released after vascular injury and, serving as an "alarmin," sustains thromboinflammation.
Macrophage NLRP3 activation leads to pyroptosis with release of TF, potently triggering coagulation with thrombin generation and fibrin formation. Neutrophil
NLRP3 activation results, through PAD4, in NETosis. In turn, NETs sustain NLRP3 activation and IL-1 production. NETs and neutrophil-derived enzymes promote factor
XII autoactivation and disrupt endogenous anticoagulant pathways (TFPI, AT), thus boosting thrombin generation. The DNA core of NETs interacts with VWF and fibrin
providing a scaffold, resistant to fibrinolysis, for thrombus stability and growth. Created with BioRender.com. AT = antithrombin; BTK = Bruton's tyrosine kinase;
eATP = extracellular ATP; GSDMD = gasdermin D; DAMPs = damage-associated molecular-patterns; eATP = extracellular ATP; IL = interleukin; NE = neutrophil
elastase; NET = neutrophil extracellular traps; NLRP3 = NACHT-, LRR- and pyrin domain-containing protein 3; NF-kB = nuclear factor-kappa B;

PAD4 = peptidylarginine deiminase 4; PAMPs = pathogen-associated molecular-patterns; PSGL-1 = P-selectin glycoprotein ligand-1; P2X7R = P2X7 receptor;

ROS = reactive oxygen species; TF = tissue factor; TFPI = tissue factor pathway inhibitor; TLR4 = Toll-like receptor 4; VWF = von Willebrand factor; other

and ongoing exploration, IL-1p release by platelets
may also occur independently from inflammasome
assembly, suggesting that these cells can store pools
of mature IL-1B for rapid release upon activation.®®
IL-1f was found to bind megakaryocyte IL-1RI acti-
vating NF-kB and mitogen-activated protein kinases
to promote megakaryocyte maturation, and to
enhance platelet aggregation and adhesion, with the
latter being reduced in mice lacking IL-1R1.7® Sys-
temic ablation of IL-1RI or IL-1B also reduced circu-
lating levels of platelet aggregates in endotoxemic
mice.”® Platelets derived from NLRP3 knock-out mice,
and human platelets treated with NLRP3 or caspase-1
inhibitors, exhibit reduced IL-1p secretion, activation,
and aggregation.®® The same inhibitors also reduce

thrombus formation in vitro, with a similar effect
observed when using NLRP3 knock-out blood.®®
Although platelet NLRP3 deficiency did not result in
altered expression of platelet-specific receptors such
as allbB3 integrin, GPIba, and GPVI, transfusion of
NLRP3-deficient platelets into wild-type mice pro-
longed tail-bleeding time and delayed arterial
thrombus formation. Yet, NLRP3 deficiency was
shown to reduce phosphorylation of c-Src/Syk tyro-
sine kinases downstream of allbB3, decreasing
platelet spreading and impairing clot retraction.”
Interestingly, treatment of wild-type platelets with
an anti-IL-1f antibody elicited similar effects, which
were reversed when exogenous recombinant IL-1f
was added to NLRP3-deficient platelets.”* Treatment
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with a direct selective NLRP3 inhibitor significantly
restrained aggregation of human platelets in response
to collagen or ADP, and clot retraction.”’ Although
further research is necessary to establish the exact
mechanisms and clinical relevance of such events,
these findings suggest a role for NLRP3 activation and
IL-1f in regulating platelet thromboinflammatory
responses.

Platelets also support thromboinflammation by
boosting NLRP3 inflammasome expression and acti-
vation in human innate immune cells, and are critical
for optimal IL-1 responses in vivo.”” While the
mechanisms underlying platelet-mediated modula-
tion of IL-1 production and activity remain to be
further elucidated, this seems to occur independently
from cell-to-cell contact but rather through a consti-
tutively expressed protein factor released by platelets
that engages macrophage calcium-sensing receptors
triggering inflammasome activation.”> Furthermore,
activation of platelet NLRP3 inflammasome and sub-
sequent shedding of platelet-derived, IL-18-rich
extracellular vesicles was shown to enhance
endothelial permeability, providing an additional
layer of platelet contributions fueling IL-1-driven
thrombosis.”®

ENDOTHELIAL CELLS. Endothelial NLRP3 inflamma-
some activation contributes to vascular dysfunc-
tion.”* Deletion of NLRP3 mitigated vascular
inflammation and permeability in a mouse model of
acute lung injury.”” Among multiple effectors, IL-1a.
and IL-1f can, in an autocrine or paracrine fashion,
dramatically up-regulate the endothelial expression
of adhesion molecules (P-selectin, ICAM-1, vascular
cell adhesion molecule 1) and procoagulant
factors (VWF, TF), and down-regulate endogenous
anticoagulants  (protein C, thrombomodulin)
(Figure 4).7°78 NETs have been shown to induce,
through concerted action of cathepsin G and IL-10, TF
expression and activity at the endothelial surface,
thereby promoting thromboinflammation and
vascular dysfunction after thrombosis.”” Of note,
pretreatment of NETs with anti-IL-1a¢-neutralizing
antibody or IL-1RA, but not with anti-IL-1f-antibody,
suppressed the endothelial expression of ICAM-1,
vascular cell adhesion molecule 1, and TF, thus
establishing a central role for IL-1a in NET-mediated
thrombogenicity.” In response, TF and fibrin can
exacerbate IL-1f-mediated endothelial activation in a
thromboinflammatory circuit whereby IL-1 signaling
induces a prothrombotic endothelial phenotype and,
in turn, thrombosis sustains IL-1 production.®:®!
Accordingly, IL-1RA treatment suppressed endothe-
lial activation,”” and endothelial-specific deletion of
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IL-1RI alleviated vascular inflammation induced by
intraperitoneal IL-1p injection in mice.®! Injection of
IL-1f into rabbits altered the endothelial architecture
resulting in platelet and fibrin deposition on vein
walls, suggesting that IL-1f can prime the vascular
environment for thrombus accretion.®?

Endothelial cells also express IL-18 and IL-18R.%?
IL-18 administration induced endothelial activation,
VWF expression, and down-regulation of tissue
plasminogen activator.® IL-18 was also shown to
amplify the inflammatory response through NF-kB
activation, and increase the expression of matrix
metalloproteases, which may contribute to adverse
vein wall remodeling and vascular dysfunction after
VTE.®3-84

NLRP3 INFLAMMASOME AND IL-1IN VENOUS
THROMBUS FORMATION AND PROPAGATION

Single-nucleotide polymorphisms in the genes coding
for IL-1B, IL-1RA, and IL-18 have been described to
predispose to DVT.®>®7 Small reports from patients
with rare, monogenic autoinflammatory disorders
involving genes coding for NLRP3 and IL-1RA result-
ing in unchecked IL-1f signaling noted high rates of
venous thrombosis.®%-8

In patients with altitude-induced DVT, inflamma-
some pathway component transcripts are highly
expressed in peripheral blood mononuclear cells
(PBMCs), accompanied by increases in caspase-1
activity and plasma levels of NLRP3, IL-18, and IL-
18.'>87 Similarly, PBMCs from patients with cancer-
associated DVT exhibit enhanced NF-kB activity and
IL-1B production corresponding to higher circulating
levels of IL-1B compared to cancer patients without
DVT.°°

Multiple roles for engagement of the NLRP3
inflammasome pathway have been established in
preclinical models of DVT (Table 1, Figure 5). After
murine inferior vena cava stenosis, marked increases
in NLRP3, IL-1B, and IL-18 transcripts were observed
in the plasma.’” Thrombi and thrombosed vein seg-
ments were enriched in NLRP3 and IL-1f transcripts
and proteins in parallel with enhanced caspase-1
activation."”” PBMCs and platelets from thrombotic
mice also exhibited robust up-regulation of NLRP3
and IL-18 mRNA levels."?

Exposure of rats to hypoxic, hypobaric conditions
to mimic high-altitude conditions markedly up-
regulates inflammasome signaling and aggravates
venous thrombosis, while inhibiting hypoxia-
inducible factor 1-alpha reverses these effects,
indicating that hypoxia potentiates inflammasome
thrombotic  burden."

activation and worsens
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Inflammasome Signaling

First Author (Ref. #) Model Inhibition Strategy

TABLE 1 Targeting of Inflammasome Signaling in Preclinical Models of Venous Thrombosis

Main Findings

Gupta et al'? Rat IVC stenosis NLRP3 siRNA
Caspase-1 inhibition
IL-1B inhibition

Yadav et al'"® Mouse IVC stenosis IL-1 receptor antagonism
IL-1B inhibition

Li et al®* Rat IVC stenosis IL-18 down-regulation

Zhang et al'® Mouse IVC stenosis ~ Caspase-17"
Caspase-117"
GSDMD™-

Campos et al'* Mouse IVC stenosis Caspase-1 inhibition

Munzer et al"' Mouse IVC stenosis ~ NLRP37

Selective NLRP3 inhibition

Abu-Fanne et al®” Nonselective NLRP3

inhibition

Mouse IVC stenosis

siRNA against NLRP3 and treatment with the caspase-1 inhibitor ac-YVAD-
cmk or anti-IL-1B antibody reduced thrombus size, prothrombin/D-
dimer levels, and platelet aggregability

Administration of an anti-IL-1B antibody or the IL-1 receptor antagonist
anakinra decreased thrombus incidence and size without prolonging tail
bleeding time

IL-18 down-regulation through lentiviral vectors suppressed venous
thrombogenesis and the expression of NF-kB and vWF

Deletion of caspase-1/GSDMD but not of caspase-11 reduced the incidence
and extension of venous thrombosis

Administration of the caspase-1 inhibitor ac-YVAD-cmk reduced the
incidence of thrombosis as well as thrombus size and NETosis

NLRP3 inhibition with MCC950 in either mouse or human neutrophils
diminished NETosis; NLRP3 deficiency reduced NETosis and thrombus
progression

Colchicine treatment decreased clot size, and heparin coadministration
reduced the heparin dose required to prevent thrombosis, with no
discernable impact on hemostasis

GSDMD = gasdermin D; IVC = inferior vena cava; IL = interleukin; NF-kB = nuclear factor-kappa B; NLRP3 = NOD-, LRR-, and pyrin domain-containing protein 3;
NETs = neutrophil extracellular traps; siRNA = small-interfering RNA; VWF = von Willebrand Factor.

Disruption of inflammasome signaling through small-
interfering RNAs against NLRP3, a caspase-1 inhibitor
or an anti-IL-1p antibody significantly reduces
thrombus size, as well as prothrombin and D-dimer
generation.'” Consistent with an upstream role for the
inflammasome in platelet activation, inflammasome
inhibition also decreases platelet aggregation in
response to ADP."

Mice genetically lacking caspase-1 or GSDMD but
not caspase-11 are less prone to venous thrombosis,
and form smaller thrombi compared with wild-type
littermates.'”> Monocyte depletion or TF deficiency
were also shown to attenuate thrombogenesis.®*
Taken together, these observations may suggest that
canonical NLRP3 inflammasome activation in mono-
cytes can induce pyroptosis, leading to TF release and
thrombosis.”'> Of note, caspase-1 or GSDMD defi-
ciency did not affect platelet aggregation in response
to thrombin or collagen ex vivo.'> Although abroga-
tion of distinct inflammasome pathway components
may impact platelet activity differently, in vitro and
ex vivo assays may be subjected to intrinsic vari-
ability. Hence, additional in vivo studies are required
to elucidate the impact of these interventions
on platelet-mediated
hemostasis.

thromboinflammation and

A role for the inflammasome in the propagation
of venous thrombosis has been recognized. Neu-
trophils from NLRP3-deficient mice exhibit reduced
NETosis, with comparable effects obtained when
treating human neutrophils with selective NLRP3 or
caspase-1 inhibitors."" NETs were shown to directly

trigger inflammasome activation in platelets
in vitro.'* Indeed, platelets represent more than half
of caspase-1-positive cells within venous thrombi,
and activated caspase-1 colocalizes with NETs at the
thrombus sites enriched with platelets. This may
suggest that inflammasome activation in neutro-
phils promotes NETosis, which in turn sustains
platelet inflammasome activation as well as platelet
recruitment and aggregation, thus favoring
thrombus growth.'* Accordingly, mice treated with
a caspase-1 inhibitor exhibit reduced NETosis and
thrombus size.'* In line with these observations,
venous thrombus growth in NLRP3-deficient mice
was arrested sooner than in wild-type mice, and
accompanied by reduced thrombus size at later
timepoints."

One important mechanism regulating venous
thrombogenesis under flow-restricted and static
blood flow conditions entails ectonucleoside tri(di)
phosphohydrolase-1 (ENTPD1, also known as
CD39). CD39 is a vascular enzyme that dissipates
extracellular nucleotides including ATP and ADP
released from damaged cells, thus preventing the
activation of the P2X7R-mediated second signal for
inflammasome assembly, and suppressing platelet
activation by P2Y12R.">°' Genetic deletion of CD39
aggravates venous thrombosis in parallel with
enhanced NF-kB phosphorylation and exaggerated
expression of NLRP3, caspase-1, and IL-1f within
thrombi, and increased plasma IL-1B." Treatment of
CD39-deficient mice with an IL-1B-neutralizing
antibody or anakinra, a recombinant human IL-1RA
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approved for clinical use, markedly reduces venous
thrombogenesis as shown by significantly fewer and
smaller thrombi, without prolonging tail bleeding
time."” Although awaiting confirmation in clinical
studies, these observations may support the thera-
peutic potential of inflammasome pathway blockade
in VTE, and suggest that this therapeutic strategy
may reduce venous thrombus formation and prop-
agation while preserving hemostasis.”> Concur-
rently, they may raise concern about the potential
thrombotic risk associated with the use of inhibitors
to immune checkpoints such as CD39 in patients
with cancer.” Recent preliminary data suggest that
CRP increases after initiation of immune checkpoint
inhibitor therapy is associated with an increased
risk of VTE.°” In mice, administration of pem-
brolizumab or ipilimumab induced myocardial
expression of NLRP3, myeloid differentiation factor
88, and proinflammatory cytokines including IL-1B
and IL-6, with enhanced NF-kB expression detected
in the vascular endothelium and increased cytokine
levels in the plasma.®®> Additional studies are
required to assess the potential contribution of
inflammasome pathway activation to vascular
toxicity associated with the use of immune check-
point inhibitors.

Colchicine blocks microtubule polymerization and
interferes with neutrophil diapedesis and degranula-
tion.”* Colchicine appears to also exert nonspecific
inhibitory activity on the NLRP3 inflammasome.°%°°
In transgenic mice expressing human o-defensin-1,
an antimicrobial protein released from activated
neutrophils, colchicine administration 1 h after
venous thrombosis and every 12 h thereafter signifi-
cantly decreased clot size.’” Coadministration with
heparin reduced by 20-fold the heparin dose required
to prevent thrombosis, without increasing tail vein
bleeding time.°” Interestingly, coadministration of
subtherapeutic doses of colchicine and heparin asso-
ciated with a 60% reduction in thrombus size with no
impact on hemostasis.”” In another mouse study,
colchicine, given 24 h after venous thrombosis, alle-
viated thrombus-induced vein wall scarring at days 8
and 14.°® This was associated with significant re-
ductions in macrophage infiltration and fibroblast
activation, with attenuated expression of profibrotic
and proinflammatory markers, suggesting that
colchicine may potentially represent a clinically
viable option to reduce PTS after DVT.® Additional
studies are, however, warranted to validate these
findings, and to clarify the precise molecular mecha-
nisms underlying the potential antithrombotic and
antiscarring effects of colchicine in the setting of
venous thrombosis.
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Thrombosis in Preclinical Models

FIGURE 5 Strategies Targeting Inflammasome Signaling Shown to Reduce Venous
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Created with BioRender.com. NLRP3 = NACHT-, LRR- and pyrin domain-containing

ation as in Figure 2.

protein 3; DVT = deep vein thrombosis; siRNA = small-interfering RNA; other abbrevi-

A role for IL-1o and IL-18 in VTE might be hy-
pothesized also, although limited evidence is avail-
able to date.’®%%%7 Increased IL-18 levels have been
found in rodents and patients with DVT.®#%7 IL-18
overexpression by means of lentiviral vectors resul-
ted in larger venous thrombi compared with control
rats, whereas curtailed

thrombosis.®*

IL-18 down-regulation

TARGETING INFLAMMATION IN VTE

Therapeutic efforts in VTE have mostly focused on
addressing the coagulation cascade, with the intro-
duction of vitamin K antagonists (VKAs), heparins,
and direct oral anticoagulants (DOACs)."” Although
these agents effectively target the coagulation
cascade, they are associated with a risk of bleeding,
and cannot completely prevent venous thrombosis
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and its complications including PTS and recurrent
VTE," potentially unveiling a therapeutic gap due to
a yet partially addressed pathogenic mechanism,
namely thromboinflammation.'®°° As multiple
thromboinflammatory pathways including the NLRP3
inflammasome are emerging contributors to venous
thrombosis, pharmacologic agents targeting these
pathways may potentially reduce VTE and its

sequelae.
Anticoagulant agents reportedly have anti-
inflammatory effects, which, however, remain

difficult to appraise in humans. Heparins reduce
neutrophil extravasation, dismantle NETs, and pro-
mote vein re-endothelization in animal models.'®-%°
DOACs targeting factor Ila or factor Xa, which acti-
vate proteinase-activated receptors (PARs), can
reduce PAR-mediated inflammation.'®° Inhibition of
factor Xa, but not of factor Ila, reduced
inflammasome activation resulting in attenuated
ischemia-
reperfusion.’®® Rivaroxaban was found to reduce IL-
6 and CRP in patients with atrial fibrillation,'®* and a
putative anti-inflammatory effect of rivaroxaban in
slowing atherosclerotic vascular disease is advocated
by the COMPASS (Rivaroxaban for the Prevention of
Major Cardiovascular Events in Coronary and
Peripheral Artery Disease) and VOYAGER PAD
(Efficacy and Safety of Rivaroxaban in Reducing the
Risk of Major Thrombotic Vascular Events in Subjects
with Symptomatic Peripheral Artery Disease
Undergoing Peripheral Revascularization Procedures
of the Lower Extremities) trials.°® Limited, mostly
indirect, evidence exists on the potential anti-
inflammatory effects of anticoagulants in the setting
of VTE. Some studies suggested that, compared with

fibrosis after murine myocardial

VKA, heparins and DOACs could improve vein
recanalization and reduce PTS, possibly due to
profibrinolytic signaling.’® In a small observational
study, rivaroxaban was associated with reduced
fibrinogen and lower PTS when compared with
VKA.'°? Nevertheless, no significant reductions in
PTS were found with rivaroxaban compared with
enoxaparin or VKA in the EINSTEIN DVT (Oral Direct
Factor Xa Inhibitor Rivaroxaban in Patients with
Acute Symptomatic Deep Vein Thrombosis) study.'**
Although further evaluation of the potential anti-
inflammatory activity of current anticoagulants in
VTE is needed, the persistence despite anticoagulant
therapy of residual inflammation, either clinical or
subclinical, in subgroups of patients with VTE may
indicate that current anticoagulants alone cannot
completely address inflammation associated with
venous thrombosis.
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Statins have established anti-inflammatory activ-
ity including reduction of leukocyte infiltration,
NETosis, and inflammatory biomarkers, potentially
improving thrombus resolution and vein scarring
after DVT.°° A randomized trial enrolling 234 pa-
tients with acute DVT reported that the addition of
rosuvastatin to low-molecular weight heparins
reduced CRP and the 3-month incidence of PTS,
highlighting the potential of anti-inflammatory
strategies for PTS prevention.'®* A phase 3 trial
evaluating rosuvastatin to decrease the risk of
recurrent VTE is currently ongoing (NCT04319627).
Statins were also evaluated for the primary pre-
vention of VTE. In the phase 3 JUPITER (Justifica-
tion for the Use of statins in Primary prevention: an
Intervention Trial Evaluating Rosuvastatin) trial
enrolling normo-lipidemic subjects with high-
sensitivity CRP =2 mg/L, rosuvastatin significantly
reduced symptomatic VTE.'°> A pooled analysis of
the JUPITER and HOPE-3 (HOPE-3 (Heart Outcomes
Prevention Evaluation-3) trials showed that rosu-
vastatin was associated with a 47% reduction in
VTE incidence, regardless of the presence of VTE-
related risk factors.'*®

INFLAMMASOME SIGNALING BLOCKADE IN
ATHEROTHROMBOSIS

To date, no trial has been conducted to evaluate the
effects of selective targeting of the NLRP3 inflamma-
some or IL-1 for the prevention or treatment of VTE.
However, rapidly accumulating proof-of-concept ev-
idence from preclinical DVT models, data from pa-
tients with VTE, and indirect evidence derived from
atherothrombosis trials may suggest that inflamma-
some signaling blockade could potentially represent a
promising therapeutic strategy to prevent or manage
VTE without increasing the risk of bleeding.
Selective NLRP3 inflammasome inhibitors have
been developed and successfully tested in multiple
preclinical models of disease, and are under clinical
investigation for different indications.>*'°7-1%8
Colchicine may be regarded to as a nonselective
NLRP3 inhibitor.°* In the LoDoCo (Low-Dose Colchi-
cine)-2 trial, low-dose colchicine (0.5 mg once daily)
was associated with a 31% reduction in the primary
composite endpoint of cardiovascular death, ischemic
stroke, myocardial infarction, or revascularization in
patients with chronic coronary disease.'°®''° A pro-
teomic substudy found that low-dose colchicine
suppressed inflammasome activation, as reflected
by reduced IL-18, IL-1RA, and IL-6 levels, but also
neutrophil degranulation, suggesting that the


https://clinicaltrials.gov/ct2/show/NCT04319627
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TABLE 2 Clinical Trials Testing Inflammasome Signaling Blockade in Atherothrombosis

VCUART3'08 Acute STEMI (<12 h)

(99) twice daily

Well-controlled T2DM, high
cardiovascular risk

CANTOS Pilot"™®

Anakinra 100 mg once or 2 wk treatment

Canakinumab 5/15/50/ 4 mo
150 mg monthly

(556)
CANTOS'® Prior AMI (>30 d), Canakinumab 50/150/
CRP =2 mg/L 300 mg every 3 mo
(10,061)

Trial (Ref. #) Population (N) Intervention Duration Main Outcomes
LoDoCo'®° Stable CAD Colchicine 3y (median) | Cardiovascular events
(532) 0.5 mg daily (CRP not reported)
LoDoCo2'® Chronic, stable CAD Colchicine 2.4 y (median) lschemic events
(5,522) 0.5 mg daily (CRP not reported)
coLcot'? Recent AMI (>30 d) Colchicine 1.9 y (median) | Cardiovascular ischemic events
(4,754) 0.5 mg daily 1 Pneumonia
(no effect on CRP beyond reduction seen in placebo; no effect
on HF events)
MRC-ILA"™ Acute NSTEMI (<48 h) Anakinra 100 mg daily 2 wk treatment ICRP at 7 and 14 d
(182) (1y follow-up) (no effect on ischemic events at 30 d and 3 mo, but tat1y)
VCUART/ Acute STEMI (<12 h) Anakinra 100 mg daily 2 wk treatment LCRP, | HF incidence
VCUART2'%8 (40) (3 mo follow-up) (no effect on ischemic events)

LCRP, |HF incidence, | HF hospitalization
(no effect on ischemic events)

LCRP, |IL-6, |fibrinogen

(1y follow-up)

(no effect on glucose, lipids, and blood pressure)

3.7 y (median)

diseases, |lung cancer

LCRP, ischemic events, |HF hospitalization, tinfection-
related deaths, |cancer-related deaths, |rheumatologic

AMI = acute myocardial infarction; CAD = coronary artery disease; CANTOS = Canakinumab Anti-inflammatory Thrombosis Outcomes Study; COLCOT = Colchicine Cardiovascular Outcome Trial; CRP = C-
reactive protein; HF = heart failure; COVERT-MI = Colchicine for Left Ventricular Infarct Size Treatment in Acute Myocardial Infarction; LoDoCo = Low-Dose Colchicine; MI = myocardial infarction; MRC-
ILA = Medical Royal Council InterLeukin-1 Antagonist; NSTEMI = non-ST-segment-elevation myocardial infarction; STEMI = ST-segment-elevation myocardial infarction; T2DM = type 2 diabetes mellitus;
VUCART = Virginia Commonwealth University Anakinra Remodeling/Response Trial; other abbreviations as in Table 1.

antithrombotic effects of colchicine may extend
beyond inflammasome blockade."! In COLCOT
(Colchicine Cardiovascular Outcomes Trial), low-
dose colchicine reduced coronary and cerebral
thrombotic events in patients with recent acute
myocardial infarction."”

IL-1 inhibitors are available for clinical use.”*”
Anakinra, a recombinant IL-1RA inhibiting both IL-
10, and IL-1B, and canakinumab, an anti-IL-13 mono-
clonal antibody, are indicated for the treatment of
numerous autoinflammatory and rheumatologic dis-
eases.’””>> Anakinra and rilonacept, a soluble IL-1 re-
ceptor chimeric fusion protein neutralizing IL-1¢. and
IL-1B, are standard of care for the treatment of
recurrent pericarditis.>®> Multiple trials have tested
anakinra in patients with acute myocardial infarction
(Table 2).''3"'* The CANTOS (Canakinumab Anti-in-
flammatory Thrombosis Outcomes Study) pilot trial
provided preliminary evidence showing that canaki-
numab reduces IL-6, CRP, and fibrinogen indepen-
dent from lipid- and glucose-lowering effects.'” In
the CANTOS trial, in which 10,061 patients with prior
myocardial infarction and high-sensitivity CRP
=2 mg/L were randomized to canakinumab or pla-
cebo, canakinumab significantly reduced systemic
inflammation and the occurrence of the composite of
cardiovascular death, nonfatal acute myocardial
infarction, or nonfatal stroke."'® This landmark study,
together with the already-mentioned colchicine tri-
als, contributed to validate the inflammatory

hypothesis of arterial thrombosis and established the
antithrombotic efficacy of inflammasome pathway
inhibition, which remains, however, unexplored in
the setting of venous thrombosis.'® These studies also
suggested that targeting this pathway may preserve
hemostasis, thus potentially circumventing the risk of
bleeding associated with conventional antith-
rombotic agents.'® Yet, given that agents targeting
the NLRP3/IL-1B axis are not devoid of potential side
effects, including infection and gastrointestinal
toxicity, both the safety and efficacy of these thera-
pies should be carefully assessed in patients with or
at risk for VTE.

CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

NLRP3 inflammasome pathway activation and
heightened levels of IL-1p and IL-18 are found in pa-
tients with VTE. Recent preclinical studies have pro-
vided solid proof-of-concept evidence indicating that
genetic deletion or pharmacologic inhibition of either
NLRP3, caspase-1, GSDMD, IL-1f, or IL-18 markedly
reduce venous thrombus formation and propagation.
Addressing unopposed inflammation may also favor
thrombus clearance and reduce vein scarring and
dysfunction after VTE, thus potentially protecting
from PTS and recurrent thromboembolism. This large
body of rapidly accumulating evidence may suggest
that targeting the NLRP3 inflammasome pathway may
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represent an attractive therapeutic strategy to pre-
vent and manage VTE, eventually maximizing the
benefits of anticoagulation without increasing the
risk of bleeding. Adequately designed clinical trials to
evaluate these hypotheses are needed. Additional
in vivo studies are also necessary to elucidate the
exact contribution of distinct IL-1 cytokines and
pyroptosis to venous thrombosis and vein wall pa-
thology, and to determine the effects, with corre-
sponding therapeutic windows, of distinct agents
blocking inflammasome signaling. Finally, as multi-
ple inflammasome- and IL-1-based therapeutics are
on the horizon for the treatment of a wide range of
inflammatory disorders that carry an increased
thrombotic risk, assessing the clinical impact of such
interventions on VTE is of utmost importance.
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