
ARTICLE OPEN

Transdiagnostic connectome signatures from resting-state fMRI
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Medication and other therapies for psychiatric disorders show unsatisfying efficacy, in part due to the significant clinical/ biological
heterogeneity within each disorder and our over-reliance on categorical clinical diagnoses. Alternatively, dimensional
transdiagnostic studies have provided a promising pathway toward realizing personalized medicine and improved treatment
outcomes. One factor that may influence response to psychiatric treatments is cognitive function, which is reflected in one’s
intellectual capacity. Intellectual capacity is also reflected in the organization and structure of intrinsic brain networks. Using a large
transdiagnostic cohort (n= 1721), we sought to discover neuroimaging biomarkers by developing a resting-state functional
connectome-based prediction model for a key intellectual capacity measure, Full-Scale Intelligence Quotient (FSIQ), across the
diagnostic spectrum. Our cross-validated model yielded an excellent prediction accuracy (r= 0.5573, p < 0.001). The robustness and
generalizability of our model was further validated on three independent cohorts (n= 2641). We identified key transdiagnostic
connectome signatures underlying FSIQ capacity involving the dorsal-attention, frontoparietal and default-mode networks.
Meanwhile, diagnosis groups showed disorder-specific biomarker patterns. Our findings advance the neurobiological
understanding of cognitive functioning across traditional diagnostic categories and provide a new avenue for neuropathological
classification of psychiatric disorders.
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INTRODUCTION
Current clinical neuroscience research generally relies on
consensus-based diagnostic criteria such as DSM-5 [1] and ICD-
10 [2]. These diagnostic criteria are mainly based on patients’ self-
reports and clinician assessment of behavior, instead of neuro-
pathological abnormalities, in part due to the elusive mechanisms
of psychiatric disorders [3, 4]. In the past decade, a growing
number of studies have suggested that consensus-based diag-
nosis criteria fail to address the heterogeneity and high
comorbidity rates in psychiatric disorders [5–7], leading to a
limited understanding of psychopathology which likely contri-
butes to the suboptimal clinical efficacy of therapies [8]. To break
the shackles tied by the case-control diagnosis framework,
numerous recent studies sought to construct new dimensions of
psychiatric disorders as advocated by the NIMH RDoC framework
[9]. Using machine learning techniques, approaches have included
defining disorder subtypes based on neuroimaging biomarkers
identified by supervised dimensionality reduction [10–13] or
unsupervised clustering [13–18] and data-driven neuroimaging
analysis across diagnosis boundaries [19]. Furthermore,
recent studies pioneered techniques to extract individual compo-
nents of each subject from neuroimaging-based connectome
[20–22]. As result, robust correlations have been found between
brain connections and cognitive measures in a broad range of

diagnoses [23], demonstrating the possibility of making the
individualized prediction of cognitive measures with neuroima-
ging data in the transdiagnostic population.
However, the reproducibility and reliability of these emerging

results are limited by the relatively small sample size of
neuroimaging datasets [24], yielding only preliminary clinically-
applicable prediction models. Moreover, most available neuroima-
ging studies follow a case-control design, of which results may not
generalize to transdiagnostic populations. Non-transdiagnostic
categorical studies essentially still rely on clinical consensus-based
categorization, thus not significantly contributing to the
neuropathological-based definition of psychiatric disorders. To
address these challenges, recent data collection initiatives aim to
collect transdiagnostic neuroimaging data in large sample sizes,
including the Healthy Brain Network (HBN) Biobank [25] and
Philadelphia Neurodevelopmental Cohort [26]. With these open-
access datasets, we have an unprecedented opportunity to
identify robust neuromarkers using functional neuroimaging data
and develop reliable prediction models for cognitive assessment,
diagnosis, prognosis, and treatment outcome [24].
To bridge the gap between machine-learning-based biomarker

findings and consensus-based clinical practice, we developed a
resting-state functional MRI (rsfMRI) connectome-based machine
learning model to predict intellectual capacity in a transdiagnostic
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population at the individual level. Intellectual capacity, as quantified
by intelligence quotient, is a common and widely-utilized measure
that assesses both cognitive functions and acquired abilities and is
highly predictive of important life outcomes such as educational
achievement, job performance, and overall well-being [27, 28].
Intelligence is also reflected in the organization and function of brain
networks [29]. Thus, it provides a useful summary of cognitive
functioning with real-life predictive validity and biological relevance.
Our connectome-based machine learning model was trained and
cross-validated using large-scale data from the HBN Biobank [25]
with 1721 subjects. The model yields a promisingly robust prediction
performance which successfully generalized to three independent
cohorts [30–32] with a total 2641 subjects (Table 1). We further
identified interpretable connectome signature patterns that pre-
dicted the cognitive measure, which remarkably aligned with
neurobiology findings for both the transdiagnostic population and
each diagnosis group. Together, these efforts aim to identify
neuroimaging-based cognitive biomarkers in transdiagnostic popula-
tions and propel the construction of new neuropathological-based
definitions of psychiatric disorders, thus realizing personalized
medicine and improving treatment outcomes.

METHODS
Participants
This study used data from four independent cohorts, including Healthy
Brain Network (HBN) [25], ADHD-200 [30], Autism Brain Imaging Data
Exchange (ABIDE) I [31] and ABIDE II [32]. The HBN initiative, approved by
the Chesapeake Institutional Review Board, recruited children and
adolescents in age 5–21 at four study sites in the New York City area.
Participants must have adequate verbal communication ability with the
help of their parents or guardians. Subjects with severe neurological
disorders, including severe impairment in cognitive (IQ < 66), acute
encephalopathy, known neurodegenerative disorder, or other abnormal-
ities that may prevent full participation in the protocol were excluded from
recruitment [25]. The ADHD-200 dataset recruited children and adoles-
cents with ADHD (n= 285) and health controls (n= 491) at eight study
sites in age 7–21 [30]. The ABIDE I and II dataset included ASD patients and
healthy people in age 7–64 at sixteen study sites. Inclusion and exclusion
criteria for each of the study sites are available at https://fcon_1000.pro-
jects.nitrc.org/ [31, 32]. Informed consent was obtained from all subjects.

Functional MRI data
The HBN protocol employed different fMRI scanners for each of data
collection phases (test phase, deployment phase I and deployment phase
II) [25]. Test phase utilized 1.5 T Siemens Avanto scanner with 45mT/m
gradients in a mobile trailer, which was upgraded with 32 RF receive
channels, the Siemens 32-channel head coil and the University of
Minnesota Center for Magnetic Resonance Research (CMRR) simultaneous

multi-slice echo planar imaging sequence [25, 33]. Deployment phase I
utilized 3.0 T Siemens Tim Trio scanner with a Siemens 32-channel head
coil and the CMRR simultaneous multi-slice echo planar imaging sequence.
Deployment phase II utilized 3 T Siemens Prisma scanner and the imaging
sequence protocols was harmonized to the NIH ABCD Study. rsfMRI scans
were recorded with duration greater than 10 minutes [25]. rsfMRI data in
the ADHD-200 dataset were collected with varying protocols and scanner
parameters specific to each of study sites. Notably, participants were asked
to obey different constraints in study sites. For instances, during the rsfMRI
data collection, participants at Oregon Health & Science University were
instructed to stay still while keeping their eyes open and fixating on a
standard fixation cross in the center of the display, whereas participants at
Peking University were asked to relax and stay still, while either keeping
their eyes open or closed in front of a black screen with white fixation cross
displayed during the scan (https://fcon_1000.projects.nitrc.org/). rsfMRI
data in ABIDE datasets are contributed by ADHD-200 Consortium members
which conduct autism research (17 international sites for ABIDE I, 19
international sites for ABIDE II) and investigators willing to openly share
rsfMRI data from individuals with ASD. Detailed rsfMRI scanning protocols
and scanner parameters for each of the study sites are available at https://
fcon_1000.projects.nitrc.org/ [31, 32].

Phenotypical data
HBN, ADHD-200 and ABIDE possess a collection of psychiatric, behavioral,
cognitive, and demographical phenotypes [25, 30–32]. For the main study,
FSIQ assessed by Wechsler Intelligence Scale for Children Fifth Edition
(WISC-V) [34] from the HBN dataset was utilized as the predictive cognitive
measure. We also retrieved FSIQ subdomains (WMI, FRI, VCI, VSI, PSI) for
interpretable analysis. For generalizability analysis on ADHD-200 and
ABIDE, we used Full IQ as the equivalent to WISC-V FSIQ. Full IQ was
assessed in different measures including Wechsler Intelligence Scale for
Children other editions (WISC-II [35], WISC-III [36], WISC-IV [37]), Wechsler
Abbreviated Scale of Intelligence (WASI) [38], Wechsler Intelligence Scale
for Chinese Children-Revised (WISCC-R) [39], Differential Ability Scales II -
School Age (DAS II) [40], Wechsler Adult Intelligence Scales (WAIS) [41],
Hamburg-Wechsler Intelligence Test for Children (HAWIK-IV) [42] and
Groninger Intelligence Test (GIT) [43]. Demographics (age, gender) from
each dataset were also retrieved to investigate potential confounders.
Subjects with missing values in these selected phenotypical variables were
excluded from the study.

Functional MRI pre-processing
The fMRI preprocessing was performed using fMRIPrep [44]. The T1-
weighted image was corrected for intensity non-uniformity and then skull-
stripped. Brain tissue segmentation of cerebrospinal fluid, white matter
and gray matter was performed on the brain-extracted T1-weighted image
using FSL [45, 46]. Volume-based spatial normalization was performed
through nonlinear registration using brain-extracted versions of both the
T1-weighted image and template. For each fMRI scan, the following
preprocessing was performed. First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep.

Table 1. Discovery and replication cohorts.

Discovery Replication Total

HBN ADHD-200 ABIDE I ABIDE II

n 1721 719 1030 892 4362

Gender Male 1109 449 877 691 3126

Female 612 269 153 201 1235

Unknown — 1 — — 1

Diagnosis HC 144 445 533 480 1602

ADHD 811 274 — — 1085

ASD 90 — 497 412 999

MDD 39 — — — 39

Anxiety 189 — — — 189

Other 438 — — — 438

Age Mean 10.28 ± 2.61 11.94 ± 2.88 16.75 ± 7.78 15.67 ± 9.42 13.18 ± 5.26

FSIQ/FIQ Mean 99.13 ± 15.94 110.79 ± 13.88 108.45 ± 14.93 111.16 ± 15.36 105.71 ± 15.23
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A deformation field to correct for susceptibility distortions was estimated
based on fMRIPrep’s fieldmap-less approach. Registration is performed
with antsRegistration, and the process regularized by constraining
deformation to be non-zero only along the phase-encoding direction,
and modulated with an average fieldmap template. Based on the
estimated susceptibility distortion, a corrected echo-planar imaging
reference was calculated for a more accurate co-registration with the
anatomical reference. The blood-oxygenation-level-dependent (BOLD)
reference was then co-registered to the T1-weighted image. Co-
registration was configured with 12 degrees of freedom to account for
distortions remaining in the BOLD reference. Head-motion parameters
with respect to the BOLD reference are estimated before any spatiotem-
poral filtering. BOLD signals were slice-time corrected and resampled onto
their original space by applying a single, composite transform to correct for
head-motion and susceptibility distortions. The BOLD signals were then
spatially normalized into the standard space. Automatic removal of motion
artefacts using independent component analysis was performed on the
pre-processed BOLD on the Montreal Neurological Institute space time
series after removal of non-steady state volumes and spatial smoothing
with an isotropic, Gaussian kernel of 6 mm full-width half-maximum.
Regional pairwise fMRI connectivity was calculated with the preprocessed
fMRI time series based on 100 ROIs defined by the Schaefer atlas [47].
Subject information with qualified pre-processed rsfMRI data for each of
the datasets was summarized in Table 1.

Connectome-based predictive modeling (CPM)
CPM is a recently developed method for the identification of functional
brain connections that significantly correlates to the behavior variable of
interest [48], thus reducing the feature dimensionality [49–52]. First, we
correlated FSIQ (or FIQ in generalizability analysis) with each of the
connections across subjects using Pearson’s correlation within each cross-
validation fold. Only the connections that are significantly correlated with
FSIQ were retained for the predictive modeling analysis. A threshold of
P-value was then applied to determine which edges were correlated to IQ.
The P-value threshold of 0.05 was selected for further analysis to construct
a prediction model with decent performance and reasonable computation
cost. To further refine the feature set and build a robust prediction model,
we adopted LASSO regression [53, 54], a well-known machine learning
technique with sparsity constraint.
For the FSIQ prediction model training, CPM-selected IQ-correlated

functional brain connections were fed into the LASSO model. Ten rounds
of five fold cross-validation were conducted to evaluate the model
performance and a unified model was constructed by averaging feature
weights of each selected connection across the total 50 cross-validation
models. An inner-loop cross-validation was further performed to find an
appropriate hyperparameter for the LASSO model. For subjects who had
two runs of fMRI scans, their two rsfMRI runs were either both in the
straining set, or both in the cross-validation set. For each subject in the test
set, the prediction performance was averaged on all available runs of fMRI
scans from the subject. Permutation tests were further performed to
confirm the statistical significance of the identified connectome signatures
for FSIQ prediction. The permutation test was conducted by randomly
permuting FSIQ values of subjects in training set and subsequently training
prediction models with permuted FSIQ labels while this entire procedure
was repeated for 1000 times. We acquired a P-value smaller than 0.001 for
the permutation test since the predictive model had higher predictability
than all 1000 permutation models (inset in Fig. 2a).

ROI and network importance
The importance of an ROI with respect to FSIQ was defined as the average
of feature weights of all functional brain connections involving the ROI.
The importance of a brain network for FSIQ prediction was defined as the
average of feature weights of all functional brain connections involving the
network, including both within- and between-network connections, where
the feature coefficients were retrieved from the unified FSIQ
prediction model.

Relationship between connectome signatures and IQ
subdomains
To evaluate the correlation between functional connections and IQ
subdomains, multiple linear regression (MLR) models predicting each of IQ
subdomains were fitted with IQ-correlated functional connections
identified by the unified FSIQ prediction model. For each MLR model,

only 500 functional connections were incorporated which were either all
the IQ-correlated connections or 500 randomly selected IQ-uncorrelated
connections. For each of the IQ subdomains, the correlation with
functional connectome was assessed by computing Pearson’s correlation
coefficients between actual and predicted IQ subdomain measure.To
evaluate the correlation between ROIs and IQ subdomains, MLR models
predicting each of IQ subdomains were fitted with ROI importances as
regressors. ROI importances were acquired from feature weights of
functional connections in the unified FSIQ prediction model. ROI
importances were calculated either using only IQ-correlated functional
connections or all connections, respectively yielding IQ-correlated ROI
importances and full-connectome ROI importances with full connectome.
The correlations between full connectome ROI importances and IQ
subdomains were employed as a reference to confirm the significance of
correlation between IQ-correlated ROI importances and IQ subdomains.
The correlations were eventually assessed by computing Pearson’s
correlation coefficients between actual and predicted IQ subdomain
indices from MLR models.

Individual differentiability
The individual differentiability (ID) was employed to assess the variance in
subject-level rsfMRI functional connectome. A mean connectome was first
calculated as the mean of functional connectivity across subjects. Notably,
the mean connectome was calculated based on all subjects instead of
healthy subjects to ensure the identified variability was shared by the
entire transdiagnostic population, aligning with the primary goal of this
study. Thereafter, the individual differentiability of i th subject was defined
as the sum of absolute differences of each j th functional connection
between the subject’s connectome and the mean connectome:

IDi ¼
XnFC

j¼1

FCij �
Pnsubjects

i¼1 FCij
nsubjects

����

���� (1)

where FCij is the feature coefficient of j th functional connection for i th
subject. The individual differentiability hence reflects the deviation of each
subject’s connectome to the mean connectome. Thus the distribution of
individual differentiability in a population group of interest indicates the
variance of functional connectome in that population group. Similar ideas
of individual connectome fingerprint and differential identifiability were
explored in recent studies [20–22, 55].

Reproducibility on independent cohorts
An extensive replication analysis was conducted to assess the reproduci-
bility of the identified brain connectome signatures on other independent
cohorts. A unified FSIQ prediction model was developed on the HBN
dataset by averaging feature weights of functional brain connections in
each cross-validation fold. The unified FSIQ prediction model was then
applied to the ADHD-200, ABIDE I and ABIDE II datasets, respectively. For
each of the replication datasets, the prediction performance was assessed
by computing Pearson’s correlation between the predicted FSIQ values
and the real measures. To confirm the statistical significance of the model
prediction on replication cohorts, we trained another 1000 permutation
models on the HBN dataset. The permutation models were also developed
using cross-validation to align with the procedure for predictive model
training. Each of the permutation models was derived by randomly
permuting FSIQ values of subjects in the training set of each cross-
validation fold and then averaging all models for individual cross-
validation folds. Afterwards, the 1000 unified permutation models were
applied to the three independent cohorts, to evaluate the significance of
predictive models. For all the three cohorts, the HBN-based prediction
model performed significantly better (p < 0.001) than the random
permutation results (Fig. 5).

RESULTS
Transdiagnostic connectome signatures predictive for
individual intellectual capacities
We built prediction models using a brain connectome constructed
with rsfMRI by combining CPM and LASSO to predict intellectual
capacities on the large-scale transdiagnostic population (n= 1721)
from the HBN Biobank [25] (Fig. 1). Full-Scale Intelligence Quotient
(FSIQ) was selected as the quantitative measure of intellectual
capacity and the model performance was evaluated by a 10x five-

X. Tong et al.

3

Translational Psychiatry          (2022) 12:367 



fold cross-validation (r= 0.5573, R-squared=0.3095, p < 0.001, Fig.
2a; permutation test-verified using 1000 permutations, p < 0.001).
In subsequent analyses, this model is hereafter referred to as the
“standard model”.
To further investigate which brain regions of interest (ROIs) and

networks were responsible for FSIQ prediction, we examined the
connectivity weights driven by the prediction model. The
connections with large absolute weights were distributed over
the entire brain (Fig. 2b). The unified model showed high FSIQ
predictability (r= 0.8193, R-squared=0.6076, p < 0.001, Supple-
mentary Fig. 1a), but it suffered from information leakage. Thus,
we only assessed model performance using cross-validation
results. Afterward, we empirically determined the top 500 strong
connections as IQ-correlated connections to reduce dimension-
ality and facilitate interpretation. We confirmed that the prediction
model with only IQ-correlated connections maintained reasonable
FSIQ predictability on the entire transdiagnostic population
(r= 0.7857, R-squared= 0.5539, p < 0.001, Supplementary Fig.
1b). Subsequently, the importance of each ROI was evaluated by
averaging IQ-correlated connections involving the same ROI (Fig.
2d). We found that the visual cortex (striate and extrastriate
cortices), part of the frontal lobe and supramarginal, superior
parietal, angular gyri of the parietal lobe are the most contributive
regions to FSIQ, aligning with the findings reported in a previous
neuroscience study [56].
In addition, we interpreted the FSIQ connectome signature on

the network level according to the Yeo’s seven networks [57] (Fig.
2e). The results showed high accordance with neuroscience
findings [56, 58–63]. Specifically, connections within Limbic and
between Limbic and default mode network (DMN) are the most
influential ones in FSIQ prediction. The limbic-paralimbic-striatal
network has been shown to regulate overall brain activation
during tasks [60], and the posterior DMN is especially active during
memory function [61], which in combination may be particularly
relevant to broad cognitive capacities. The connections within the
frontoparietal control network (FPCN) were also contributive for
intelligence prediction, which echoes the parieto-frontal integra-
tion theory of intelligence [56, 58] and recent fMRI-based studies
[62, 63]. In addition, the connections between/within visual and
attention networks were associated with significant weights,
demonstrating the importance of visual attention in measures of
intelligence [58]. The connections between VAN and DMN with
strong negative weights also were consistent with a prior relevant
study [59]. These results together confirmed that the promising

FSIQ prediction model we built was indeed achieved by the
contribution of connections in neuroscience-recognized cogni-
tion-related brain regions.
Additionally, a leave-study-site-out analysis confirmed the

generalizability of our prediction model across four study sites
in the HBN dataset (number of subjects: n1= 677, n2= 53,
n3= 842, n4= 149, Supplementary Fig. 2). The model derived
without the left-out site showed comparably high performance as
the model trained with data from all sites (Supplementary Figs. 3
and 4). We further verified that our prediction model was valid
across gender and age (female subjects: r= 0.5639, R-
squared=0.3143; male subjects: r= 0.5557, R-squared= 0.3066;
age group I (age < 9): r= 0.4736, R-squared= 0.2090; age group II
(age between 9 and 12): r= 0.5868, R-squared= 0.3373; age
group III (age > 12): r= 0.6171, R-squared=0.3684. p < 0.001 for all
subject groups. Supplementary Fig. 5). A detailed analysis of the
relationship between model predictability and age can be found
in Supplementary Fig. 6. Lastly, we discovered that training the
model with additional fMRI scans enhanced the model predict-
ability (prediction on single fMRI run: r=0.4847, R-
squared=0.2143; prediction on two fMRI runs: r= 0.5732, R-
squared= 0.3276; Fisher’s z= 3.37. p < 0.001 for both predict-
ability and Fisher’s z test. Supplementary Fig. 7).

Transdiagnostic and disorder-specific connectome patterns in
intellectual capacity prediction
To further investigate the quantitative contribution of brain
networks to FSIQ prediction and whether they contribute uniquely
to subjects with different psychiatric disorders, we assessed the
model predictability in each of the diagnosis groups. The
diagnosis groups we examined include healthy control (HC),
attention-deficit hyperactivity disorder (ADHD), autism spectrum
disorder (ASD), major depressive disorder (MDD), and anxiety
disorders. The rsfMRI connectome-based model was predictive of
FSIQ values for all of these diagnosis groups (HC: r= 0.5277, R-
squared= 0.1586; ADHD: r= 0.5268, R-squared= 0.2771; ASD:
r= 0.6613, R-squared= 0.3919; MDD: r= 0.5194, R-squared=
0.2249; anxiety disorders: r= 0.5826, R-squared=0.2992.
p < 0.001 for all diagnosis groups. Supplementary Fig. 8), suggest-
ing that connectome signatures driven by the FSIQ prediction
model were general to non-patients and across psychiatric
disorders. The diagnosis-specific performance of the “standard
model” was used as the baseline reference for subsequent
analysis.

Fig. 1 A flowchart of the transdiagnostic predictive modeling for intellectual capacity. First, the functional connectome is constructed
using resting-state fMRI data of individuals from multiple diagnostic groups. Then, connectome-based predictive modeling (CPM) applies a
mask on the functional connectome based on its correlation with intellectual capacity, quantified by Full-Scale Intelligence Quotient (FSIQ), to
reduce feature dimensionality. A sparse learning algorithm (LASSO) with cross-validation further selects predictive connections and derives
feature weights to generate individual-level prediction of FSIQ.
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We further evaluated the importance of each brain network on
predicting FSIQ for the entire transdiagnostic population as well as
each diagnosis group by removing all functional connections
involved in the brain network of interest from the prediction
model. Resultant leave-one-network-out models were still pre-
dictive of FSIQ (Fig. 3, bottom table), which supported the idea
that the broad concept of intelligence measured with a
standardized instrument and a variety of subtests is distributively
embedded across the brain thus enabling us to perform
quantitative analysis on network importance. We defined the
importance of a brain network as the decrease in the predictability
of the network-removed prediction model compared with the
model with the full connectome (Fig. 3). A set of Fisher’s z-tests
comparing leave-brain-network-out models with the standard
model identified brain networks with significant importance to the

entire transdiagnostic population (Visual: Fisher’s z=2.73,
PFDR=0.0110; Motor: Fisher’s z=1.75, PFDR=0.0935; DAN: Fisher’s
z=4.23, PFDR=0.0004; VAN: Fisher’s z=1.86, PFDR=0.0881; Limbic:
Fisher’s z=0.37, PFDR=0.7114; FPCN: Fisher’s z=3.73, PFDR=0.0005;
DMN: Fisher’s z=4.78, PFDR=0.0004). The important networks
identified by changes in predictability for the entire transdiagnos-
tic population were well-aligned with the network strength
acquired from feature weights of the prediction model (Fig. 2d):
Visual network, DAN, FPCN, and DMN were the most influential
networks, and removing any of them caused significant decrease
in predictability. A more comprehensive analysis of diagnosis-
specific connectome patterns can be found in Supplementary
Table 2. Together, these observations demonstrate diagnosis-
specific contributions of each brain network to intelligence,
informing the association between identified transdiagnostic

Fig. 2 Transdiagnostic connectome signatures predictive for individual FSIQ. a FSIQ prediction model on transdiagnostic population. The
model is evaluated by 10x five-fold cross-validation. The inset displays the null distribution of model performance by permutation testing with
1000 permutations. Dashed line indicates actual performance. Error bar shows standard deviation. This model is hereafter referred to as the
“standard model’. b Edge-wise importance of functional brain connections with respect to FSIQ. Each cell represents the edge-wise
importance derived by averaging feature weights of FSIQ prediction models for each of cross-validation folds. Red/blue cells indicate positive/
negative feature weights of brain connection with respect to FSIQ. c ROI importance with respect to FSIQ. ROI importance is derived by
averaging the absolute feature weights of all functional brain connections involving an ROI. The top 10 important ROIs are shown for clarity.
d Importance of functional brain connections at the network level. The importance of functional brain connections between two networks/
within a network is defined by the average of absolute feature weights of all functional brain connections residing between those two
networks/within the network of interest.
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connectome signatures and the healthy-patient diagnostic
spectrum.

IQ-correlated biomarkers contribute to cognitive subdomains
To verify that the FSIQ prediction model indeed generated
predictions based on interpretable links between rsfMRI con-
nectome and intellectual capacity, we evaluated the correlation
between the 500 IQ-correlated connections and FSIQ subdomains,
including working memory index (WMI), fluid reasoning index
(FRI), verbal comprehension index (VCI), visual spatial index (VSI)
and processing speed index (PCI) [25]. Multiple linear regression
showed significant correlations between IQ-correlated connec-
tions and FSIQ and its subdomains (FSIQ: r= 0.8334; WMI:
r= 0.6983; FRI: r= 0.7521; VCI: r= 0.7703; VSI: r= 0.7439; PSI:
r= 0.6268. p < 0.001 for FSIQ and all its subdomains. Figure 4a–f),
suggesting the identified biomarkers were capable of predicting
each aspect of intellectual capacity. Furthermore, a controlled
permutation test was performed with 1000 trials by randomly and
repeatedly selecting 500 connections from the 4450 IQ-
uncorrelated connections. The controlled permutation test indi-
cated that IQ-correlated connections possessed significantly
higher correlations with FSIQ and its subdomains than IQ-
uncorrelated connections (permutation test’s p < 0.001 for FSIQ

and all of its subdomains, insets in Fig. 4), providing convincing
evidence that the fMRI connectome-based information of IQ is
indeed embedded and concentrated in the IQ-correlated connec-
tions identified by the prediction model. Additionally, to
investigate whether IQ subdomains have common or unique
neurobiological basis, we compared the similarity of brain patterns
for each of IQ subdomains. The similarity between each pair of IQ
subdomains was quantified as the correlation between feature
weights derived from the multiple linear regression models (Fig.
4g). Interestingly, all pairs of subdomains showed some extent of
similarity and difference (inner products between 0.3 and 0.7),
suggesting these subdomains were indeed correlated yet
supplementary aspects of intellectual capacity.
Next, we investigated whether this correlation between

connectome and FSIQ/IQ subdomains was consistent at the level
of ROI importance. The IQ-correlated ROI importance was
calculated as the sum of weights of all IQ-correlated connections
involving an ROI (Fig. 4h, l) and showed a significant correlation
with FSIQ and IQ subdomains (FSIQ: r= 0.5492; WMI: r= 0.4455;
FRI: r= 0.4803; VCI: r= 0.4936; VSI: r= 0.4692; PSI: r= 0.3464.
p < 0.001 for all cognitive measures. Supplementary Fig. 9a–f). On
the contrary, ROI importance calculated with the full connectome
showed significantly lower correlation with IQ measures

Fig. 3 Transdiagnostic and diagnosis-specific connectome patterns in intellectual capacity prediction. The top bar plot displays the
decrease of predictability for each diagnosis and brain network. The decrease of predictability is defined as the difference in prediction
performance between the “standard model” and leave-brain-network-out model, where the feature weights involving the brain network of
interest are set to zero. Here, rain networks include visual network, somatomotor network (Motor), dorsal-attention network (DAN), ventral-
attention network (VAN), limbic network, frontoparietal control network (FPCN) and default-mode network (DMN). The diagnosis groups
include healthy control (HC), attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), major depressive disorder
(MDD), anxiety disorders and the whole transdiagnostic population. *** PFDR < 0.001, ** PFDR < 0.01, * PFDR < 0.05. The brain maps indicate the
corresponding brain region of each neural network. The bottom plot shows the predictability of leave-brain-network-out models and the
“standard model” for each diagnosis group. Each of the brain networks is iteratively excluded from the prediction model by setting all feature
weights involving the brain network of interest to zero. Boxed values indicate significant decrease after the removal of the corresponding
brain network. For predictability, PFDR < 0.001 for all diagnosis groups.
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compared with IQ-correlated ROI importance (FSIQ: r= 0.3274,
Fisher’s z= 8.13; WMI: r= 0.2814, Fisher’s z= 5.56; FRI: r= 0.2919,
Fisher’s z= 6.53; VCI: r= 0.3182, Fisher’s z=6.19; VSI: r=0.2954,
Fisher’s z= 6.00; PSI: r= 0.2601, Fisher’s z=2.79. pcorrelation and
pFisher < 0.001 for FSIQ and all its subdomains, except for pFisher <
0.01 for PSI. Supplementary Fig. 9g–l), indicating that it was a

subset of functional connections, specifically the IQ-correlated
connections identified by the prediction model, instead of a global
tuning of ROIs, that predicted the intelligence of subjects.
Meanwhile, the ROIs contributing to the correlation with FSIQ
distributed across the whole-brain connectome. Together, these
results suggested that IQ-predictive signatures were distributive at
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the ROI level but sparse at the connectivity level, echoing with the
small-worldness theory in network neuroscience [64].

Connectome signatures generalize to independent cohorts
Finally, we tested the generalizability of the developed prediction
model to independent cohorts with different demographic, IQ,
and diagnostic distributions, including ADHD-200 [30], ABIDE I [31]
and ABIDE II [32]. The generalizability was verified by applying the
FSIQ prediction model trained on HBN to the other three datasets.
Encouragingly, the model derived on HBN showed significant
predictability to IQ on all these three independent cohorts (ADHD-
200: r=0.1983; ABIDE I: r=0.1945; ABIDE II: r=0.2344. p < 0.001 for
all cohorts. Figure 5a–c). Additionally, random permutation tests of
1000 times were performed by applying permuted models trained
on HBN to each cohort, further confirming that the predictability
of our model was significant (ppermutation<0.001 for all cohorts,
insets in Fig. 5a–c) and generalizable to independent cohorts. To
address potential concerns of site effect, we further compared the
model performance yielded by unharmonized data and data
harmonized with the ComBat technique [65, 66]. As a result,
harmonized and unharmonized data showed very similar FSIQ
predictability (Supplementary Table 3), demonstrating the HBN-
trained model’s robust generalizability to independent cohorts.

DISCUSSION
In this study, we developed a rsfMRI connectome-based prediction
model, with which we successfully revealed connectome signa-
tures predictive for individual intellectual test scores in a large-
scale transdiagnostic population. These identified biomarkers
were capable of predicting intellectual capacities with rsfMRI data
collected from a study site that was independent from the
training set, which utilized a different fMRI acquisition configura-
tion and with a possibly different FSIQ distribution. Moreover,
these biomarkers were generalizable to independent cohorts from
other studies with different scanning protocols, demographic

distributions and diagnosis groups. This generalizability demon-
strates the potential of our quantified connectome signatures to
be applied in real-world clinical use for measuring individual
cognitive function and subcategorization of psychiatric disorders
with respect to cognitive dimensions. We also observed that
training the prediction model with additional runs of rsfMRI scans
significantly improved the prediction performance on individual
subjects. This suggests that researchers or clinicians should collect
multiple runs of fMRI scans sessions for each subject, if possible, to
optimize the performance of quantitative analysis on cognition or
other phenotypical behavior measures. More importantly, though
recent studies have also reported the correlation between rsfMRI
connectivity and cognitive behavior [67], or individual IQ
prediction based on neuroimaging data [68–70], our present
work, for the first time, developed a connectome-based FSIQ
prediction model on a transdiagnostic population with high
performance generalizable to independent cohorts, thus distin-
guished from previous studies and providing reliable results for
the investigation into brain connectome-cognition relationship.
In addition, brain networks showed different contributions to

intellectual capacities for each diagnosis group. We matched Yeo’s 7
networks [57] with Brodmann areas (BAs) to facilitate the direct
comparison of our results with neuroscience studies. Remarkably,
the diagnosis-specific network contribution we identified from this
study accorded with results from previous non-transdiagnostic
psychiatric studies. FPCN (BA9,46), Motor (BA6,7), DMN (BA8,24), and
VAN (BA44) are brain networks with the most influential effects on
IQ in healthy subjects [71]. Weaker connectivity in the prefrontal
cortex (mainly consists of DAN, FPCN, and DMN) correlates to low IQ
in children and adolescents with ADHD [72], and neurometabolic
changes in the dorsolateral prefrontal cortex (mainly consists of
DMN) correlate with IQ difference in patients of anxiety disorders
[73]. Together, these results imply disorder-specific mechanisms of
IQ measured abilities. Intriguingly, we noticed that the IQ-influential
networks for each diagnostic category were highly overlapped with
brain networks that distinguish HC from patients [74–77]. This

Fig. 4 Correlations between IQ-correlated functional connections (n=500) and cognitive measures, including FSIQ and its subdomains.
The correlations are calculated as the true-fitted correlation where the fitted values are derived by multiple linear regression models. a Full-
Scale Intelligence Quotient. b Working Memory Index. c Fluid Reasoning Index. d Verbal Comprehension Index. e Visual Spatial Index.
f Processing Speed Index. Each inset displays a distribution of correlation coefficients between cognitive measures and 500 randomly selected
IQ-uncorrelated connections with 1000 trials. Dashed line indicates correlations between cognitive measure and IQ-correlated connections.
Error bar shows standard deviation. g Brain pattern similarity across IQ subdomains. The similarity between each pair of subdomains is
quantified as the correlation between feature weights derived by multiple linear regression models. Feature weights are normalized to ensure
unit length. h–l ROI importance for each IQ subdomain. ROI importance is derived by summing the absolute feature weights of all functional
brain connections involving an ROI. The top 10 important ROIs for each subdomain are shown for clarity.
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observation inspires a new disorder subcategorization criterion: each
psychiatric disorder can be classified into typical and atypical
subtypes depending on whether a subject has neurobiological
changes in the brain networks that show correlations with the
disorder’s diagnosis, realized by assessing FSIQ since disorder-
specific IQ changes somewhat reflect neurobiological changes in
disorder-indicating networks. Typical and atypical patients possibly
compose the heterogeneity of psychiatric disorders that we
observed in clinical practice. Thus, distinguishing disorder subtypes
in this way has the potential to guide intervention development for
achieving personalized medicine and improved treatment out-
comes. Furthermore, the effects of brain networks on IQ may also
explain the homogeneity in different psychiatric disorders that
patients diagnosed with different disorders may experience similar
symptoms and respond to the same medications. Taken together,
our results indicate the possibility and benefits of stratifying patients
based on cognitive measures and treating them depending on
neurobiological alterations instead of diagnosis labels.
Notably, though age was not correlated with IQ, it affected

model predictability. We found that age groups with higher
predictability also had lower normative-connectome-based indi-
vidual differentiability. As we hypothesized that lower predict-
ability may be due to higher variance in rsfMRI-based functional
connectome, future studies can further quantitatively model the
individual noise using individual differentiability. By incorporating
individual differentiability as a prior constraint into connectome-
based predictive modeling, we may obtain further improved
prediction performance of cognitive behavior. Such a modified
strategy may be applied to connectome-based predictive model-
ing of other variables, such as diagnosis classifiers and predictors
of disorder-specific cognitive measures.
While numerous recent studies have demonstrated fMRI-based

predictive models on the diagnosis of psychiatric disorders
[78–83] and cognitive measures [24, 70, 84], the issue of large
residuals of predicted values has not been completely solved,
including in our present work. Future studies are required for
better quantitative modeling to translate neuroimaging-based
biomarker findings into clinical tools for diagnosis and treatment
decisions. We consider the mean-connectome-based noise
modeling a starting point to initiate these efforts. Future work is
also required for confirming the diagnosis-specific FSIQ biomarker
findings using a transdiagnostic population with more balanced
subject numbers of each diagnosis group. An understanding of
diagnosis-specific cognitive biomarkers can provide insight into
how psychiatric disorders may develop from different brain
network origins. Additionally, future studies can focus on the
brain pattern of intellectual capacity subdomains, thus obtaining
essential knowledge about detailed neurobiological basis of
specific cognitive functions and potentially identify principle
components in intelligence. Lastly but importantly, more
advanced techniques to address site effect, such as transfer
learning, may be employed to further improve the model
performance on independent cohorts.
In summary, we developed a rsfMRI connectome-based FSIQ

prediction model on a transdiagnostic population with large
sample size and identified a signature pattern of rsfMRI functional
connectome that was predictive of FSIQ. These results demon-
strated the robust relationship between brain functional con-
nectome and intellectual capacity across psychiatric disorders,
which lit the way toward a novel dimensional disorder categor-
ization based on neurobiological alterations and personalized
treatment for psychiatric disorders.

CODE AVAILABILITY
Codes of the brain connectome analyses is available from the corresponding author
upon request.
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