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Abstract: Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly conta-
gious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started
to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent
necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger
an immune response, providing genetic information that allows the production of spike glycoproteins.
MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several
miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of
ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently,
these molecules have been considered as highly promising biomarkers. In numerous human malig-
nancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target
SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair
the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of
seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p,
miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential
to be used as prognostic biomarkers to stratify cancer patients.

Keywords: COVID-19; vaccine; miRNAs; immune response; cancer

1. Introduction

Coronavirus disease 2019 (COVID-19) is the clinical manifestation of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. This infection started to spread
across the world in 2019, increasing hospitalization rates in several countries, and rapidly
turned into a global pandemic [2]. Considering the high infection rate, which can affect an
elevated percentage of individuals in each community in a short period, the mortality rate
and the death risk estimation are related to the breakdown of the healthcare systems [3,4].
Therefore, on March 2020, the World Health Organization (WHO) declared a pandemic,
leading to the emergence of public health strategies to contain the outbreak, including social
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confinement and movement restriction [2,5]. Reported illnesses have ranged from very
mild (including some with no reported symptoms) to severe, including illness resulting
in death [4]. Despite the worldwide spread, the clinical and epidemiological patterns
of COVID-19 remain unclear [6]. The first epidemiological and clinical investigations
showed that most COVID-19 cases were attributed to elder or middle- aged men, with
a mean incubation period of 5.2 days [7,8]. Aside from age and gender, there are also
pre-existing conditions that are considered to be risk factors for SARS-CoV-2 infection,
namely: hypertension, obesity, diabetes mellitus, asthma, chronic obstructive pulmonary
disease, chronic kidney disease, smoking, and diseases that induce an immunosuppression
state such as cancer [9].

Cancer has a major impact on society, with more than 18 million new cases per
year globally [10]. Cancer patients are more susceptible to infection compared to healthy
people and non-cancer patients [11,12]. This predisposition has been historically related to
the systemic malignancy-related immunosuppressive state and to active disease-oriented
treatments, such as chemotherapy, immunotherapy, radiotherapy, and surgery [13,14].

SARS-CoV-2 is a member of the Coronaviridae family and consists in an enveloped,
single-stranded RNA virus with positive polarity and a genome of approximately
30 kilobases [15]. Like an mRNA, the virus genome consists of a 5′ cap structure together
with a 3′ poly (A) tail that translates its proteins. Coronaviridae viruses contain similar ge-
nomic RNA (gRNA) compositions, including two open reading frames (ORF1a and ORF1b),
which encode for the RNA-dependent RNA polymerase (RdRp) and nonstructural proteins
(nsps) [16]. ORF1a contributes to the production of nsp1–nsp11, while the rest of the nsps
(nsp12–nsp16) originate from ORF1b [17]. In addition to this, one-third of the genome at
the 3′ end encodes for the viral structural proteins’ surface (S), envelope (E), membrane
(M), and nucleocapsid (N) [17,18]. Moreover, the genomes of Coronaviridae viruses also
contain multiple structurally conserved elements within the 5′ and 3′ untranslated regions
(UTRs) that have been suggested to play roles in viral replication. These elements include
three stem-loops (SL1, SL2 and SL3) within the 5′ UTR, as well as a bulged stem-loop
(BSL), pseudoknot (PK) stem-loop, and hypervariable region (HVR) within the 3′ UTR. The
spike glycoprotein of SARS-CoV-2 comprises the receptor binding domain (RBD) in the
S1 subunit, which binds with the angiotensin-converting enzyme 2 (ACE2), allowing the
penetration of the virus into the endothelial and epithelial cells and consequently activating
infection [19,20]. The S2 subunit improves the fusion of viral and host cell membranes
that is activated by the transmembrane protease serine 2 (TMPRSS2) [20]. Then, the virus
affinity to infect certain cells may be related to the multiple organ distribution of ACE2, the
functional receptor for SARS-CoV-2 [21]. Consequently, spike glycoprotein and its RBD are
crucial targets for vaccination and therapeutic improvement [22,23].

The global pandemic has caused an urgent necessity for vaccine development pro-
moting the emergence of mRNA vaccines against SARS-CoV-2 [23,24]. These mRNA
vaccines provide genetic information in the form of mRNA allowing the production of
viral proteins by the host—more specifically the spike glycoproteins—to trigger an immune
response [23,25]. However, it is important to note that, in the same way that some subsets
of the population are more prone to SARS-CoV-2 infection due to immunosuppression
(either caused by cancer or other immune disorders), the same applies for their capacity of
vaccination response. In fact, since cancer patients are not included in vaccination clinical
trials, there is still a considerable uncertainty regarding the efficacy of the SARS-CoV-2 vac-
cines that are available, as well as the extent of the humoral and cellular immune responses
and the impact of related side effects [26]. In fact, cancer patients have a three-fold higher
infection risk than the general population [27]. Therefore, it is important to identify and
study new potential biomarkers and therapeutic targets for this disease. Moreover, patients
with lung or hematological cancers and those who receive active chemotherapy treatment
are at a greater risk of SARS-CoV-2 infection, due to an increased immunosuppression
state [28]. In addition to an increased susceptibility to SARS-CoV-2 infection, the immuno-
suppressive state of cancer patients also makes them more prone to vaccination failure [28].
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However, due to the novelty of the mRNA vaccination field, the mechanisms behind vacci-
nation responsiveness and immunity development are not fully understood. Therefore, it
is important to identify and study new potential biomarkers that can predict and monitor
these patients’ susceptibility to SARS-CoV-2 infection and responsiveness to vaccination.

Currently, there is a massive investment in circulating microRNAs (miRNAs) research,
due to their potential use as biomarkers for innumerous conditions. The intensive research
of the past few years has demonstrated that miRNAs are secreted in several of the body
fluids (e.g., blood, plasma, serum, saliva, urine, etc.) that are routinely examined in patients;
are stable and resistant to degradation; and are easy to quantify through molecular biology
techniques such as real time PCR [29–31]. This set of characteristics make miRNAs excellent
biomarker candidates, with the advantage that they can be obtained through non-invasive
or minimally invasive methods. MicroRNAs (miRNAs) are small non-coding RNAs of
18–25 nucleotides that play a key role in the regulation of gene expression through the
post-transcriptional suppression of mRNAs [32,33]. MiRNAs have been shown to regulate
every aspect of cellular activity, including differentiation and development, metabolism,
proliferation and apoptosis [34]. In fact, they can regulate approximately 30–70% of human
gene expression [35]. These molecules can bind directly to mRNA targets by complemen-
tarity, causing their degradation or suppressing the translation process [32]. Thousands of
human protein coding genes are regulated by miRNAs, reinforcing the idea that miRNAs
are master regulators of diverse biological processes with an impact in the body physiologi-
cal responses [34]. Over the past decade, it has been established that miRNAs expression
is dysregulated in several human malignancies, consequently affecting the hallmarks of
cancer and having either an oncogenic or tumour suppressor role [36].

In addition to this, miRNAs also play a central role in immunity development and host
antiviral defense [1,33]. In fact, miRNAs have been considered as highly promising biomark-
ers that can, among several functions, regulate immunity-related gene targets through
complex networks of virus–host cell interactions [1]. Several miRNAs are described as key
factors in SARS-CoV-2 human infection, regulating the inflammation, interfering with the
innate immune response and assuming antiviral roles [2,37]. Further, some miRNAs were
reported as crucial for virus entrance in the host cells that were involved in ACE2 levels
regulation [38,39]. Furthermore, there are diverse studies demonstrating that miRNAs
inhibit SARS-CoV-2 replication and inhibit spike expression [40,41]. Taking this into con-
sideration, miRNAs can hold a positive or negative role in virus-related processes in three
ways: (1) direct binding to the viral genome; (2) binding to viral transcripts; (3) binding to
host transcripts [42]. Thus, human miRNAs can have a dual role: they can promote the
stability and replication of viral RNA, or they can reinforce the host antiviral response. Con-
sequently, miRNAs are considered as promising tools to explore the regulatory networks
behind the immune response to COVID-19 infection and to vaccination [43,44].

Therefore, the abnormal miRNAs expression known in cancer patients may also
contribute to the severity of SARS-CoV-2 infection and diminish the immune response to
the vaccines. Hence, the scope of this review is to gather and systematize the available
information regarding the known miRNAs that are involved in SARS-CoV-2 regulation
and their expression patterns in the cancer context.

2. Evidence Acquisition

A literature search in PubMed was conducted using the search terms “microRNA”
and “SARS-CoV-2”. The literature analysis included 350 articles that were published
between 2020 and 2022. The articles were manually curated and selected by the relevance
of their findings, namely, the validated interaction between a miRNA and a SARS-CoV-2
related mRNA. Of the 350 articles that were found, 319 were excluded. The exclusion
criteria for the collected articles were as follows: (1) non-human miRNAs; (2) no association
between miRNAs and SARS-CoV-2-related mRNAs; (3) articles based only on bioinformatic
predictions or in silico analysis of interactions between miRNAs and SARS-CoV-2 related
mRNAs; (4) editorials, comments and protocols; (5) individual papers that were already
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included in meta-analysis or reviews. For each study, information was extracted concerning
the following characteristics: the name of the miRNA, the mRNA target, and validation of
the miRNA–mRNA interaction through robust methods.

3. Evidence Synthesis

A total of 31 miRNAs were found. The gathered information is summarized in
Figure 1. The relevant miRNAs were divided into two categories: (1) miRNAs that target
SARS-CoV-2 (2) miRNAs that target SARS-CoV-2 related proteins.
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Figure 1. Representation of the 31 validated SARS-CoV-2 miRNAs and their respective targets. This
figure was created at BioRender.com (accessed on 12 July 2022).

3.1. miRNAs That Target SARS-CoV-2

We found a total of 22 human miRNAs that were involved in the targeting of several
components of SARS-CoV-2, such as: 3′–untranslated regions (UTR); open reading frames
(ORF); stem-loop II motif (s2m); and RNA template components of non-structural protein
10 (nsp10), spike protein, and RNA-dependent RNA polymerase (RdRp). Nine miRNAs
were involved in the targeting conserved 3′–UTR of the viral genome. Park and colleagues
observed that miR-92a-3p, miR-26a-5p, miR-23a-3p, miR-103a-3p and miR-181a-5p from
placenta stem-cell-derived extracellular vesicles (EVs) were able to bind to 3′-UTR regions
of SARS-CoV-2 and suppress RNA replication, consequently leading to the suppression of
the virus-mediated pro-inflammatory response in human bronchial cells and lung fibrob-
lasts [45]. In addition to this, Barreda-Manso and co-workers described that miR-138-5p,
miR-3941, miR-128-1-5p and miR-365b-5p were also able to bind to 3′-UTR regions of
SARS-CoV-2 [46]. While some of the SARS-CoV-2 3′-UTR is variable in sequence, the
virus contains a highly conserved 41-nucleotide (nt) stem-loop II motif (s2m) within the
terminal portion of the HVR (hypervariable region) [47]. Imperatore and colleagues high-
lighted the potential role of the s2m element in mediating the viral genome dimerization,
suggesting its potential application as a drug target. Moreover, the authors observed
that host miR-1307-3p was able to bind and inhibit s2m [47]. Akula and co-workers ob-
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served that the decline in plasma levels of miR-150-5p in COVID-19 patients could enhance
SARS-CoV-2 infection [48]. In fact, these authors demonstrated that miR-150-5p was able to
lower SARS-CoV-2 infection in vitro by targeting the coding strand of nsp10 and suggested
that downregulation of this miRNA could be a mechanism to promote SARS-CoV-2 infec-
tion [48]. Six miRNAs were involved in the targeting of the spike (S) protein. Wang and
colleagues demonstrated that miR-7-5p, miR-24-3p, miR-145-5 and miR-223-3p were able to
directly target the S protein and inhibit SARS-CoV-2 replication [40]. Moreover, the authors
also observed that these miRNAs were markedly decreased in elderly and diabetic patients
when compared to young healthy volunteers [40]. Siniscalchi and colleagues observed that
endogenously expressed lung miRNAs were able to bind and inhibit viral targets. The
authors observed that miR-219a2-3p, miR-30c-5p, miR-378d and miR-29a-3p were able to
bind to ORF1a, and miR-15b-5p was able to bind to spike ORF and repress plasmid-driven
spike expression [49]. Moreover, these authors were also able to demonstrate that synthetic
miRNA mimics of the miRNAs that were studied could be used to inhibit SARS-CoV-2,
which highlights the potential of miRNAs as a therapeutic approach to fight the viral
infection. In addition to spike ORF, miR-15b-5p was also described as being able to target
the RNA template component of RdRp, further contributing to the suppression of viral
infection and proliferation [50].

3.2. miRNAs That Target SARS-CoV-2 Related Proteins

We found a total of nine miRNAs involved in the targeting of key proteins that
allow the entry of SARS-CoV-2 into the host cells—more specifically, TMPRSS2, ACE2
and ADAM7.

ACE2 acts as a key receptor for the spike of SARS-CoV-2, and it is crucial for the virus
entry into the cells. MR-200c-3p and miR-421-5p can target ACE2, and their expression
was decreased in the blood of SARS-CoV-2 patients at hospital admission, also suggesting
a relation with the degree of infection [39]. On the other hand, Papannarao observed
an increased expression of miR-200c in the blood of obese patients and suggested that
increased angiotensin II, followed by inhibition of ACE2 through miR-200c targeting,
may increase the severity of the SARS-CoV-2 infection in obese people [51]. Moreover,
despite SARS-CoV-2 infection primarily manifesting as an acute respiratory illness that is
accompanied by interstitial and alveolar pneumonia, it also affects multiple organs, such as
the heart, digestive tract, blood, central nervous system, and the kidney. This is because
ACE2 is widely expressed in the lungs, intestine, liver, testis, central nervous system, heart
tissue and the kidneys [52]. In fact, in a review article, Widiasta and colleagues highlighted
the importance of kidney-specific miR-125b in the modulation of ACE2 expression and
COVID-19-associated nephropathy [53]. In addition to this, Xu and colleagues reported
that miR-8-3p inhibits A disintegrin and metalloproteinase 17 (ADAM17)-dependent ACE2
ectodomain shedding in 293T cell treated with the S protein of SARS-CoV-2, suggesting its
potential role as a therapeutic approach in the prevention and treatment of SARS-CoV-2
infection [54]. Another important protein for SARS-CoV-2 entry into the cells is TMPRSS2,
which is involved in the fusion of viral and host cell membranes. Matarese and colleagues
mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in lung
and umbilical vein endothelial cell types [55]. In addition to this, Kaur and co-workers
silenced TMPRSS2 in Caco-2 cells with the transfection of miR-32, miR-98 and miR-214,
and were able to achieve maximum gene suppression with miR-32 at a concentration of
40 nM [56]. It was also described that miR-181a, which also targets TMPRSS2, was only
downregulated in severe cases of COVID19 and was associated with delayed viral clearance
after infection [57].

4. SARS-CoV-2-Related miRNAs Deregulation Impact on Cancer Patients’ Infection
Susceptibility and Vaccination Response

MiRNA deregulation is well established in cancer, influencing its biogenesis and
the evolution of the disease. We then endeavored to see if there were data available
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regarding these 31 SARS-CoV-2-related miRNAs in the cancer context—more specifically,
in 15 common cancer types. The information is summarized in Figure 2. Colorectal, lung,
breast and liver cancers were those that had more SARS-CoV-2-related miRNAs that were
described as deregulated. Moreover, we also observed that several of those miRNAs were
common to several types of cancer (Figure 2). Interestingly, of the 15 cancer types that
we selected, miR-214 was reported as deregulated in all of them [58–72]. As previously
stated, this miRNA targets TMPRSS2, which is crucial for SARS-CoV-2 entry into the
cells. Therefore, a downregulation of this miRNA can lead to an increased expression of
TMPRSS2 and an increased susceptibility to SARS-CoV-2 infection. In addition to this,
miR-214 is known for is tumorigenic and suppressive roles in cancer, and it is also being
considered as a potential biomarker and therapeutic agent [73], apart from in brain and
pancreatic cancer, and melanoma were it as an oncogenic role (Figure 2) [58–72]. Moreover,
miR-98, another miRNA that targets TMPRSS2, was reported as deregulated in 14 of the
15 cancer types that are displayed in Figure 2 (it was not described in kidney cancer). It
was also downregulated in all of them except for prostate cancer, where it was described as
upregulated. This information suggests that the downregulation of these miRNAs may be
related to an increased susceptibility of cancers patients to develop SARS-CoV-2 infection,
but this hypothesis needs to be validated.
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Another important issue is the five miRNAs (miR-7-5p, miR-24-3p, miR-145-5p,
miR-223-3p and miR-15b-5p) that target S protein sequences and are also deregulated
in the cancer context [74–81]. This is because some of the SARS-CoV-2 vaccines are
S protein mRNA fragments that are delivered to the cells through a lipid vesicle delivery
approach [82]. Therefore, if the host has an overexpression of miRNAs that target S protein
mRNA sequences, one can hypothesize that this host is more prone to experience reduced
vaccine efficacy. In addition to other biological processes and pathways, all these miRNAs
have already been reported as implicated in cancer therapy resistance or comorbidities.
MiR-24-3p [74,75] and miR-7-5p [76] are associated with chemotherapy resistance; miR-145-
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5p [77,78] has been associated with cancer stemness and therapy resistance; miR-15b-5p [79]
has been associated with doxorubicin-induced cardiotoxicity; and miR-223-3p [80,81] with
radioresistance. This information suggests that the overexpression of these miRNAs in
cancer patients may be related to an increased susceptibility of SARS-CoV-2 mRNA-based
vaccination failure, but once again, this is a hypothesis that needs to be validated.

Role of miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p in
the Cytokine Storm Regulation

The cytokine storm is defined as an excessive immune response to external stimuli,
such as an infection or even vaccination. The pathogenesis of the cytokine storm is complex,
and the disease progresses rapidly, leading to the excessive production of cytokines by the
immune system that can ultimately result in the death of the patient [83]. Recent evidence
shows that, during the COVID-19 pandemic, the severe deterioration of some patients was
closely related to the cytokine storm in their bodies [84]. Therefore, it is also important to
study biomarkers that can predict and monitor this complex immunological phenomenon.

Based on all of the information described above, we identified miR-214, miR-98-5p,
miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p with particular interest.
These miRNAs are key players in the regulation of SARS-CoV-2 human infection and are
also deregulated in several types of cancer; therefore, we wished to check their role in the
inflammatory process. Concerning miR-214, Sun et al. demonstrated that this miRNA
could target PD-L1 to regulate the immune response of diffuse large B-cell lymphoma by
modulating IL-10, IFN-γ and TNF-α expression [85]. Additionally, in ulcerative colitis, it
seems that the downregulation of miR-214 may contribute to the pathogenesis of this dis-
ease. It occurs since miR-214-3p directly targets STAT6, which is upregulated in ulcerative
colitis patients, and enhances the pathogenesis of this illness [86]. Regarding miR-98-5p,
Wang et al. reported that this miRNA negatively modulates IL-6 expression in rheumatoid
fibroblast-like synoviocytes, serving as a potential regulator of the inflammatory process.
Therefore, they proposed that the manipulation of miR-98-5 could be a potential clinical
intervention, serving as an inhibitor of IL-6 expression in rheumatoid arthritis [87]. On
the other hand, this miRNA also targets IL-10, which is an anti-inflammatory cytokine
and plays an important role in maintaining intestinal homeostasis and the mucosal barrier.
Therefore, miR-98-5p may play a key role in the aggravation of ulcerative colitis, since it di-
minishes IL-10 expression [88]. MiR-7-5p was described as being able to inhibit melanoma
growth and metastasis through the inactivation of NF-κB signaling, which leads to the
decreased of NF-κB target genes expression, such as IL-1β, IL-6 and IL-8 [89]. In turn,
Lin et al. demonstrated that the overexpression of miR-24-3p promoted cell proliferation,
inhibited apoptosis, and increased cell migration and invasion in prostate cancer. This
miRNA targets and suppresses the suppressor of cytokine signaling 6 (SOCS6), which
acts as a tumor suppressor, due to the inhibition of cytokine signaling pathways [90].
Concerning miR-145-5p, Zhuang et al. showed that it was downregulated in colon cancer.
Moreover, they suggested that this miRNA acts as a tumor suppressor through targeting
chemokine (C-X-C motif) ligand 1 (CXCL1), which is overexpressed in colorectal cancer
and facilitates metastasis and the progression of tumorigenesis [91]. MiR-223-3p can also
interact with cytokines and modulate the inflammatory response. In a glioblastoma in vitro
study, Ding et al. verified that treatment with miR-223-3p mimic inhibits cell prolifera-
tion and migration via decreasing numerous inflammation-associated cytokines, such as
interleukin-1β, monocyte chemoattractant protein-1, IL-8 and IL-18 [91]. Furthermore, in
adipose stem cells, it was confirmed that miR-223-3p directly affects the expression of the
inflammatory cytokines IL-6, IL-1β and TNF-α [92]. MiR-15b-5p also interferes with the
levels of some cytokines. In a high glucose-induced podocyte injury, it was shown that this
miRNA was able to ameliorate the patient’s condition, attenuating the expression of IL-1β,
TNF-α, and IL-6 [93]. Based on these examples, we can conclude that all of these miRNAs
have the capacity to modulate the inflammation process and interfere with the immune
response through the regulation of cytokine levels.
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5. MiRNAs Applications in Cancer Patients’ Management Regarding SARS-CoV-2

The use of circulating miRNAs as clinical biomarkers has been explored under a
variety of conditions, including cancer and viral infections [94,95]. MiRNAs are considered
to be robust, sensitive, and cost-effective biomarkers that can add additional information to
the clinical variables that are already used in the clinical practice [58,96]. In fact, several
miRNA-based diagnostic and therapeutic products are already in clinical trial phase and
expected to enter the market in the next few years [97]. Therefore, the study and use of
miRNA profiles to stratify cancer patients according to their risk of SARS-CoV-2 infection
and vaccination effectiveness seems a promising personalized approach to improve the
current management of these patients (Figure 3). Moreover, miRNAs can be obtained
through minimally invasive methods, such as a blood sample, and their isolation and
quantification protocols are simple and less time-consuming when compared with other
type of molecules [29,30]. In fact, the implementation of a stratification algorithm would
allow the selection of patients that could benefit from the emerging SARS-CoV-2 therapeutic
approaches, such as the Long-Acting Antibodies (LAAB) AZD7442, which are currently in
phase III clinical trials (ClinicalTrials.Gov NCT04507256) and show promising results in
reducing the risk of severe COVID-19 or death. LAABs mimic natural antibodies and can
block the binding of the SARS-CoV-2 virus to host cells [98]. Therefore, their potential is
being tested to treat and prevent disease progression in patients that are already infected
with the virus, as well as to be given as a preventative intervention prior to exposure to
the virus.
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6. Discussion

The COVID-19 pandemic tested the resilience of health-care systems worldwide in an
unprecedented manner and forced clinicians to rethink and adapt the diagnostic and thera-
peutic approaches based on the local prevalence of the virus in their communities [28]. This
includes the cancer patient population, which is particularly susceptible to SARS-CoV-2
infection and complications. Therefore, there is an urgent need for a stratification system
that can allow the selection of cancer patients with an increased risk of infection and/or
lower vaccination response, in order to help oncologists to prioritize patients and optimize
health-care system resources to provide the best patient care, given the circumstances.

Considering that miRNAs are among the earliest molecular regulators, circulating
miRNAs could be potential biomarkers in the early identification of those at the highest risk
of developing COVID-19 and related complications. In fact, there are a few recent studies de-
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scribing plasma miRNA profiles that are capable of predicting the ICU stay of patients and
the severity of SARS-CoV-2 infection [99,100]. Moreover, other authors have proposed that
miRNAs could be used as a therapeutic approach against COVID-19 [101,102]. However,
there are no studies covering the applicability of using miRNA profiles to stratify cancer
patients according to their risk of developing SARS-CoV-2 infection and/or decreased
vaccination response. In this review, we summarized the available information regarding
the miRNAs that interact with SARS-CoV-2 and SARS-CoV-2-related genes that are already
validated and checked if those miRNAs were reported as deregulated in cancer. Based
on this information, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs
(miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p) that
are deregulated in a high number of cancers and have the potential to be used as prog-
nostic biomarkers to stratify cancer patients. Moreover, we also gathered information
regarding the impact of these miRNAs in immune-related molecules, such as cytokines
and chemokines, that can also have an impact in the development of the cytokine storm.
However, it is important to note that future studies require the validation of this miRNA
profile in the clinical setting to validate our hypothesis before integrating it into the decision-
making algorithms that are used by clinicians. Since miRNAs are stable and detectable
using small quantities of human body fluids, it would be possible to conduct miRNA quan-
tification in a high number of cancer patients in a short period of time using the samples that
are already stored at the biobanks of the hospitals and cancer institutes. Overall, miRNA
research has demonstrated a lot of potential in the cancer field in the last few years, ranging
from biomarker potential to personalized therapeutic applications. Thus, it makes sense to
expand the range of application of prognostic biomarkers to further stratify cancer patients
according to their prognostic, regarding SARS-CoV-2 infection and vaccination benefit.
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