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Humans routinely modify their walking speed to adapt to functional goals and
physical demands. However, damage to the central nervous system (CNS) often
results in abnormal modulation of walking speed and increased risk of falls. There is
considerable interest in treatment modalities that can provide safe and salient training
opportunities, feedback about walking performance, and that may augment less reliable
sensory feedback within the CNS after injury or disease. Fully immersive virtual reality
technologies show benefits in boosting training-related gains in walking performance;
however, they lack views of the real world that may limit functional carryover. Augmented
reality and mixed reality head-mount displays (MR-HMD) provide partially immersive
environments to extend the virtual reality benefits of interacting with virtual objects
but within an unobstructed view of the real world. Despite this potential advantage,
the feasibility of using MR-HMD visual feedback to promote goal-directed changes in
overground walking speed remains unclear. Thus, we developed and evaluated a novel
mixed reality application using the Microsoft HoloLens MR-HMD that provided real-time
walking speed targets and augmented visual feedback during overground walking. We
tested the application in a group of adults not living with disability and examined if
they could use the targets and visual feedback to walk at 85%, 100%, and 115%
of each individual's self-selected speed. We examined whether individuals were able
to meet each target gait speed and explored differences in accuracy across repeated
trials and at the different speeds. Additionally, given the importance of task-specificity
to therapeutic interventions, we examined if walking speed adjustment strategies were
consistent with those observed during usual overground walking, and if walking with
the MR-HMD resulted in increased variability in gait parameters. Overall, participants
matched their overground walking speed to the target speed of the MR-HMD visual
feedback conditions (all p-values > 0.05). The percent inaccuracy was approximately 5%
across all speed matching conditions and remained consistent across walking trials after
the first overall walking trial. Walking with the MR-HMD did not result in more variability
in walking speed, however, we observed more variability in stride length and time when
walking with feedback from the MR-HMD compared to walking without feedback. The
findings offer support for mixed reality-based visual feedback as a method to provoke
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goal-specific changes in overground walking behavior. Further studies are necessary to
determine the clinical safety and efficacy of this MR-HMD technology to provide extrinsic
sensory feedback in combination with traditional treatments in rehabilitation.

Keywords: motor learning and control, walking, mixed reality, visual feedback, rehabilitation, kinematics

INTRODUCTION

Walking speed is a predictor of functional independence, health,
and mortality risk (Schmid et al., 2007; Middleton et al., 2015).
Humans modify their walking to negotiate different walking
terrains and obstacles (Glaister et al., 2007; Orendurff et al.,
2008). These adjustments occur through regulatory networks
within the central nervous system (CNS) that transform afferent
information (e.g., proprioception) to motor outputs based on
the interactions between the limb and the physical demands
of the task (i.e., functional walking). Deficits in the sensory
feedback system are known to contribute to increased incidence
of walking-related falls in older adults (Afilalo et al., 2010; Artaud
et al., 2015) and persons with neuromuscular injury or disease
(Perry et al., 1995; Hausdorff et al., 2001; Dodge et al., 2012).
There is considerable interest in treatment modalities that can
provide salient training opportunities, feedback about walking
performance, and may augment less reliable or weak afferent
signaling to help improve walking ability and decrease risk for
fall in these at-risk groups.

Studies confirm that visual feedback provided through virtual
environments enhances walking ability (Schliessmann et al,
2014; Gomez-Jordana et al., 2018). Technologies that provide
visual information and feedback include head-mounted displays
(HMD), monitors, or large screen projectors (e.g., cave automatic
virtual environment, CAVE) to create partially or fully immersive
environments (Bishop and Fuchs, 1992; Milgram et al., 1995).
Some studies support the use of fully immersive virtual reality
(VR) for walking rehabilitation (Borrego et al., 2016; Janeh and
Steinicke, 2021). These virtual environments rely on “walking-
in-place” or “redirected walking” strategies to emulate features
of the real world. While these gaming-related strategies provide
engagement and motivation (Lohse et al., 2013), they do not
fully capture the dynamic challenges of overground walking in
a person’s home or community. For instance, the “walking-
in-place” training programs often involve a treadmill that
introduces biomechanical differences to overground walking
(Dingwell et al.,, 2001; Lee and Hidler, 2008; Hollman et al,
2016; Ochoa et al, 2017), and this discrepancy may dampen
carryover of the treadmill training to overground walking tasks.
Consideration for more ecologically favorable augmented reality
environments is of high value in the rehabilitation community.

Mixed reality (MR) technology is emerging as a promising
approach to accommodate the real-world challenges of
relearning to walk in the home or community after injury
or disease. Mixed reality incorporates computer-rendered
objects within an unobstructed view of the real world and
enables real-time interactions with these virtual elements
(O’Connell, 2016). In 2016, Microsoft introduced the HoloLens
(HoloLens 1st Generation, Microsoft Inc., Redmond, WA), a

head-mounted MR system that includes an inertial measurement
unit, environment sensing cameras, and a holographic display.
A pair of recent studies found the potential utility of the
HoloLens as a gait assessment tool to track spatiotemporal gait
parameters (Geerse et al., 2020; Guinet et al., 2021) reporting
the system reliable at test-retest parameterization of walking
speed (interclass correlation coefficient, ICC = 0.86), cadence
(ICC = 0.88), and step length (ICC = 0.77). Additionally,
Coolen and colleagues developed a training tool to facilitate
virtual obstacle-avoidance training with the HoloLens (Coolen
et al., 2020). They found the virtual obstacle avoidance task
elicited lead and lag step height maneuvers similar to a physical
obstacle-avoidance task during overground walking in adults
living without disability. This prior work indicates that MR
is achievable for assessing overground walking behavior and
creating realistic environmental challenges; however, the
potential of MR to induce modulation of overground walking
behavior (i.e., speed) is not known.

The purpose of this study is to examine the feasibility of
MR-based visual feedback to promote goal-directed changes
in overground walking in preparation for future intervention
studies aimed at identifying effective strategies for improving gait
speed, stability, and ability to adjust walking to environmental
demands. As a first step, we examine the use of a MR-HMD and
a novel visual feedback platform in adults living without a known
walking impairment. Specifically, we examine how accurately
this group of individuals can match a target speed provided by
the MR-HMD, if the accuracy changes with practice using the
device or at different target speeds, if individuals use expected
strategies to adjust gait speed, and if using the MR-HMD results
in any additional variability in gait speed or parameters that
should be considered when designing future trials. We predicted
that participants would adjust their walking speed to match the
visual guidance of a custom MR-HMD platform. We quantified
the performance of participants interacting with the MR-HMD
platform in terms of speed matching accuracy across trials and
between walking speed conditions. We examined if individuals
adjusted gait parameters as expected when adjusting gait speed.
Finally, we compared changes and variability of walking speed
parameters (i.e., stride length and time) during self-selected
walking with and without the MR-based visual feedback.

METHODS

We conducted a block-randomized, cross-over intervention
study to test the hypothesis that a novel MR-based visual
feedback platform is a feasible method to elicit modulation of
overground walking speed in adults not living with disability.
The study took place at Spaulding Rehabilitation Hospital,
Boston, USA.
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Participants

We enrolled 12 adults, not living with disability, to participate
in the single-day study (Table 1). Eligible participants included
persons between the ages of 18 and 75 years with the
ability to follow two-step commands and to walk overground
without assistance. We excluded individuals with uncorrected
moderate to severe visual impairments, movement deficits, or
neuromuscular impairments. Eligible participants meeting the
inclusion/exclusion criteria provided informed consent prior to
study participation. We obtained study approval from the Mass
General Brigham institutional review board.

Equipment

Wearable Mixed-Reality Hardware

We implemented real-time visual feedback using the Microsoft
HoloLens, a commercially available MR-HMD (HoloLens 1st
Generation, Model 1688, Microsoft Inc., Redmond, WA). The
MR-HMD implemented the Windows Mixed Reality platform
(Microsoft Inc., Redmond, WA) to allow viewing of virtual
objects overlaid onto a real-world environment via a transparent
visor having a fixed field of view (Figure 1A). The headband
diameter and fore-aft location of the MR-HMD are both
adjustable to ensure user comfort and visual quality. The
technology included a time-of-flight depth-sensing camera,
four tracking cameras, and an inertial measurement unit
consisting of a multidimensional accelerometer, gyroscope, and
magnetometer. The sensors enabled the MR-HMD system to
define the headset’s location relative to the three-dimensional
physical environment (Hubner et al., 2020). Based on these
inputs, the MR-HMD system updated the location, depth, and
orientation of the holographic display (Kubben and Sinlae, 2019).

Visual Feedback Platform

A custom MR-HMD user interface provided personalized
real-time visual feedback for modulating walking speed. The
interface included a moving hologram that served as the speed-
matching target and the real-time feedback of the participant’s
speed-matching accuracy. The visual feedback consisted of a
10 cm translucent holographic ball that moved along a 10 m path
at a fixed height of 1.5 m above the ground (Figure 1B). We
developed this graphical interface using a cross-platform game
engine (Unity version 5.5.0f3, Unity Technologies, San Francisco,
CA) and C# (Visual Studio 2017, Microsoft Inc, Redmond, WA).
As the HoloLens only rendered a single holographic object to
provide the continuous visual feedback the frame rate was synced
to the MR-HMD refresh rate of 60 Hz to prevent tearing artifacts
(Lee et al., 2017).

Instrumented Overground Walkway

We recorded the participants’ walking kinematics using a 14 m
instrumented walkway (GAITRite CIRFace, CIR Systems Inc.,
Franklin, NJ). The walkway has high test-retest reliability,
concurrent validity within and between systems, and used
previously to assess overground walking in persons living
with and without movement related disability (Thibaudier
et al., 2020). We acquired the kinematic data in the sagittal
plane at a sampling rate 100 Hz over a 10 m distance.
Participants walked a total of 14 m that included 2 m before

and after the 10 m collection area; this reduced potential
confounding effects of initial and final accelerations on the
walking kinematics. Using a secure desktop computer, we stored
video and kinematic data for further data processing and
statistical analyses.

Experimental Protocol

We fitted each participant to the MR-HMD technology. The
experiment team aided participants with donning the device and
adjusting the head straps for their comfort. Participants wore
their usual corrective eyewear. Once fitted, participants learned
to interact with the MR interface using various simple hand
gestures. This included a calibration procedure that ensured
the holographic display aligned with the user’s visual field.
The calibration protocol involved a Microsoft Windows Mixed
Reality alignment routine to estimate the user’s interpupillary
distance based on a series of finger target-matching tasks for each
eye. The MR-HMD platform then incorporated the calibration
transform to modify the holographic ball orientation within
the real-world environment. Once calibrated, the 10 m walking
course was defined over the instrumented walkway using the
holographic interface. Completion of the MR-HMD fitting and
calibration procedures took approximately 10 min.

The experimental protocol required participants to complete
a baseline walking assessment. We instructed participants to walk
at their self-selected (SS) walking speed across the instrumented
walkway. During baseline trials, the MR-HMD was worn in
the powered-down state such that individuals could see their
environment but could not see any holographic elements.
We did this to control for any passive effects of the device
unrelated to visual feedback. Participants completed 10 baseline
trials at their SS walking speed. This baseline assessment took
approximately 10 min.

We programmed the visual feedback so that the holographic
ball moved at speeds corresponding to three walking speed
conditions: 85% (SSgs), 100% (SS1¢0), and 115% (SSi1s5; Hayes
et al., 2014) of the baseline SS without visual feedback. We
chose to evaluate walking at SS speeds to understand the
utility of MR-HMD during speed conditions that are relevant
to community walking (Bowden et al., 2008; Talkowski et al.,
2008; Stevens et al., 2013). Additionally, a variety of walking
speeds were used to acquire a rich set of stepping patterns
for exploring kinematic variability that represents a range of
possible community walking speeds (van Hedel et al., 2006). We
block-randomized the order of these walking conditions for each
participant.

At the start of a walking condition, we informed participants
that a holographic ball will move in the forward direction
at a constant speed. To prepare participants for the ball’s
movement, we implemented a visual countdown signal of the
holographic ball blinking yellow four times before changing to
solid green. Participants received instruction to maintain their
initial distance (~1.0 m) behind the moving holographic ball.
Participants remained blinded to the speed of the holographic
ball during the protocol. We instructed the participants that
the color of the moving ball indicated their performance. If
the distance between the ball and participant stayed within
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TABLE 1 | Demographics.

Participant Sex Age (years) Height (cm) Weight (kg) Self-Selected Walking Speed (m/s)
1 M 23 173 65.8 1.51

2 M 28 183 774 1.24

3 M 48 188 77.6 1.91

4 M 64 178 113.4 1.33

5 F 23 157 60.3 1.53

6 M 43 177 83.9 1.40

7 F 27 163 54.4 1.61

8 M 34 173 70.3 1.34

9 F 30 152 49.9 1.43

10 F 24 173 68.0 1.45

11 M 29 176 74.8 1.40

12 M 23 191 81.6 1.15
Mean + SD NA 33+ 12.6 174 £ 11 73.1+16.5 1.44 +0.19

Note: SD, Standard deviation.

the range of 0.85-1.5 m, the ball color remained green. If
this distance exceeded 1.5 m, the ball color changed to blue
indicating the participant needed to walk faster. If this distance
did not reach 0.85 m, the ball disappeared indicating that
the participant walked past the ball and needed to walk
slower (Figure 1B). Participants completed ten trials at each
walking condition and received rest breaks between blocks as
needed to minimize fatigue. This evaluation took approximately
30 min.

Data Processing

We quantified three overground walking parameters: walking
speed, stride length, and stride time. We recorded walking speed,
as the distance walked per trial divided by the duration of time to
complete the trial. The stride length corresponded to the distance
between the first contact of two consecutive steps of the same foot
and stride time corresponded to the duration of time to complete
a stride (Perry and Burnfield, 2010). Since our estimates of stride
parameters did not differ between legs (Wilcoxon signed-rank

Field of View

P ..

Visual Feedback Setup

Target Zone

C

Height = 1.5m

A

Horizontal FoV

]
1.5 0.85 0

Distance from MR-HMD [m]

FIGURE 1 | Visualization of the HoloLens MR-HMD. The image on the left (A) shows the vertical and horizontal field of view for rendered holographic objects. The

visual feedback (B) consisted of a floating holographic ball in different sections based on distance from the HMD. When maintaining the target speed, the ball remains
between 1.5 m and 0.85 m from the subject and is colored green. If the subject walked too slowly and the ball was beyond 1.5 m its color changed to blue providing
additional feedback that the user should walk faster. The ball clipped when it was less than 0.85 m from the HMD indicating that the subject should walk more slowly.
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test, p-values > 0.20), we combined left and right strides for all
analyses.

We assessed the participants’ speed-matching ability using
two methods. First, we calculated the percent difference in
walking speed across all walking trials for a condition and
examined if it was as expected for each condition, i.e., 15% slower,
equal to, or 15% faster than the baseline condition. Next, to
determine if the speed of the holographic ball influenced how
well participants walking speed matched the ball’s speed, we
calculated the percent inaccuracy for each walking trial. The
percent inaccuracy is equal to the absolute percent difference
between target walking speed and actual walking speed for each
walking condition (SSgs, SS100, SSi15). Lastly, to assess step-
to-step consistency in walking, we calculated the coefficient
of variation (CoV), a unitless measure of variability, within
individual and across walking trials for each walking parameter.
The CoV was calculated for each parameter (gait speed, stride
length and stride time) using the following formula CoV = o/p
where | is the mean value by individual and walking speed
condition o is the standard deviation by individual and walking
speed condition.

Statistical Analysis
We used Stata 17.0 (StataCorp LLC, College Station, TX) for
statistical analysis. To examine the effect of practice, we tested for
time-dependent changes in trial inaccuracy over the 10 walking
trials of each walking condition using a linear mixed model with
restricted maximum likelihood estimation. We utilized a linear
mixed model to account for the repeated effects of participant,
walking condition, and to allow for flexibility in the number of
walking trials per condition (Davis, 2002). The model included
participant random effects and a distinct covariance structure
for the repeated effect of experimental conditions. We also
included fixed effects of trial number, a variable reflecting if
the condition was the first, second, or third tested condition,
and their interaction. We calculated the marginal means values
based on the interaction of trial number and condition order and
conducted pairwise comparisons with Bonferroni corrections
to compare the means. We hypothesized that participants may
exhibit more inaccuracy during their first several trials as they
learned to use the device. To avoid the potential confound of
higher inaccuracy in the early trials, we planned to remove early
trials, starting with the first trial until a consistent rate of accuracy
was achieved. Second, to determine if our participants were able
to match the target gait speed, we utilized a one-sample Wilcoxon
signed-rank test to determine if the median percent difference
between the target walking speed and the actual walking speed
corresponded to the expected percent difference for each walking
condition, i.e., —15% for SSgs, 0% for SS109, and 15% for SS;;s.
Next, we utilized linear mixed models to examine percent
inaccuracy and variability in gait speed, stride length, and
stride time across multiple walking conditions using linear
mixed models. We examined if participants ability to meet
the target speed differed by walking speed by comparing
the percent inaccuracy across the three tested speeds (SSss,
SS100> SS115). Due to the importance of task-specificity in gait
training interventions (Kleim and Jones, 2008), we examined

____________ @® 1+t Condition

@ 2" Condition
@ 3" Condition

Inaccuracy [%]
- - N
[=) (4] [=)
|

()]

I
12 3

4 5 6 7 8 9 10
Walking Trial Number

FIGURE 2 | Walking speed inaccuracy percentage by trial number. The first
condition using visual feedback is indicated in blue, the second tested
condition in red, and third tested condition in green. Error bars denote 95%
confidence intervals. The first overall trial regardless of speed condition had a
larger percent inaccuracy compared with nearly all subsequent walking trials.
The within-trial inaccuracy was 10.5% higher (CI95: 7.4, 13.5) in first trial of
the first speed condition compared to subsequent trials. We found no
significant differences in walking speed inaccuracy between the second and
10th trial of the first speed condition, or the 1st and 10th trial in the
subsequent speed conditions. As the first trial overall appears to be an outlier
due to a learning effect, we excluded that trial for the subsequent analyses.

if adjustments to stride length and stride time were consistent
with the adjustment strategies used by healthy adults to achieve
changes in overground gait speed. Specifically, healthy adults
adjust stride length and stride time in opposite but equal amounts
to achieve changes in gait speed (Murray et al., 1969, 1970).
We examined the magnitude of the percent difference in stride
length and stride time between the SSgs and SS;gp conditions,
and the SS;pp and SS;;5 conditions. Because the adjustments to
stride length and time are expected to be in opposite directions,
we compared the additive inverse of stride length to stride
time. Finally, to determine if receiving visual feedback from
the MR-HMD induced additional variability in gait speed or
the associated parameters, we compared the CoV of stride
length, stride time, and gait speed between the baseline condition
(Self-Selected Speed, MR-HMD turned off) and the SS;oo (Self-
Selected speed, visual feedback from the MR-HMD.).

Each model included participant random effects and a distinct
covariance structure for the repeated effect of experimental
condition. The design for modeling residuals and the between-
subject covariance structure was determined by comparing
Akaike’s information criterion (AIC) and Bayesian information
criterion (BIC) between models (Akaike, 1974). For each model,
we calculated marginal means and utilized pairwise comparisons
with Bonferroni corrections to compare the marginal effects
between experimental conditions. Specifically, to examine the
effect of the MR-HMD feedback at the same speed, we compared
marginal effects between the baseline and SS;o9 experimental
conditions. We also examined the effect of walking speed
changes by comparing the adjusted mean values between the
experimental conditions (SSgs, SS100, SS115). The significance of
any interactions was examined using an omnibus Wald test. We
reported significant results at the p < 0.05 level.
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FIGURE 3 | Percent difference in walking speed: actual vs. target. A
one-sample Wilcoxon signed-rank test found that actual walking speeds of
the participants did not differ from the expected speeds during the SSgs
(median difference from baseline: —13.8%, z = 0.63, p = 0.53), SS1go (Median
difference from 1.2%, z = 1.23, p = 0.23), and SS115 (median difference:
14.2%, z = 0.16, p = 0.88) conditions.

RESULTS

Participants adjusted their walking speed to meet the target
walking speed during the MR-HMD walking conditions. As
expected, inaccuracy in meeting the target gait speed decreased
with additional repetitions using the MR-HMD. Specifically,
we found a significant interaction between within-condition
walking trial number (1-10) and the order in which the condition
was tested (first, second, or third; x? = 39.3, p < 0.01). The
first trial in any condition had a larger percent inaccuracy
compared with nearly all subsequent walking trials, but only if
the condition was the first tested condition overall. The exception
was the third trial of the first tested condition which did not
differ significantly from the first trial of the first test condition
(difference: —6.8%, CI95: —15.1, 1.41). Figure 2 illustrates the
percent inaccuracy across the 10 walking trials in the first,
second, and third tested condition. trials. Overall, the within-trial
inaccuracy was 10.5% higher (CI95: 7.4, 13.5) in first trial of the
first speed condition compared to subsequent trials. We found
no significant differences in walking speed inaccuracy between
the 2nd and 10th trial of the first speed condition, or the 1st
and 10th trial in the second and third tested condition. Due to
the significantly higher percent inaccuracy in the first overall
walking trial, we excluded the first trial with the MR-HMD of the

30 walking trials with the MR-HMD for the subsequent analyses.
We included overall walking trial number 2 through 30 for a total
of 29 total walking trials. In effect, the first overall walking trial
became a “practice trial”, and for each participant we analyzed
nine trials of their first tested condition, and 10 walking trials
each of the second and third tested condition.

Participants changed their overground walking speed, stride
length, and stride time to adhere to the MR-HMD feedback
conditions. Results of the one-sample Wilcoxon signed-rank test
found that, overall, actual walking speeds of the participants did
not differ from the expected speeds during the SSgs (median
difference from baseline: —13.8%, z = 0.63, p = 0.53), SS;00
(median difference from baseline 1.2%, z = 1.23, p = 0.21), and
SS115 (median difference: 14.2%, z = 0.16, p = 0.88) conditions
(Figure 3). Overall, the within trial inaccuracy was 5.3% (CI95:
4.3, 6.4) which was consistent across the experimental conditions
(see Table 2). When using the MR-HMD, participants adjusted
their stride length and stride time relatively equally when
modulating gait speed. In the SSgs condition, stride length was
shorter (—7.6%, CI95: —10.9, —4.3) and stride time was longer
(7.5%, CI95: 4.2, 10.8) compared to the S condition indicating
that individuals took shorter and slower steps to decrease walking
speed. Applying the additive inverse of stride time, we found
no difference in the magnitude of the percent change between
the stride parameters (difference: 0.1%, CI95: —3.6, 3.4). Stride
length was longer (7.9, C195: 4.4, 11.4) and stride time was shorter
(—5.0, CI95: —8.5, —1.5) during the SS;;5 condition as compared
to the SS;p condition, indicating that individuals took longer and
faster steps to increase walking speed. We found no significant
difference in the magnitude of the change (difference: 2.8%, CI95:
0.86). However, stride length (—3.1%, CI95: —5.0, —1.2) and
stride time (—3.5%, CI95: —5.3, —1.6) were both shorter when
walking with feedback compared to walking without feedback at
a self-selected speed.

Variability of SS walking speed did not differ between
overground walking with and without MR-HMD feedback (CoV
difference: 1.44, CI95: —0.54, 3.42, p = 0.16; Figure 4A).
However, we found more variability in stride length (CoV
difference: 1.47, CI95: 0.16, 2.78, p = 0.03) and stride time
(CoV difference: 1.00, CI95: 0.11, 1.88, p = 0.03) with
MR-HMD feedback as compared to without MR-HMD feedback
(Figures 4B,C). Our findings suggests that an individual’s
walking speed was no more variable with MR-HMD feedback
compared to HMD without feedback; however, individuals
exhibited more variability in the parameters used to achieve the
target speed. The variability of each gait parameter was consistent
across speeds (Table 3). Our participants had no episodes of

TABLE 2 | Inaccuracy percentage for each walking speed condition using the MR-HMD.

Walking speed condition % Inaccuracy (CI195)

SSes 5.0 (3.8, 6.2)
SSi00 5.2 (4.0, 6.4)
SSi1s 5.9 (4.5,7.2)
All Conditions 5.3 (4.3, 6.4)

Comparison Difference in % inaccuracy (CI95)
88100 VS. 8885 0.2 (—1 A, 1.5)
SS115 vs. SSgs 0.9(-0.6, 2.3
88115 VS. 88100 0.7 (—0.8, 2.2)
NA NA

Note: SSgs, Target was 85% of baseline self-selected speed; SS1¢9, Target was 100% of baseline self-selected speed; SS11s, Target was 115% of baseline self-selected speed; CI95,

95% Confidence Interval; NA, Not Applicable.
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TABLE 3 | Difference in coefficient of variation between target walking speeds with visual feedback.

Gait speed Stride length Stride time
Comparison Difference CI95 p-value Difference CI95 p-value Difference CI95 p-value
SSigo Vs. SSgs 0.73 (—1.82, 3.28) 0.99 -0.15(—1.82, 1.52) 0.99 —0.15(-1.82, 1.52) 0.99
SS115 vs. SSgs 1.89 (—0.66, 4.45) 0.23 —0.11 (—1.34,1.12) 0.99 0.78 (—-0.56, 2.13) 0.50
SS115 Vs. SS100 1.17 (=1.91, 4.25) 0.99 0.04 (—1.75, 1.83) 0.99 0.93 (—0.52, 2.37) 0.37

Note: SSgs, Target was 85% of baseline self-selected speed; SS10p, Target was 100% of baseline self-selected speed; SS115, Target was 115% of baseline self-selected speed.

falls or tripping during the study and did not report any adverse
symptoms during the walking trials.

DISCUSSION

This study examined the feasibility of using an MR-HMD
platform to elicit goal-directed changes in overground walking.
In particular, we assessed the utility of a commercially available
MR-HMD technology, the Microsoft HoloLens, to promote
real-time modulation of walking speed in a group of adults who
are not living with disability. Participants matched overground
walking speeds within approximately 5% of the MR-HMD
visual feedback target speed conditions, equivalent to an
average difference of 0.08 m/s. This difference is less than
0.1-0.2 m/s, a threshold considered to represent meaningful
change in clinical populations (Bohannon and Glenney, 2014;
Bohannon and Wang, 2019). The relatively low inaccuracy
indicates that the MR-HMD is a viable tool to provoke
real-time changes in overground walking behavior. We discuss
these findings in the context of motor learning principles
and clinical applications. Future research may extend our
understanding of ways to incorporate MR platforms as adjuvants
to gait rehabilitation.

Augmented Feedback and Motor Learning

Augmented feedback has been shown to improve the acquisition
of motor skills during interactions with real and virtual
objects (Schmidt and Wrisberg, 2004). The type and timing
of augmented feedback can be varied to enhance motor
learning. For example, feedback can be internally focused, e.g.,
specific joint kinematics, or externally focused on completion
of the full task (Wulf and Dufek, 2009). The timing of
feedback can also be varied, for example, provided concurrently
(during task performance), or terminally (after task completion;
Sigrist et al., 2013). Additionally, augmented feedback can be
provided by visual, auditory, or haptic inputs or combination
multisensory modalities. In this study, our participants appeared
to successfully modulate their gait speed during a single-day
session when provided concurrent visual feedback and an
external focus by the MR-HMD. Our findings align with
substantial evidence supporting an external focus to promote
motor performance and learning (Wulf, 2013; Chua et al., 2021).
Our results also align with previous research which reports the
benefits of extrinsic visual cues on motor learning in healthy
individuals (Todorov et al., 1997; Sigrist et al., 2013; Lewthwaite
and Wulf, 2017) and persons with physical disability (Aung
and Al-Jumaily, 2014). Additionally, our results align with prior
studies that show continuous visual cues of a movement-related

task enhances the immediate learning of that task (Winstein and
Schmidt, 1990; Winstein et al., 1996; Todorov et al., 1997; Weeks
and Kordus, 1998; van Vliet and Wulf, 2006).

However, excessive reliance on concurrent visual feedback
to achieve these goals may not translate to long-term carryover
(Schmidt and Wulf, 1997). High-frequency dosing of the
MR feedback may impact the consolidation of other intrinsic
feedback mechanisms important for modulating walking speed.
For instance, reliance on visual cues may reduce reliance on
vestibular and proprioceptive intrinsic signaling that also serve
major roles in accurately and precisely regulating walking
mechanics during speed adjustments. Additionally, whereas this
study focused on visual feedback the synchronization between
visual and other types of feedback may increase the sense
of “presence” in virtual environments (Heeter, 1992; Slater,
2009; Borrego et al., 2016), enhance integration into the virtual
word (Lenggenhager et al., 2007) and may further improve
performance (Cameirdo et al., 2012). Future research should
consider the effects of more explicit goal-directed MR feedback
that include visualizations that complement the person’s skill
level, as well as kinesthetic information about the movement,
and investigate longer-term impacts on MR-based training
interventions.

Clinical Implications of Mixed Reality
Restoring the ability to walk remains a highly valued goal
for humans with various neuromuscular pathologies such as
stroke, cerebral palsy, spinal cord injury (SCI), and Parkinson’s
disease and is a major focus of rehabilitation interventions.
Even small boosts in walking that promote greater independence
with standing, walking within the home, or negotiating
spaces not accessible with walking aides often translate into
significant gains in health and quality of life. Skilled training
strategies that target walking improvement should promote
motor learning and neuroplastic changes via salient and
task-specific training and effective feedback. MR platforms have
the potential to enhance clinical training focused on walking
improvement via several mechanisms (Kleim and Jones, 2008;
Levin et al., 2015).

First, MR platforms embed virtual objects within the real
environment thereby reducing the patient’s dependency on the
simulated physical environment or the boundaries of a research
laboratory. This allows for training in any environment (e.g.,
home, clinic, or community) that has salience to the individual.
Second, MR-based interventions can provide opportunities
for task-specific training. Task-specificity can reflect both the
actual environment and virtual obstacles, but also the strategies
used by individuals to negotiate these environments. Our
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FIGURE 4 | Coefficient of variation in walking speed, stride length, and
stride time with and without augmented feedback. (A) Comparison of the
baseline SS with SS+op condition showed that variability of walking speed did
not differ when walking overground with and without MR-HMD feedback
(CoV difference: 1.44, CI95: —0.54, 3.42, p = 0.16). (B) There was more
variability in stride length (CoV difference: 1.47, Cl95: 0.16, 2.78, p = 0.03)
and (C) stride time (CoV difference: 1.00, CI95: 0.10, 1.88, p = 0.03) with
MR-HMD feedback suggesting that individuals adopted more variable control
strategies to achieve the target speed.

findings demonstrated that while using MR-HMD individuals
changed their gait speed by adjusting parameters (stride
length and stride time) in the same pattern that is observed
in healthy individuals during overground walking (Murray
et al.,, 1969, 1970). Additionally, we observed similar variability
in gait speed when individuals were walking with active
feedback from the MR-HMD compared to walking with the

powered-off device. However, we did find additional variability
in stride length and stride time which suggests that using
the MR-HMD may induce some variability at the individual
step level.

In addition to providing salient and task specific training,
MR applications have the potential to promote motivation and
training adherence, and options for gamification may increase
enjoyment of motor learning tasks as has been observed in
VR applications (Thornton et al., 2005; Sharar et al., 2007;
Burke et al., 2009; Ibrahim et al., 2016; Dias et al., 2019). MR
based interventions also have the potential to improve feedback
mechanisms. The provision of extrinsic forms of visual feedback
regarding a physical task may enhance the performance of that
task (Tate and Milner, 2010) especially when intrinsic feedback
may be less reliable or inaccessible due to injury or illness (e.g.,
loss of proprioception).

Our findings align with previous literature supporting
augmented and virtual reality as viable methods to improve
rehabilitation outcomes. The use of augmented reality as an
adjuvant to traditional physical therapy has been shown to
enhance both trunk balance (Maciaszek et al., 2014; Cho et al.,
2015) and walking performance (Yang et al.,, 2008; Mirelman
et al, 2009; Stanton et al, 2011; Pedreira da Fonseca et al,
2017) in persons with cortical stroke. Further, the use of virtual-
based feedback during treadmill walking facilitates walking in
older adults (Franz et al., 2014), persons with spinal cord injury
(Yen et al., 2014), and Parkinson’s disease (Jellish et al., 2015;
Wang et al., 2022). These results emphasized the benefits of
MR technology to enhance recovery of functional walking.
The comparable effects suggest that virtual objects may be
as effective as real objects at modifying stepping behaviors.
Finally, a recently published clinical practice guidelines supports
use of virtual reality interventions to improve locomotion
for individuals with neurologic diagnoses (Hornby et al,
2020). However, many questions remain regarding dosing and
timing of augmented reality experiences within the context
of the traditional gait rehabilitation (Koroleva et al, 2021).
This includes the management of the level of immersion
(Bailenson et al., 2005; Crosbie et al., 2006) to optimize task
performance while minimizing potential withdrawal effects
resulting from the transition from virtual to the real world
(Hughes et al., 2020).

Study Limitations

There are study limitations that preclude the
generalization of our study findings. First, the MR-HMD
hardware posed constraints on the field of view, hologram
complexity, and display resolution. To accommodate the
device’s limited field of view and processing power, we simplified
the visual feedback experience for study participants. We
programmed the holographic ball to travel along a linear
10 m path that remained at a fixed height parallel to the
ground. However, functionally meaningful tasks require turns,
inclines, and obstacles that require head rotations. Changes
in head inertia due to the mass of the MR-HMD may result
in deviations in walking task requiring head rotation, but
we did not explicitly test this possibility. Differences in the

several
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variability of stride length and stride time during overground
walking occurred between SS walking with the MR feedback
as compared to without the feedback (HMD only), indicating
that participants may have had difficulty in maintaining
step-to-step kinematics during the prescribed walking speed.
It should also be noted that our protocol was designed to
examine immediate changes in gait speed and kinematics
while individuals received feedback from the MR-HMD,
but we did not examine changes to gait speed or kinematics
after the device was removed or long-term adaptions to gait
parameters. Future work is needed to examine the efficacy of
MR feedback in individuals with and without gait impairments
and may be able to leverage newer devices which could mitigate
some of the limitations attributed to the technology in the
Ist generation MR-HMD. The growing positive evidence
of MR will inevitably lead to new challenges regarding the
integration of these technologies into the traditional clinical
setting (Cerritelli et al., 2021).

CONCLUSIONS

This study demonstrated the feasibility of a novel MR-HMD
platform that provided real-time visual feedback to promote
goal-directed changes in overground walking speed. Participants
learned to adjust their walking speed based on a single session
of visual feedback from a personalized MR environment. Further
advances in MR-HMD technology will no doubt result in greater
accessibility and broader applications in healthcare and home
settings.
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