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Abstract: Nonradiative recombination losses caused by defects in the perovskite layer seriously
affects the efficiency and stability of perovskite solar cells (PSCs). Hence, defect passivation is an
effective way to improve the performance of PSCs. In this work, trichloromelamine (TCM) was used
as a defects passivator by adding it into the perovskite precursor solution. The experimental results
show that the power conversion efficiency (PCE) of PSC increased from 18.87 to 20.15% after the
addition of TCM. What’s more, the environmental stability of PSCs was also improved. The working
mechanism of TCM was thoroughly investigated, which can be ascribed to the interaction between
the –NH– group and uncoordinated lead ions in the perovskite. This work provides a promising
strategy for achieving highly efficient and stable PSCs.

Keywords: defects passivation; TCM; perovskite solar cell

1. Introduction

Organic-inorganic hybrid perovskite has demonstrated its application potential in
the photovoltaic field due to its unique properties, such as its strong light absorption
capacity, long charge carrier diffusion length, high charge carrier mobility, and adjustable
band gap [1–5]. The power conversion efficiency (PCE) of perovskite solar cells (PSC) has
increased from 3.8% to 25.5%, which is comparable to the commercial Si-based solar cell [6].
Although great progress has been made with respect to the performance of PSC, there are
still several challenges which remain. One of the key problems is defects in the perovskite
films, such as uncoordinated sites (lead and halide ions) [7], lead clusters [8], and vacancy
defects [9], which will lead to non-radiative recombination losses. The interaction of these
defects with moisture and oxygen will also cause the degradation of the perovskite [10–12].

The use of additives for defect passivation is an effective strategy to improve the PCE
and stability of PSCs [13,14]. Many types of additives, such as polymers [15], fullerene
and its derivatives [16], inorganic acid [17], organic halide salt [18], metal halide salt [19],
and nanoparticles [20] were applied to achieve grain boundary (GBs) passivation through
morphology control or passivation of crystal defects [21–24]. Among them, selecting
organic molecules with specific functional groups is very effective to improve the PCE and
stability of PSCs. For example, the introduction of 3-aminopropyltrimethoxysilane (APMS)
inhibited ion migration and passivated defects in perovskite layer because of the interaction
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between the amino- group and Pb or I ions, leading to the morphology improvement of
perovskite film [25]. The PCE of PSC increased from 18.85 to 20.72% [25]. After adding
maleimide undecanoic acid (11MA) to the perovskite precursor solution, the density of trap
states in perovskite layer reduced due to the strong coordination interaction between 11MA
and Pb2+, resulting in the increase of PCE from 18.24 to 23.34% [26]. The additive molecules
with π-conjugated structure are more likely to gather at the perovskite GBs, inducing the
interconnection of the perovskite grains and therefore the more stable PSC [27].

In this work, a low-price organic molecular, trichloromelamine (TCM) was used as
a defects passivator in the MAPbI3 light-absorbing layer by adding it into the perovskite
precursor solution. The chlorine substituted amino groups with Lewis base characteristics
in the molecular structure of TCM will simultaneously improve the morphology and
passivate defects of the perovskite film. MAPbI3 film with improved crystallinity and
reduced defect density was obtained. With 0.05 wt% TCM, the PCE of the PSC increased
from 18.87% of control device to 20.15%. In addition, after 48 h aging in the dark with 80%
humidity at room temperature, the encapsulated device with TCM retained its initial PCE
of 77.31%, while the value for the control device is 31.2%. The mechanism was thoroughly
investigated, which can be ascribed to the interaction between the –NH– group in TCM
and lead ions in MAPbI3.

2. Materials and Methods
2.1. Preparation of NiOx Nanoparticles

First, under magnetic stirring, 12.885 g of NiCl2·6H2O was dissolved in 100 mL of
deionized water. Then, 10 M NaOH solution was added dropwise to the solution until the
pH value reached 10. Following, the obtained green solution was centrifuged. After being
washed twice with deionized water, the resulting precipitate was dried at 80 ◦C overnight,
and then annealed at 270 ◦C for 2 h.

2.2. Materials and Preparation of Solutions

MAI, PbI2 and Pb(Ac)2 were purchased from Xi’an Polymer Light Technology Corp,
Xi’an, China. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and 2,9-Dimethyl-4,7-
diphenyl-1,10-phenanthroline (BCP) were purchased from Borun New Material Technology
Corp, Ningbo, China.

MAI, PbI2, Pb(Ac)2 powders were mixed in N,N-dimethylformamide (DMF, anhy-
drous, 99.8%, Sigma-Aldrich) solution at a molar ratio of 2.2:0.4:0.6 to prepare MAPbI3
precursor solution. Trichloromelamine (TCM) (≥95%, 229.45 (MW), Macklin) was dissolved
in DMF and added to the precursor solution at different weight ratios before spin-coating.
The weight ratio of TCM varied from 0.01 wt%, 0.05 wt% to 0.1 wt%. PCBM solution
(20 mg/mL) was prepared by dissolving it in chlorobenzene (99.5%, Aladding).

2.3. Preparation for Characterization

Solutions for NMR test were prepared by adding 0.05 wt/% trichloromelamine into
PbI2 solution (1 mol/L) in deuterated DMSO.

Perovskite films for XRD, SEM, UV, PL, UPS and XPS tests were all prepared by spin-
coating perovskite precursor solution on ITO substrate with a concentration of 1 mol/L. It
was spun-coated at 4000 rpm for 30 s. Then the films were thermal annealed on a hot stage
at 100 ◦C for 10 min.

For FT-IR measurement, the above-mentioned perovskite films were scraped from ITO
substrates and then blended with spectrum grade KBr. The mixed powder was pressed
into pieces before using.

2.4. Device Fabrication

Before using, indium tin oxide (ITO) glass substrate (7 Ω, RS−1) was sequentially
ultrasonically cleaned with detergent, deionized water, acetone, and absolute ethanol for
20 min each. Then, the substrate was cleaned with plasma for 4 min after being dried with
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a nitrogen stream. Follow that, NiOx nanoparticles dispersion (20 mg/mL in deionized
water) was spin-coated at 4000 rpm for 30 s and then annealed at 135 ◦C for 10 min under
atmospheric conditions. Then perovskite precursor solution was spin-coated at 4000 rpm
for 30 s in a N2-filled glovebox to form perovskite layer, which was heated on a hot plate at
100 ◦C for 20 min. After that, PCBM film was deposited by spin-coating at 1200 rpm for
30 s. Finally, 5 nm-thick BCP and 100 nm- thick Ag were evaporated as the interface layer
and the top metal electrode, under a pressure of 9 × 10−5 Pa.

2.5. Characterization

Fourier transform infrared (FT-IR) spectroscopy measurements were conducted on
a Fourier transform infrared spectrometer (model: IRPrestige-21, range 4000–1000 cm−1).
Ultraviolet-visible (UV-vis) absorption measurements were measured on a Lamba
35 spectrophotometer (Perkin-Elmer, Waltham, MA, USA). The X-ray diffraction (XRD) pat-
terns of the films were obtained by a Bruker D8 ADVANCE X-ray diffractometer (Bruker Corp,
Berlin, Germany) under the operation conditions of 40 kV and 40 mA. The morphology of
perovskite films was obtained by field emission scanning electron microscopy (FESEM, S4800
microscope, Hitachi Ltd., Tokyo, Japan). The transient-state photoluminescence (PL) was
measure by FLSP920 spectrometer (Edinburgh Instruments Ltd., Livingston, UK). H nuclear
magnetic resonance (NMR) spectra were collected by using Bruker DELL PC1 equipment.
X-ray photoelectron spectroscopy (XPS) was studied using a PHI Quantera SXM (ULVAC-PHI
Inc., Tokyo, Japan). The current density-voltage (J-V) curves of the devices were measured
by a Keithley 2400 Source Meter under an illumination of 1 sun (100 mW/cm2 AM 1.5 G,
generated by a solar simulator Oriel Sol3A, Newport Corp., Irvine, CA, USA), which was
calibrated with a standard Si photodiode. The active area was 0.096 cm2.

3. Results
3.1. Film Properties

The morphology of the MAPbI3 film has great influence on the performance of PSCs.
Thus, scanning electron microscopy (SEM) images of MAPbI3 films were demonstrated, as
shown in Figure 1. The crystal sizes were estimated by using Nano Measurer 1.2 software.
For MAPbI3 films doped with 0, 0.01, 0.05, and 0.1 wt% TCM, the average grain sizes
are 246, 260, 308, and 221 nm, respectively (Figure 1e). Compared with the pristine film,
when the doping concentration of TCM increased from 0.01 wt% to 0.1 wt%, the grain
size of MAPbI3 increased first and then decreased. The MAPbI3 film with 0.05 wt% TCM
(hereinafter refer to as 0.05 TCM film) has the largest grain size. The effect of TCM on the
crystallinity of MAPbI3 was studied by X-ray diffraction (XRD) measurement (Figure 1f).
All the XRD patterns show significant peaks at 13.90◦ and 28.17◦, which are corresponding
to the (110) and (220) planes of MAPbI3, respectively. It indicates that all MAPbI3 films have
orthorhombic crystal structure. Meanwhile, the XRD peak intensity obviously varied after
doping TCM, which increased first and then decreased with the concentration increased
from 0.01 wt% and 0.05 wt% to 0.1 wt%. The perovskite film with 0.05 wt% TCM has
the strongest peak intensity, indicating the best crystallinity. Cross-sectional SEM images
of PSCs further proves the crystallinity improvement after adding TCM, as shown in
Figure S1. The average thickness of the pristine perovskite layer is 243 nm. It is 260 nm
with 0.05 wt% TCM, indicating the larger grain size.

3.2. Charge Carrier Dynamic

To investigate the optical properties of MAPbI3 films, UV-Vis absorption spectra were
measured, as shown in Figure 2a. The same shape of UV-Vis absorption spectra reflects
that the crystal structure of MAPbI3 film did not change, which is consistent with the
XRD results. The absorbance intensity slightly increased at the wavelength lower than
500 nm after adding 0.05 wt% TCM, which can be ascribed to the larger grain size. In
addition, for semiconductors, the absorbing edge is called the Urbach tail, which is related
to Urbach energy (Eu). Generally, the Urbach energy is the tail width of the local defect
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state in the band gap, which can be calculated by fitting the exponential part of the Urbach
tail according to Equation (1) [28]:

α(E) = α0 ∗ exp [
E − E0

Eu
] (1)

where α is the absorption coefficient and E is the photon energy [29,30]. Eu value can be
calculated by plotting Ln(α) against E, as shown in Figure 2b. The calculated Eu values are
50.9 meV and 39.96 meV for the pristine and 0.05 TCM MAPbI3 films, respectively. The
lower Eu value indicated the reduced defect density. It means that the adding of 0.05 wt%
TCM reduced the defect density of MAPbI3 film. It was further proved by measuring the
steady-state photoluminescence (PL) spectra, as shown in Figure 2c. The PL intensity of
MAPbI3 film is significantly enhanced with the addition of 0.05 wt% TCM, indicating the
reduction of nonradiative recombination losses (which is always caused by defects). In
addition, after the addition of TCM, the PL peak blue-shifted from 796.5 nm to 795.9 nm,
which can be ascribed to the reduction of surface defects [31]. Therefore, the surface
defects of MAPbI3 film were passivated by adding TCM, which can also be proved by
the Ultraviolet Photoelectron Spectroscopy (UPS) data, as shown in Figure 2d. The Fermi
energy level (EF) with respect to the valance band maximum (VBM) of perovskite films shift
from 1.06 to 0.96 eV (Figure 2d) after the introduction of TCM, indicating that it is closer to
the center of the bandgap (Eg: 1.55 eV for MAPbI3). Thus, the perovskite is more like the
intrinsic semiconductor after the passivation of surface defects by TCM [32]. The above
experimental results show that the defects of the perovskite film reduced after adding
0.05 wt% TCM.
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Figure 2. (a) Absorbance spectra, (b) Urbach energy plot, (c) PL spectra, and (d) ultraviolet photo-
electron spectroscopy (UPS) spectra of MAPbI3 films without and with 0.05 wt% TCM.

In order to explore the work mechanism of defect passivation, 1H nuclear magnetic
resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR) tests were conducted.
Figure 3a shows the 1H NMR spectra of pure TCM and the mixture of PbI2 and TCM. After
adding PbI2, the chemical shift of the hydrogen peak corresponding to the –NH– group of
TCM shifted from 7.81 to 7.71 ppm. It indicates that Pb2+ interacted with the –NH– group in
TCM. FT-IR was also used to detect the interaction between the –NH– group of TCM and Pb2+

(Figure 3b and Figure S2). For pure TCM, the characteristic peak of the stretching vibration
of the –NH– group located at 1660 cm−1, which is 1651 cm−1 for the mixture of TCM and
PbI2. The shift of the peak position indicates the interaction between the –NH– group and
Pb2+. X-ray photoelectron spectroscopic (XPS) pattern (Figure 3c) shows that the Pb 4f7/2 and
Pb 4f5/2 signals shift from 137.8 eV and 142.7 eV to 137.6 eV and 142.5 eV, respectively, after
the addition of TCM. It demonstrated that the binding energy of the Pb 4f peak reduced by
0.2 eV, which indicates the decreased cationic charge of under-coordinated Pb2+ [33].

To estimate the defect of density (Ndefects) of perovskite films, electron-only and hole-
only devices with the structure of ITO/SnO2/MAPbI3/PCBM/Ag and ITO/NiOx/MAPbI3
/PTAA/Ag were fabricated, respectively. The J-V curves are shown in Figure 4. The density
of the defects can be calculated in the space-charge-limited current region by Equation (2):

Nde f ect =
2εε0VTFL

eL2 (2)

where ε is the relative dielectric constant [34], ε0 is the vacuum permittivity, L is the
thickness of the perovskite film, e is the unit charge, and VTFL is the trap-filled-limit (TFL)
voltage. VTFL refers to the voltage at the kink point from linear region to the TFL region.
The Ndefects and VTFL values are summarized in Table 1. It can be seen that the density of
the electronic defect of the control device is about twice that of the device with 0.05 wt%
TCM. The density of the hole defect states are only slightly reduced (from 2.8 × 1016
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to 2.2 × 1016 cm−3). Combined with the results of UPS, this means that the addition of
TCM effectively passivated the n-type undercoordinated Pb2+ defects on the surface of
the perovskite film. Therefore, after the addition of TCM, the surface of the perovskite
film is more intrinsic. This is consistent with the passivation mechanism of TCM doping
described above.
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Table 1. Summary of VTFL and Ndefects values.

Device
VTFL (V) Ndefects (cm−3)

Hole-Only Electron-Only Hole-Only Electron-Only

control 0.724 0.266 2.8 × 1016 1.05 × 1016

with 0.05 wt% TCM 0.564 0.138 2.2 × 1016 5.42 × 1015

3.3. Device Characterization

Figure 5a show the J-V curves of the PSCs, ITO/NiOx/MAPbI3/PCBM/Ag (Figure S4)
based on MAPbI3 with/without TCM. The corresponding performance values are summa-
rized in Table 2. The experimental error values were obtained by subtracting the average
value and then divided the results by two. The control device shows a short circuit current
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density (JSC) of 22.63 ± 0.43 mA cm−2, an open circuit voltage (VOC) of 1.067 V and a fill
factor (FF) of 78.14 ± 0.72%, resulting in a PCE of 18.87 ± 0.46%. With the addition of TCM,
the performance of PSCs depended on the ratio of TCM. As the weight ratio of TCM in-
creased (VOC), FF and PCE both increased and reached 0.05 wt%. Then, when it continued
to increase to 0.1%, JSC had a significant drop. Thus, 0.05 wt% is the optimized weight ratio
of TCM, based on which PSC with a VOC of 1.085 V, a JSC of 22.68 ± 0.28 mA cm−2, a FF
of 81.81 ± 1.66%, and therefore a PCE of 20.15% ± 0.41% was obtained. Obviously, the
increase of PCE is mainly caused by the enhancement of VOC and FF, which may benefit
from the film quality improvement of the perovskite layer.

The statistics of the photovoltaic performance parameters of PSC (Figure 5b) shows
that the 0.05% TCM device not only has higher photovoltaic parameters than the control
device but also shows that the distribution is more concentrated. It indicates that after
adding TCM, the repeatability of the device is also improved. In addition, as shown in
Figure S3, for the control device and device with 0.05 wt% TCM, the forward scanned J-V
curve matched well with that from reverse scan, indicating a negligible hysteresis effect.
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Table 2. Summary of detailed performances parameters of PSCs.

TCM (wt%) Scan Di-
rection VOC (V) JSC (mA cm−2) FF (%) PCE (%) Rs (Ω

cm−2)

0 forward 1.070 23.00 ± 0.62 76.46 ± 1.32 18.81 ± 0.31 55.98
reverse 1.067 22.63 ± 0.86 78.14 ± 1.43 18.87 ± 0.53 50.28

0.01 forward 1.080 22.77 ± 0.57 77.81 ± 0.65 19.13 ± 0.52 43.75
reverse 1.073 22.75 ± 0.14 78.13 ± 0.43 19.07 ± 0.15 37.66

0.05 forward 1.090 23.42 ± 0.12 78.32 ± 1.31 19.99 ± 0.45 32.97
reverse 1.085 22.69 ± 0.07 81.81 ± 1.32 20.15 ± 0.13 29.57

0.1 forward 1.090 21.73 ± 0.65 77.59 ± 1.97 18.37 ± 0.58 50.32
reverse 1.091 21.20 ± 0.52 79.53 ± 0.64 18.39 ± 0.42 45.27
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The current density of the 0.05 wt% TCM PSC under dark decreases at low voltage,
as shown in Figure 5c. It further proves that the defects density of perovskite film with
0.05 wt% TCM reduced [35], which is conducive to the transfer of charge. Therefore, the
series resistance (Rs) of the 0.05 wt% TCM device decreased from 50.28 Ω·cm−2 of the
control device to 29.57 Ω·cm−2, as shown in Table 2. The reduction of Rs value is also
responsible for the increase in the FF of PSC.

In order to further explore the electrical and optical properties of TCM doped per-
ovskite films, the light intensity dependence of VOC had been investigated. It can provide
more detailed information about the reorganization process under open circuit conditions
according to the following Equation (3) [36,37]

δVoc = n
(

kBT
e

)
Ln(I) + constant (3)

where n is the ideality factor, kB is the Boltzmann constant, q is the elementary charge, T is
the absolute temperature, and I is the light intensity. The 0.05 wt% TCM device exhibits
a higher VOC than the control device under the same light intensity (Figure 5d). A plot
of VOC as a function of logarithmic light intensity Ln(I) is linearly fitted to evaluate the
slope, n (kBT/e), which represents the recombination process caused by the trap states in
the optoelectronic device. The slope value of the 0.05 TCM device is 1.14 kBT/e, which is
1.704 kBT/e for the control device. The decrease in the slope value means that TCM doping
can effectively reduce the trap-assisted carrier recombination, which is consistent with the
above results.

In order to evaluate the environmental stability of PSCs, the PCE of PSCs were mea-
sured during storage. Figure 6a shows the normalized PCE against time. After being stored
under 80% humidity in the dark at room temperature for 50 h, the PCE of the 0.05 wt%
TCM device retained 77.3% of its initial value, while the value for the control device is
31.2%. Obviously, the 0.05 wt% TCM device is more stable than the control device. XRD
was also used to detect the stability of perovskite film after being exposed to ambient air
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with a humidity of 80% in the dark for a week. As shown in Figure 6b, the peak at 12.8◦

is observed for both film, which is corresponding to the (100) plane of PbI2. Meanwhile,
in the XRD pattern of the newly fabricated MAPbI3 film (Figure 1f), there was no peak at
12.8◦. The precipitation of lead iodide after storage indicates the decomposition of MAPbI3.
Meanwhile, the peak intensity at 12.8◦ for the 0.05 TCM MAPbI3 film is much lower than
that of the pristine film, indicating less MAPbI3 decomposed. It means that TCM additive
effectively protected the perovskite film from moisture. The contact angle of water on
the perovskite film was measured, as shown in Figure 6c–d. It shows that the 0.05 TCM
MAPbI3 film is more hydrophobic than the pristine film (54.2◦ vs. 40.9◦), which is also
responsible for the improved environment stability of the perovskite film and PSCs.
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4. Discussion

In conclusion, TCM was used as an additive in the MAPbI3 film by doping it in the
perovskite precursor solution. The experimental results show that TCM passivated the
defects at the surface of the MAPbI3 film, resulting in the PCE of PSC increasing from 18.87%
to 20.15% due to the enhancement of VOC and FF. With TCM, both the PSC and MAPbI3 film
show improved environmental stability. Passivation is caused by the interaction between
the uncoordinated lead ion and the –NH– group in TCM. This work provides an effective
method to improve the efficiency and stability of PSCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
polym14030398/s1. Figure S1: Cross-sectional SEM images of perovskite devices: (a) control and (b) 0.05 TCM
additive; Figure S2: FT-IR spectrum of pure TCM and PbI2 mixed with TCM; Figure S3: J-V curve of forward
and reverse voltage scanning of the best control device and 0.05 TCM device; Figure S4: Device configuration
of inverted perovskite solar cells.
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