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Abstract
As	most	ecosystems	are	being	challenged	by	multiple,	co-	occurring	stressors,	an	im-
portant	challenge	is	to	understand	and	predict	how	stressors	interact	to	affect	bio-
logical	responses.	A	popular	approach	is	to	design	factorial	experiments	that	measure	
biological	 responses	 to	pairs	of	stressors	and	compare	 the	observed	response	 to	a	
null	model	 expectation.	Unfortunately,	we	believe	 experiment	 sample	 sizes	 are	 in-
adequate	 to	detect	most	non-	null	 stressor	 interaction	 responses,	 greatly	hindering	
progress.	Using	both	real	and	simulated	data,	we	show	sample	sizes	typical	of	many	
experiments	(<6)	can	(i)	only	detect	very	large	deviations	from	the	additive	null	model,	
implying	many	important	non-	null	stressor-	pair	interactions	are	being	missed,	and	(ii)	
potentially	lead	to	mostly	statistical	outliers	being	reported.	Computer	code	that	sim-
ulates	data	under	either	additive	or	multiplicative	null	models	is	provided	to	estimate	
statistical	power	 for	user-	defined	 responses	and	 sample	 sizes,	 and	we	 recommend	
this	is	used	to	aid	experimental	design	and	interpretation	of	results.	We	suspect	that	
most	experiments	may	require	20	or	more	replicates	per	treatment	to	have	adequate	
power	to	detect	nonadditive.	However,	estimates	of	power	need	to	be	made	while	
considering	the	smallest	interaction	of	interest,	i.e.,	the	lower	limit	for	a	biologically	
important	interaction,	which	is	likely	to	be	system-	specific,	meaning	a	general	guide	
is	unavailable.	We	discuss	ways	in	which	the	smallest	interaction	of	interest	can	be	
chosen,	and	how	sample	sizes	can	be	increased.	Our	main	analyses	relate	to	the	addi-
tive	null	model,	but	we	show	similar	problems	occur	for	the	multiplicative	null	model,	
and	we	encourage	similar	investigations	into	the	statistical	power	of	other	null	models	
and	inference	methods.	Without	knowledge	of	the	detection	abilities	of	the	statistical	
tools	at	hand	or	the	definition	of	the	smallest	meaningful	interaction,	we	will	undoubt-
edly	continue	to	miss	important	ecosystem	stressor	interactions.
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1  |  INTRODUC TION

Most,	 if	 not	 all,	 ecosystems	 are	 being	 impacted	 by	 multiple	 co-	
occurring	 stressors	 (e.g.,	 climate	 change,	 invasive	 species,	 pollu-
tion),	which	are	predominately	anthropogenic	in	origin	(Beauchesne	
et al., 2021; Halpern et al., 2015),	and	are	capable	of	affecting	indi-
viduals	through	to	entire	ecosystems	(Jackson	et	al.,	2021;	Simmons	
et al., 2021;	 Sokolova,	2021).	At	 the	 individual	 level,	 responses	 to	
multiple	stressors	might	be	assessed	by	their	joint	effect	on	the	phys-
iology	of	an	organism,	e.g.,	a	decline	in	feeding,	growth,	or	fecundity,	
or	a	biochemical	change	(Nõges	et	al.,	2016),	and	may	also	be	mea-
sured	on	survival	rates	(e.g.,	bee	health	responses	to	agrochemicals,	
Siviter	et	al.,	2021).	Population	responses	to	multiple	stressors	may	
be	assessed	by	monitoring	densities,	biomass,	or	other	markers	such	
as	chlorophyll	concentrations	(e.g.,	freshwater	population	responses	
to	combinations	of	invasive	species,	pesticides,	temperature,	or	UV	
changes,	Burgess	et	al.,	2021),	whereas	ecosystem	responses	might	
be	 measured	 through	 multiple	 stressor	 effects	 on	 functional	 and	
taxonomic	 diversity	 (e.g.,	 coral	 reef	 species	 richness	 responses	 to	
warming	and	acidification,	Timmers	et	al.,	2021),	or	 through	other	
measures	of	ecosystem	integrity	(e.g.,	stability,	Polazzo	et	al.,	2021).

Going	beyond	the	effects	of	single	stressors	is	therefore	an	im-
portant	 focus	 in	 ecology	and	key	questions	 are	whether	 and	how	
these	co-	occurring	stressors	may	interact.	For	example,	two	stress-
ors	operating	together	may	act	to	amplify	their	individual	effects	and	
lead	to	a	synergistic	interaction.	In	this	case,	their	joint	effects	are	
greater	than	predicted	from	their	individual	effects.	This	might	occur	
for	 example	 if	 one	 stressor	 (e.g.,	 dehydration	 caused	 by	 drought)	
reduces	the	fitness	of	an	 individual	and	makes	 it	more	susceptible	
to	 another	 stressor	 such	 as	 a	 disease	 (Lafferty	&	Holt,	2003).	On	
the	 other	 hand,	 two	 stressors	 acting	 on	 the	 same	 biological	 pro-
cess	could	have	a	negative	 (interfering)	effect	on	one	another	and	
therefore	lead	to	an	antagonistic	effect;	their	 joint	effects	are	less	
than	predicted	by	their	individual	effects.	In	extreme	cases,	this	can	
lead	to	reversal	 interactions	 (Jackson	et	al.,	2016)	where	the	com-
bined	effect	of	 a	pair	of	 stressors	has	a	different	 sign	 to	 those	of	
both	stressors	acting	on	their	own.	For	example,	Boone	et	al.	(2005)	

showed	how	the	combined	effect	of	carbaryl	and	nitrate	decreased	
green	frog	(Rana clamitans)	tadpole	growth,	even	though	individually	
both	increased	tadpole	growth.

Cataloging	and	predicting	how	often	and	under	what	conditions	
synergies	and	antagonisms	might	occur	can	have	important	implica-
tions	for	management	strategy.	In	the	case	of	a	synergistic	interac-
tion	between	two	stressors,	removal	or	reduction	in	the	impact	of	
even	one	stressor	could	have	a	large	effect.	However,	more	caution	
is	required	when	considering	the	management	of	an	antagonistic	in-
teraction	since,	 if	the	antagonism	is	particularly	strong,	removal	of	
one	of	the	stressors	could	in	principle	lead	to	a	worse	outcome	as	the	
biological	response	to	the	pair	of	stressors	might	be	less	severe	than	
the	response	to	either	stressor	acting	alone.	Unfortunately,	current	
knowledge	of	how	stressors	 interact	 to	affect	ecosystems	at	vari-
ous	scales	is	limited	(Hodgson	&	Halpern,	2019;	Lemm	et	al.,	2021).	
To	 date,	 progress	 has	 been	 driven	 by	 individual	 studies	 that	 have	
contributed	to	larger-	scale	meta-	analyses,	but	relatively	few	gener-
alizations	 are	 possible	 (Côté	 et	 al.,	 2016; Orr et al., 2020).	 This	 is	
perhaps	not	surprising	given	the	broad	range	of	ecosystems,	taxo-
nomic	groups,	and	biological	responses	that	have	been	considered	
(e.g.,	Ban	et	al.,	2014;	Burgess	et	al.,	2021; Lange et al., 2018),	but	
another	contributory	factor	that	has	not	been	examined	is	the	issue	
of	adequate	sample	sizes	in	multiple	stressor	experiments.

We	contest	that	many	potentially	important	stressor-	pair	inter-
actions	are	being	missed	due	to	low	replication	number.	In	order	to	
design	effective	multiple	stressor	experiments	that	have	adequate	
sample	sizes,	researchers	must	consider	the	trifecta	of	 (i)	resource	
costs	(whether	the	design	is	feasible	given	time,	spatial,	and	finan-
cial	constraints),	(ii)	the	smallest	stressor-	pair	interaction	that	can	be	
detected	 (statistical	power),	and	 (iii)	 the	minimum	biological	effect	
of	interest	(Figure 1).	However,	we	believe	only	resource	costs,	and	
therefore	feasibility,	normally	factor	into	experimental	design	since	
the	detection	limits	of	the	statistical	tools	commonly	used	in	stressor	
interactions	have	not	been	quantified,	 and	 there	has	been	no	dis-
cussion	on	what	a	biologically	important	stressor	interaction	is.	We	
define	the	smallest	interaction	of	interest	as	the	smallest	biologically	
relevant	 deviation	 from	 the	 null	 expectation	 and	 could	 represent	

F I G U R E  1 The	three	considerations	
important	for	determining	experimental	
design	to	investigate	how	pairs	of	
stressors	interact,	and	the	trade-	offs	that	
occur	when	any	of	them	are	more	limiting	
than the others.
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the	smallest	deviation	that	would	warrant	a	change	in	management	
strategy	compared	with	the	null.	Here	we	will	 look	at	sample	sizes	
typical	of	stressor	interaction	experiments,	use	empirical	examples,	
and	analyze	statistical	models	to	highlight	why	it	is	likely	important	
interactions	are	being	missed,	and	show	how	the	minimum	biological	
effect	of	interest	dictates	the	sample	sizes	required.

2  |  STRESSORS: MODEL E XPEC TATIONS 
AND INTER AC TIONS

The	 effects	 of	multiple	 interacting	 stressors	 are	 commonly	 deter-
mined	 through	 the	 implementation	of	 null	models	 (e.g.,	 Schäfer	&	
Piggott,	2018)	where	the	observed	response	is	compared	with	an	ex-
pectation	that	the	stressors	are	noninteracting	(De	Laender,	2018).	
Other	methods	are	available,	such	as	the	linear	model	approach	(e.g.,	
Spears	et	al.,	2021),	but	null	models	continue	to	enjoy	widespread	
use	in	ecology	and	evolution	(e.g.,	Flügge	et	al.,	2012;	Murrell,	2018; 
Rajala	et	al.,	2019;	van	Veen	&	Murrell,	2005).	Moreover,	linear	mod-
els	 also	make	assumptions	about	 the	 form	of	 the	 interaction	 (e.g.,	
additive),	and	in	any	case,	the	issue	of	sample	size	is	germane	to	all	ap-
proaches.	Of	the	range	of	available	null	models	for	multiple	stressor	
interactions,	 the	additive	null	model	 (Gurevitch	et	al.,	2000)	 is	 the	
most	widely	 applied	 (e.g.,	 Burgess	 et	 al.,	2021; Crain et al., 2008; 
Siviter	 et	 al.,	2021)	 and	has	 the	 expectation	 (null	 hypothesis)	 that	
the	overall	effect	of	the	multiple	interacting	stressors	is	equal	to	the	
sum	of	the	effects	of	the	stressors	acting	individually.	In	effect,	the	
question	is:	“Do	the	individual	effects	of	two	stressors	simply	add	up	
when	they	are	both	present?”

The	statistical	test	is	therefore	whether	the	additive	null	model	
can	be	 rejected	 in	 favor	of	 an	 alternative	hypothesis	 that	 interac-
tions	 are:	 (i)	 greater	 than	 anticipated	 by	 the	 additive	 null	 model	
(Synergistic interactions);	 (ii)	 less	 than	 the	 sum	 of	 the	 individual	
stressor	 effects	 (Antagonistic interactions);	 or	 (iii)	 opposite	 to	 that	
suggested	by	the	additive	null	model	(Reversal interactions)	(see	e.g.,	
Jackson	et	al.,	2016; Orr et al., 2020).	Although	we	will	focus	on	the	
additive	model	 and	 show	 it	 has	 low	 power	 to	 detect	 nonadditive	
stressor-	pair	interactions,	we	also	show	similar	results	for	the	mul-
tiplicative	null	model	(Lajeunesse,	2011),	which	is	argued	(Fournier	
et al., 2006),	to	be	preferable	for	biological	responses	(e.g.,	survival)	
that	are	bounded	(see	Appendix	S1).

The	 null	 model	 approach	 requires	 a	 factorial	 experiment	 de-
sign	 with	 four	 treatments	 that	 each	 measure	 the	 same	 biological	
response	 metric	 of	 interest	 (e.g.,	 individual	 survival;	 population	
density	or	biomass;	species	richness)	under	different	stressor	con-
ditions.	Each	measure	Xx	is	the	mean	value	of	this	response	metric	
taken over Nx replicates, where x ∈ {C,A,B, I}.	The	first	treatment,	C, 
is	the	control,	which	is	the	system	(i.e.,	individual,	population,	com-
munity)	of	interest	in	the	absence	of	either	stressor	under	scrutiny.	
There	are	two	treatments	(A, B)	that	account	for	the	response	of	the	
system	to	each	of	the	individual	stressors	of	interest	acting	in	isola-
tion.	The	final	treatment,	 I ,	is	the	estimate	of	the	response	to	both	
stressors	acting	simultaneously,	i.e.,	the	interaction.	Associated	with	

each	treatment	 is	an	estimate	of	the	standard	deviation	of	the	re-
sponse	to	the	treatment,	and	these	are	denoted	by	SDX, where again 
x ∈ {C,A,B, I}.	All	three	elements,	Xx, SDx, and Nx	are	required	for	the	
additive	and	multiplicative	null	models,	and	from	this	input,	each	null	
model	computes	an	effect	size	with	associated	confidence	intervals	
from	which	the	interaction	type	is	inferred.

Effect	sizes	are	used	as	they	can	provide	a	standardized	measure	
of	 the	 difference	 between	 two	 groups	 (treatments)	 and	 therefore	
enable	straightforward	comparison	of	experiments	where	the	bio-
logical	response	may	be	on	different	scales	(e.g.,	density,	survival).	
In	the	case	of	stressor-	pair	interactions,	the	effect	size	is	defined	as	
the	difference	between	 the	 response	predicted	by	 the	null	model	
from	the	individual	responses	(A	and	B)	and	the	observed	response	
to	both	stressors	acting	simultaneously	(I).	We	use	the	definition	of	
effect	sizes	for	factorial	experiments	under	the	additive	model	de-
fined	by	Gurevitch	et	al.	(2000).	The	observed	interaction	effect	is	
defined	 as	 XO = XI − XC,	 and	 the	 expected	 response	 that	 assumes	
the	joint	effect	is	equal	to	the	sum	of	the	individual	effects	of	stress-
ors A and B	is	defined	as	XE = XA + XB − 2XC.	To	compute	effect	sizes	
(ESAdd),	we	use	Hedge's	d,	which	 is	unbiased	by	small	 sample	sizes	
(Hedges	&	Olkin,	1985).	The	calculation	of	the	additive	effect	size,	
(ESAdd),	is	given	as

where s	is	the	pooled	standard	deviation	that	takes	into	account	the	
standard	deviations	(SDX)	associated	with	each	treatment	mean,	and	J 
is	the	small	sample	bias	correction	factor	(Borenstein	et	al.,	2009).	Both	
s and Jare	defined	in	the	Appendix	S1.

Once	computed,	we	need	to	know	whether	ESAdd	is	statistically	
different	 from	 0	 in	 which	 case	 the	 null	 hypothesis	 is	 rejected	 in	
favor	of	an	alternative	 that	 is	dependent	on	whether	ESAdd is pos-
itive	or	negative	 (explored	 in	more	detail	 in	 the	Appendix	S1).	Put	
simply,	the	test	answers	whether	there	is	sufficient	evidence	to	de-
fine	the	stressor	interaction	as	being	nonadditive.	The	test	requires	
the	construction	of	confidence	intervals	(at	some	specified	level	of	
statistical	 significance	α),	 and	 these	 in	 turn	 require	an	estimate	of	
the	standard	error	for	our	effect	size.	The	estimate	of	the	variance	
defined	by

and	from	this,	the	standard	error	is	computed	as

with	the	important	observation	that	the	standard	error	SEAdd is not di-
vided	by	the	square	root	of	the	sample	size	as	is	the	case	for	normal	es-
timates	of	the	sampling	distribution	of	a	mean.	Standard	errors	should	

ESAdd =
XE − XO

s
∙ J

(1)=
XI − XA − XB + XC

s
∙ J,

(2)VAdd = J2 ∙

[

1

NI

+
1

NA

+
1

NB

+
1

NC

+

(

ESAdd
)2

2
(

NI + NA + NB + NC

)

]

,

(3)SEAdd =
√

VAdd,
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decrease	as	more	samples	are	taken,	but	increasing	sample	sizes	will	
already	reduce	the	variance	(Equation 2)	and	hence	SEAdd.	Finally,	the	
confidence	intervals	are	computed	as

with Z
�∕2	being	the	critical	Z-	score	taken	at	the	statistical	level	of	signif-

icance α.	Typically,	α =	0.05,	and	we	divide	by	two	as	a	two-	tailed	test	
is	required	because	the	stressor	interaction	can	be	less	than,	or	greater	
than	 expected	 under	 the	 null	model,	which	means	Z

�∕2 = 1.96 .	 The	
test has df = NI + NA + NB + NC − 4	degrees	of	freedom.	An	important	
point	to	note	is	how	the	sample	sizes	Nx	appear	at	multiple	stages	in	the	
process,	with	increasing	sample	sizes	leading	to	smaller	confidence	in-
tervals	for	the	effect	size,	and	a	higher	chance	that	the	null	hypothesis	
is	rejected	(because	0	is	not	contained	within	the	range	covered	by	the	
confidence	intervals).	As	the	equations	contain	many	terms,	it	is	rela-
tively	easy	for	a	small	error	to	creep	into	the	computation	of	the	effect	
sizes	and	confidence	intervals,	although	this	may	be	avoided	through	
the	use	of	openly	available	statistical	software	such	as	 the	R	 library	
multiplestressR	(Burgess	&	Murrell,	2021).

In	case	the	reader	is	in	any	doubt	about	the	potential	importance	
of	interactions	relative	to	the	single	stressor	effects	we	use	data	on	
bee	responses	to	a	range	of	agrochemicals,	nutrient	stressors,	and	
parasites	 published	 in	 Siviter	 et	 al.	 (2021)	 to	 highlight	 how	 single	
stressor	and	multiple	 stressor	effect	 sizes	have	similar	overall	dis-
tributions	(Figure 2).	What	is	also	clear	is	that,	at	least	in	these	data,	
interaction	 effect	 sizes	may	 be	 quite	 large	 even	 though	 single	 ef-
fects	are	negligible	and	vice	versa.	Therefore,	the	absence	of	large	

effect	sizes	in	biological	responses	to	individual	stressors	does	not	
preclude	the	possibility	of	large	effect	sizes	for	the	interaction,	i.e.,	
the	interaction	may	be	very	different	from	the	null	expectation	(and	
therefore	nonadditive)	even	though	responses	to	individual	effects	
are	negligible.

3  |  T YPIC AL SAMPLE SIZES IN MULTIPLE 
STRESSOR E XPERIMENTS

Perhaps	 the	 most	 basic	 question	 an	 empirical	 scientist	 can	 ask	
is	 “Does	 my	 study	 have	 sufficient	 data	 to	 answer	 my	 question?”	
(Johnson	et	al.,	2015).	In	multiple	stressor	research	this	amounts	to	
asking	whether	 the	sample	size	 is	 sufficient	 to	detect	a	departure	
from	the	null	model	of	a	given magnitude	should	this	be	the	true	in-
teraction.	We	 emphasize	 the	 qualification	 of	 a	 given magnitude as 
this	 is	where	the	researcher	has	to	determine	a	priori	the	smallest	
deviation	 from	 the	 null	 expectation	 that	 is	 biologically	 important.	
This	 concept	 has	 not	 been	 discussed,	 but	 is	 critical	 to	 know	 how	
likely	we	are	to	be	missing	important	non-	null	stressor	interactions,	
and	is	a	point	we	focus	on	in	more	detail	below.

In	the	absence	of	any	guidance	based	on	the	understanding	of	
the	null	models,	researchers	have	to	make	sample	size	decisions	that	
are	likely	more	determined	by	resource	constraints	(financial,	time,	
or	space	costs;	Boyd	et	al.,	2018;	Rineau	et	al.,	2019),	or	heuristic	
arguments	(such	as	a	rule	of	thumb	value	that	is	not	based	on	power	
analyses).	Perhaps	as	a	consequence	of	the	lack	of	statistical	guid-
ance,	the	number	of	replicates	in	experiments	to	investigate	stressor	

(4)CIAdd = Z
�∕2 ∙ SEAdd ,

F I G U R E  2 Scatter	plot	of	Hedge's	d	
effect	sizes	for	bee	health	response	to	
single	stressors	(x-	axis)	and	the	interaction	
of	two	stressors	(y-	axis).	Data	is	taken	from	
the	meta-	analysis	of	Siviter	et	al.	(2021),	and	
we	plot	the	absolute	value	for	the	effect	
sizes	on	a	logarithmic	scale.	Interaction	
effect	sizes	(ESADD)	are	computed	assuming	
the	additive	null	model,	using	equation	(1).	
Single	stressor	effect	size	is	computed	using	
the escalc	function	in	the	R	library	metafor 
(Viechtbauer,	2010).	The	straight	line	is	the	
line y = x,	therefore	denoting	the	special	
case	where	the	absolute	value	of	the	single	
and	interaction	effect	sizes	are	equal.	Points	
below	this	line	denote	single	stressor	effect	
sizes	larger	in	absolute	value	than	stressor-	
pair	interaction	effect	sizes	and	those	above	
the line denote the opposite relationship.
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interactions	rarely	reaches	double	figures.	For	example,	two	recent	
meta-	analyses	 (Gomez	 Isaza	 et	 al.,	 2020;	 Seifert	 et	 al.,	 2020)	 in-
cluded	no	experiments	with	more	than	six	replicates	per	treatment,	
while	a	 third	 (Burgess	et	al.,	2021)	 found	<1%	of	 the	experiments	
used	more	than	eight	replicates	per	treatment	(Figure 3).	Exceptions	
to	this	trend	tend	to	focus	on	individual-	level	responses	with	recent	
examples	taken	from	honeybee	health	responses	to	multiple	pesti-
cides	 (Bird	et	al.,	2021)	where	the	control	 treatment	mean	sample	
size	was	179.33,	and	bee	responses	to	pairs	of	agrochemicals	where	
the	control	treatment	mean	sample	size	for	studies	where	these	data	
are	publicly	available	was	115.62	(Siviter	et	al.,	2021).

The	 importance	 of	 sample	 size	 for	 detecting	 interactions	 be-
tween	 pairs	 of	 co-	occurring	 stressors	 has	 only	 recently	 been	 ac-
knowledged.	Using	simulated	data	created	from	a	food	web	model	
Burgess	 et	 al.	 (2021)	 showed	 how	 even	 low	 levels	 of	 observation	
error,	where	99%	of	all	measured	responses	were	within	10%	of	the	
true	response	value,	can	lead	to	the	inability	to	detect	the	true,	non-
additive	interaction	in	the	majority	of	cases	at	typical	sample	sizes	
of	Nx = 4.	In	other	words,	even	small	levels	of	noise	can	overwhelm	
the	biological	signal	when	sample	sizes	are	low.	Burgess	et	al.	(2021)	
concluded	 that	 the	 large	proportion	of	perceived	additive	 interac-
tions	 in	their	freshwater-	focused	dataset	could	easily	be	explained	
by	the	low	sample	sizes	(Figure 3),	and	that	many	possibly	biologi-
cally	important	nonadditive	stressor	interactions	were	being	missed.	
However,	while	this	warning	is	useful,	it	does	not	answer	the	ques-
tion	of	how	many	replicates	are	required.

4  |  CRITIC AL EFFEC T SIZES:  THE 
SMALLEST DETEC TABLE INTER AC TIONS

The	 ability	 to	 detect	 a	 non-	null	 interaction	 is	 dependent	 on	 the	
strength	of	the	interaction,	the	variation	of	the	biological	responses,	
and	the	sample	sizes	(i.e.,	Xx, SDx, and Nx),	as	well	as	the	level	of	sta-
tistical	significance	α.	Both	Xx and SDx	are	unknowns	and	are	to	be	
estimated	 in	the	experiments,	whereas	Nx	 (barring	resource	costs),	
and α,	are	both	choices	of	the	researchers.	The	importance	of	sam-
ple	size	in	detecting	non-	null	interactions	can	be	illustrated	with	an	
empirical	example	(Figure 4).	Here,	we	use	the	additive	null	model	
to	determine	the	effect	of	stressor	pairs	on	bee	health	data	(Siviter	
et al., 2021),	which	comprises	a	wide	range	of	sample	sizes.	As	ex-
pected,	increasing	sample	size	results	in	an	increased	ability	to	de-
tect	non-	null	interactions,	and	we	can	see	how	greater	sample	sizes	
allow	 weaker	 non-	null	 interactions	 to	 be	 identified	 and	 classified	
(Figure 4).

For	each	sample	size,	there	is	a	minimum	effect	size	that	an	ex-
periment	will	 be	 able	 to	 distinguish	 as	 being	 statistically	 different	
from	the	null	model	(illustrated	by	the	black	lines	in	Figure 3).	Effect	
sizes	below	 this	 threshold	denote	 interactions	 that	 cannot	be	dis-
tinguished	from	the	null	model	expectation	of	additivity	at	the	cho-
sen	level	of	statistical	significance.	This	threshold,	referred	to	as	the	
Critical Effect Size	(see	Lakens,	2022;	Mudge	et	al.,	2012),	can	be	ex-
actly	calculated	for	the	additive	null	model	(the	equation	for	which	is	

detailed	in	the	Appendix	S1	but	can	be	computed	using	the	R	library	
multiplestressR;	Burgess	&	Murrell,	2021).	Analysis	of	the	bee	health	
data	 (Siviter	et	al.,	2021)	 shows	how	 the	critical	effect	 size	 (ESAdd)	
predicts	nonadditive	 interactions	and	verifies	the	expectation	that	
only	very	large	effect	sizes	can	reject	the	null	expectation	of	addi-
tivity	when	sample	sizes	are	below	20	per	treatment	(Figure 4).	At	
the	very	low	sample	sizes	that	typify	multiple	stressor	research,	es-
pecially	for	population-		and	community-	level	responses,	effect	sizes	
have	to	be	very	large	(e.g.,	for	Nx = 4, ESAdd ∼ 2)	in	order	for	nonaddi-
tive	interactions	to	be	detected.

5  |  STATISTIC AL POWER

The	 critical	 effect	 size	 is	 the	 smallest	 detectable	 effect	 size	 for	 a	
given	 sample	 size,	 but	 due	 to	 sampling	 variation,	 we	 can	 expect	
the	 estimated	 effect	 size	 to	 differ	 between	 repeat	 experiments.	
Statistical	power	represents	the	proportion	of	these	repeat	experi-
ments	that	would	correctly	result	in	the	rejection	of	the	null	model	
expectation,	assuming	a	nonadditive	interaction	exists,	and	we	ex-
plore	this	using	a	data	simulation	approach.	Although	any	single	ef-
fect	size	can	be	generated	by	an	infinite	number	of	combinations	of	
treatment	means	and	treatment	standard	deviations,	we	use	a	sim-
ple	example	to	illustrate	low	sample	sizes	yield	low	power	to	detect	
nonadditive interactions.

We	set	the	expected	control	treatment	mean	biological	response	
(e.g.,	survival	probability)	to	E

(

Xc

)

= 0.8. The expected responses to 
two	separate	stressors	(e.g.,	pesticides,	A	and	B)	are	assumed	to	be	
the	same,	and	we	set	E

(

XA

)

 = E
(

XB

)

= 0.65, whereas the expected 
mean	of	the	response	to	both	stressors	acting	simultaneously	is	al-
lowed	to	vary	E

(

XI

)

∈ {0.525, 0.55, 0.60, 0.65}.	In	all	treatments	the	
expected standard deviation E

(

SDx

)

= 0.05.	These	values	for	E
(

XI

)

 
and E

(

SDx

)

	give	rise	to	expected	effect	sizes	E
(

ESADD
)

= {3, 2, 1, 0.5} ,	
respectively.	In	all	cases,	the	interactions	are	less	than	the	additive	
prediction	 and	 should	 result	 in	 an	 antagonistic	 interaction	 being	
inferred.	 For	 simplicity,	 we	 assume	 all	 treatments	 have	 the	 same	
replication	number,	so	NC = NA = NB = NI = n.	We	simulate	1000	“ex-
periments”	for	each	combination	of	n and E

(

XI

)

,	and	assume	treat-
ment	values	are	sampled	from	a	Gaussian	distribution	with	standard	
deviation �x = E

(

SDx

)

,	and	means	given	by	the	expected	treatment	
means	E

(

Xx

)

.	We	then	use	multiplestressR	(Burgess	&	Murrell,	2021, 
2022)	to	test	whether	we	can	correctly	reject	the	null	model	of	an	
additive	interaction	in	favor	of	an	antagonistic	interaction	for	each	
“experiment,”	and	from	this,	we	compute	the	statistical	power.

Simulating	 effect	 sizes	 under	 these	 parameters	 shows	 clearly	
that	low	sample	sizes	lead	to	low	statistical	power	size	(Figure 5a).	
For	example,	when	n =	3,	only	about	50%	of	experiments	would	re-
sult	 in	 the	 correct	 rejection	of	 the	null	model	when	 the	expected	
effect	size	is	3.	The	problems	are	predictably	worse	for	smaller	ef-
fect	 sizes,	 and	 even	n =	 20	 results	 in	 the	 power	 of	 only	 approxi-
mately	0.5	when	the	expected	effect	size	 is	1.	To	get	power	of	at	
least	0.8	requires	samples	sizes	of	approximately	5,	9,	34	and > 100	
for	E

(

ESADD
)

= {3, 2, 1, 0.5},	respectively.	As	shown	in	Figure 2,	most	
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empirical	interaction	effect	sizes	are	below	1,	and	this	means	n > 18	
is	required	to	correctly	reject	the	additive	null	model	at	least	half	the	
time.	Adjusting	the	parameters	to	get	the	same	effect	sizes	but	with	
�x = 0.025,	for	x ∈ {C,A,B, I},	shows	treatment	variance	that	makes	
a	negligible	difference	(see	Figure	S2)	and	verifies	earlier	work	that	
shows	Gaussian	 distributed	observation	 errors	 have	 to	 be	 unreal-
istically	small	(𝜎x < 0.0001)	in	order	to	lead	to	a	high	detection	rate	

(Burgess	et	al.,	2021).	However,	as	shown	by	Burgess	et	al.	(2021)	for	
n =	4,	reducing	treatment	variation	(i.e.,	lowering	E

(

SDx

)

 while keep-
ing	expected	treatment	means	constant)	will	result	 in	 larger	effect	
sizes	and	will	therefore	increase	the	power	to	detect.

A	consequence	of	 low	statistical	power	 is	that	considering	only	
the	 statistically	 significant	 interactions	 may	 lead	 to	 the	 reporting	
of	 statistical	 outliers.	 Figure 5b	 shows	 examples	 for	 a	 synergistic	

F I G U R E  3 The	frequency	distribution	
of	control	treatment	sample	sizes	from	
a	dataset	of	545	stressor	interactions	
in	freshwater	ecosystems	(Burgess	
et al., 2021).

F I G U R E  4 The	effect	of	sample	size	on	the	ability	to	detect	interactions	with	different	effect	sizes	for	the	bee	health	responses	to	
multiple	stressors	in	Siviter	et	al.	(2021).	Open	squares	denote	data	points	that	are	statistically	indistinguishable	from	the	null	model	of	
an	additive	interaction	(i.e.,	the	null	model	that	co-	occurring	stressors	are	simply	the	sum	of	their	individual	effects).	Data	points	that	
lead	to	the	rejection	of	the	null	model	can	be	assigned	as	synergistic	(purple	triangles),	antagonistic	(green	circles),	or	reversals	(yellow	
diamonds).	The	black	lines	denote	the	critical	effect	size	that	separates	the	region	of	detectable	departure	from	the	null	model	at	the	5%	
level	of	significance.	The	median	sample	size	per	treatment	is	plotted	on	the	x-	axis.	A	small	number	of	null	interactions	appear	outside	of	
the	null	region	where	the	experiment	had	uneven	sample	sizes	between	treatments,	but	for	clarity	of	presentation,	the	critical	effect	size	
is	computed	under	the	assumption	of	equal	sample	sizes	within	each	study.	Results	were	generated	using	the	multiplestressR R package 
(Burgess	&	Murrell,	2021, 2022),	with	code	to	reproduce	this	figure	provided	in	the	Appendix	S1.
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interaction	(E
(

XI

)

= 0.45; E
(

SDx

)

= 0.05,	other	parameters	as	before)	
and	 an	 antagonistic	 interaction	 (E

(

XI

)

= 0.55; E
(

SDx

)

= 0.05, other 
parameters	as	before)	for	a	range	of	sample	sizes.	The	expected	(or	
true)	effect	sizes	are	E

(

ESADD
)

= 1, and E
(

ESADD
)

= − 1,	respectively.	

The	critical	effect	size	determines	 the	smallest	effect	size	 that	can	
result	 in	 a	 nonadditive	 interaction	 being	 detected,	 so	 detected	 ef-
fect	sizes	are	always	larger	than	this	value.	In	our	examples,	the	mean	
detected	 interaction	 effect	 size	 only	 approaches	 the	 true	 interac-
tion	effect	size	at	around	n =	40,	and	at	small	sample	sizes	the	mean	
detected	effect	size	 is	approximately	three	times	the	magnitude	of	
the	true	effect	size	(Figure 5b).	This	shows	how	publishing	only	sta-
tistically	significant	results	from	experiments	with	low	sample	sizes	
leads	to	an	overestimation	of	nonadditivity,	a	problem	that	has	also	
been	 highlighted	 for	 biological	 responses	 to	 single	 stressors	 (Yang	
et al., 2022).

6  |  SMALLEST INTER AC TION OF 
INTEREST:  WHAT IS A BIOLOGIC ALLY 
ME ANINGFUL INTER AC TION?

Up	to	now,	our	discussion	has	largely	related	to	statistical	but	not 
biological	 significance,	 i.e.,	we	 have	 asked:	 (1)	what	 is	 the	 small-
est	effect	size	we	can	detect,	and	(2)	what	is	our	statistical	power	
for	 a	 given	 sample	 size?	 As	 we	 have	 shown,	 small	 sample	 sizes	
can	lead	to	the	detection	of	only	large	effect	sizes	and	therefore	
highly	nonadditive	interactions	(Figure 4),	but	at	the	other	end	of	
the	 scale	 infinitely	 large	 sample	 sizes	 can	 detect	 infinitely	 small	
departures	 from	 additivity	 (i.e.,	 the	 lines	 in	 Figure 4	 asymptote	
slowly	to	0).	So,	while	small	sample	sizes	 likely	miss	key	stressor	
interactions,	 large	 sample	 sizes	 can	 waste	 resources	 (Figure 1)	
and	 uncover	 biologically	 insignificant	 stressor-	pair	 interactions.	
To	 avoid	 either	 of	 these	 outcomes,	 the	 researcher	 needs	 to	 de-
termine	the	smallest	 interaction	that	would	lead	to	a	biologically	
meaningful	deviation	from	the	null	model	before	the	experiment	
is	run	(to	avoid	any	bias	from	knowing	the	result).	We	define	this	
interaction	 as	 the	minimum	 biological	 effect	 size,	 and	we	 argue	
this	depends	upon	both	the	study	system	and	response	of	 inter-
est.	 For	 example,	 a	 researcher	may	want	 to	 determine	whether	
two	stressors	combine	to	affect	a	response	(e.g.,	juvenile	survival	
rates)	in	a	nonadditive	manner	for	an	endemic	or	threatened	spe-
cies.	In	this	scenario	it	is	important	to	be	able	to	detect	a	small	de-
viation	from	additivity	(i.e.,	a	small	effect	size)	as	failing	to	detect	
even	a	weak	 interaction	may	 lead	 to	 the	wrong	mitigation	strat-
egy	being	selected	and	potentially	exacerbate	the	effects	of	these	
stressors	to	the	detriment	of	the	study	system	(Brown	et	al.,	2013; 
Côté	et	al.,	2016).	Commonplace	sample	sizes	(e.g.,	4	replicates	per	
treatment)	 are	 not	 adequate	 for	 this	 question	 (Figures 4 and 5),	
and	the	researcher	will	likely	need	to	implement	sample	sizes	that	
are	multiple	(two	or	more)	times	larger	than	those	commonly	used.	
There	 may	 be	 other	 situations	 where	 a	 smaller	 effect	 is	 not	 so	
important,	 implying	smaller	samples	are	adequate,	such	as	moni-
toring	abundance	declines	in	a	system	with	high	functional	redun-
dancy,	but	even	here,	care	needs	to	be	taken	since	concerns	have	
been	raised	regarding	publication	bias	leading	to	the	overestima-
tion	of	stressor	effects	from	experiments	with	small	sample	sizes	
(Figure 5b,	Yang	et	al.,	2022).

F I G U R E  5 The	effect	of	sample	size	on	(a)	the	power	to	detect	
nonadditive	interactions	of	different	strengths	as	determined	by	
the	effect	sizes	(ES);	and	(b)	the	bias	toward	overestimating	the	
strength	of	the	departure	from	additivity	when	considering	only	
those	interactions	that	result	in	a	statistically	significant	result.	
Data	are	simulated	with	two	stressors	causing	the	same	response	
when	operating	in	isolation	and	all	treatment	standard	deviations	
are	set	to	have	the	same	value.	In	(a)	the	expected	interaction	
treatment	mean	is	varied	to	generate	the	different	expected	effect	
sizes.	In	(b)	the	mean	detected	effect	size	averages	over	only	those	
simulations	where	the	null	model	is	rejected.	In	both	panels,	the	
data	points	are	computed	from	1000	simulations	(“experiments”)	
for	the	same	set	of	parameters	at	each	sample	size.	See	the	main	
text	for	more	details	of	the	simulations.
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How	should	the	minimum	effect	size	of	interest	be	determined?	
Although	it	might	seem	tempting	to	use	the	heuristic	guidelines	pro-
posed	by	Cohen	(1988)	for	small,	medium,	and	large	effect	sizes,	we	
do	not	believe	 they	are	 appropriate	 for	multiple	 stressor	 research	
due	to	the	heterogeneity	in	systems,	responses,	and	stressors.	For	
example,	would	we	decide	upon	the	same	minimum	effect	size	for	
survival	responses	at	different	stages	in	a	species'	life	cycle?	In	any	
case,	these	guidelines	only	relate	to	Cohen's	d	or	Hedge's	d and do not 
apply	to	null	models	such	as	the	multiplicative	null	model	that	oper-
ates	on	a	different	scale.	Other	ways	that	the	minimum	effect	size	of	
biological	interest	could	be	determined	include	guidance	from	eco-
logical	theory,	and	results	of	previous	meta-	analyses	(Lakens,	2022).	
However,	 in	 order	 for	 a	 theoretical	model	 to	 be	 a	 useful	 guide,	 it	
needs	to	be	an	adequate	approximation	to	the	stressors,	biological	
system,	and	response	under	scrutiny.	This	is	a	tall	ask	since	it	is	likely	
that	empirical	evidence	is	required	to	calibrate	the	model	in	the	first	
place,	 in	which	case	 there	 is	already	some	evidence	 that	could	be	
used	(carefully)	to	consider	the	number	of	replicates	required.	The	
results	 of	 previous	 meta-	analyses	 could	 act	 as	 a	 guide,	 although	
again	care	needs	to	be	taken	since	it	is	possible	that	publication	bi-
ases	toward	biologically	novel	but	not	necessarily	statistically	robust	
effect	 sizes	 (Filazzola	&	Cahill,	2021)	 could	affect	 summary	effect	
sizes.	Moreover,	meta-	analyses	 in	ecology	and	evolution	often	 re-
port	high	levels	of	heterogeneity	(Senior	et	al.,	2016)	compared	with	
human	clinical	trials	since	ecological	and	evolutionary	studies	often	
focus	on	multiple	taxa,	in	real-	world	environments,	that	are	subject	
to	many	different	 forms	of	 environmental	 and	biological	 variation	
(Burgess	et	al.,	2021;	Côté	et	al.,	2016).	It	is	therefore	hard	to	know	
whether	the	summary	effect	sizes	reported	in	these	meta-	analyses	
are	 relevant	 for	other,	more	 focused,	 studies	 that	might	be	asking	
subtly	different	questions	involving,	for	example,	different	stressors	
or responses.

7  |  CONSEQUENCES AND 
RECOMMENDATIONS

Overall,	we	 do	 not	 believe	 there	 is	 a	 simple	 answer	 to	 the	 small-
est	effect	size	of	biological	interest.	Instead,	we	propose	research-
ers	 use	 their	 expert	 knowledge	 to	 use	 values	 for	 the	 treatment	
means	and	standard	deviations	and	estimate	power	using	the	sim-
ple	R	function	(interaction_power)	we	used	to	generate	Figure 5.	For	
example,	 it	might	be	decided	 that	a	10%	deviation	 from	additivity	
would	constitute	a	biologically	 important	 stressor	 interaction,	and	
along	with	estimates	of	treatment	means	and	standard	deviations,	
the	code	could	be	used	to	explore	likely	 levels	of	statistical	power	
for	a	range	of	sample	sizes.	This	will	give	at	 least	a	ballpark	figure	
before	the	experiment	is	completed	and	may	give	the	opportunity	to	
increase	sample	sizes	as	appropriate.	We	also	add	that	the	code	can	
be	employed	to	estimate	power	for	either	additive	or	multiplicative	
null	models	 (see	Appendix	 S1).	More	 generally,	 the	 sweet	 spot	 of	
sample	size	is	dependent	on	the	trifecta	of	resource	costs,	statistical	
power,	and	minimum	effect	of	biological	interest,	and	failure	to	take	

any	of	 these	 into	consideration	may	 limit	 the	effectiveness	of	any	
experiment	 (Figure 1).	However,	 it	seems	 likely	that	 in	many	cases	
Nx = 4	 does	 in	 fact	 lead	 to	biologically	 important	on-	null	 stressor-	
pair	interactions	being	left	undetected	(Figures 4 and 5),	and	given	
the	relationship	between	critical	effect	size	and	sample	size,	20	rep-
licates	(or	more)	might	be	desirable.

The	recent	meta-	analyses	of	how	pairs	of	pesticides	interact	to	
affect	bee	health	(Bird	et	al.,	2021;	Siviter	et	al.,	2021)	are	examples	of	
experiments	with	very	large	sample	sizes,	and	the	fact	that	they	both	
focus	on	studies	at	the	individual	level	highlights	how	this	might	be	
a	resource-	efficient	way	to	increase	replicate	numbers.	This	echoes	
earlier	calls	to	focus	on	individual-	level	responses	to	stressors	as	it	
is	the	fate	and/or	behavior	of	the	individual	who	is	directly	affected	
(e.g.,	Maltby,	1999).	However,	 responses	at	other	 (higher)	 levels	of	
biological	 complexity	 such	 as	 population,	 community,	 and	 ecosys-
tem	 are	 also	 likely	 to	 be	 of	 interest	 because	 it	 is	 the	 response	 of	
these	levels	that	may	matter	the	most	from	a	stressor	management	
standpoint	(Simmons	et	al.,	2021).	Moreover,	because	each	species	
is	embedded	within	a	food	web,	 interactions	between	species	can	
lead	 to	compensatory	 (antagonistic)	or	 synergistic	effects	 that	are	
not	observed	for	individual	species	in	isolation	(Burgess	et	al.,	2021; 
Christensen et al., 2006;	Simmons	et	al.,	2021).	Unfortunately,	it	is	
much	 harder	 to	 increase	 the	 sample	 sizes	 of	many	mesocosm	 ex-
periments	for	these	higher	levels	of	organization	simply	due	to	the	
financial	cost,	space,	and	time	required	to	manage	large	sample	sizes	
for	all	four	treatments	(Boyd	et	al.,	2018).	One	alternative	to	boost	
within-	study	replication	is	to	use	coordinated	networks	of	research-
ers	who	ask	the	same	experimental	question(s)	across	multiple	sites,	
using	the	same	protocol	(Filazzola	&	Cahill,	2021;	Yang	et	al.,	2022).	
An	example	of	 this	 is	 the	Nutrient	Network	 (NutNet)	organization	
(https://nutnet.org/)	that	among	its	key	questions	asks:	To	what	ex-
tent	 are	 plant	 production	 and	 diversity	 co-	limited	 by	multiple	 nu-
trients	in	herbaceous-	dominated	communities?	Another	instance	of	
this	linked	approach	is	the	Managing	Aquatic	ecosystems	and	water	
resources	under	multiple	stress	(MARS)	project	(Hering	et	al.,	2015)	
that	has	investigated	the	responses	of	a	large	number	of	European	
water	bodies	to	multiple	stressors	(e.g.,	Birk	et	al.,	2020).	As	always,	
there	is	no	silver	bullet,	and	coordinated	networks	may	suffer	from	
increases	 in	 data	heterogeneity	 due	 to	 the	multiple-	site	 nature	of	
the	network	and	the	natural	environmental	and	biological	variation	
this	 includes,	but	also	because	 small,	 but	 important	differences	 in	
protocol	may	occur	simply	due	to	the	number	of	research	teams	im-
plementing	the	framework	(Filazzola	&	Cahill,	2021).

Our	discussions	of	null	models	and	sample	sizes	have	been	re-
stricted	 to	 investigations	of	pairs	of	 stressors,	 yet	we	know	many	
ecosystems	 are	 being	 challenged	 with	 more	 than	 two	 stressors	
(Halpern	 et	 al.,	 2015).	 For	 example,	Nõges	 et	 al.	 (2016)	 identified	
European	 waters	 with	 up	 to	 seven	 co-	acting	 stressors,	 although	
two	 co-	acting	 stressors	 were	 the	 most	 common,	 being	 identified	
in	 42%	 of	 cases.	 Similarly,	 there	 have	 been	 calls	 for	 investigating	
the	 responses	 to	 stressors	 at	multiple	 levels	 of	 intensity	 (Polazzo	
et al., 2021;	Schäfer	&	Piggott,	2018),	since	responses	at	low	and	high	
stressor	intensities	may	differ	greatly	(Beaumelle	et	al.,	2020; Dixon 

https://nutnet.org/
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et al., 2020)	and	result	in	different	interactions	being	detected	(Ma	
et al., 2020).	In	both	cases,	sample	sizes	will	need	to	be	even	larger	
than	for	two	stressors	each	at	a	single	intensity,	and	as	we	have	al-
ready	found,	many	experiments	are	probably	greatly	underpowered	
even	in	this	simpler	scenario.	In	order	to	maximize	the	outcome	for	
the	 input	 of	 resources,	 we	 suggest	 that	 individual	 studies	 should	
first	try	to	boost	sample	sizes	for	simpler	experiments	before	add-
ing	 in	 further	 complexity,	 and	 encourage	 investigations	of	 greater	
than	 two	 stressors	 and/or	multiple	 intensities	 to	 use	 coordinated	
networks	where	the	sample	sizes	can	be	distributed	across	multiple	
research	teams,	or	focus	on	individual-	level	responses	where	sample	
sizes	may	more	easily	run	into	the	hundreds	(e.g.,	Bird	et	al.,	2021; 
Siviter	et	al.,	2021).

Ultimately,	 resource	constraints	may	mean	 it	 is	not	possible	
to	design	an	experiment	with	adequate	sample	sizes	 to	capture	
biologically	 interesting/important	stressor-	pair	 interactions,	es-
pecially	for	studies	on	responses	at	higher	levels	of	biological	or-
ganization.	 Interpretation	 of	 experiments	 based	 on	 low	 sample	
sizes	should	be	cautious	and	it	should	be	remembered	that	failure	
to	 reject	 the	 null	 model	 is	 not	 evidence	 that	 the	 null	 model	 is	
true.	Hence,	failure	to	detect	a	nonadditive	interaction	between	
two	stressors	should	not	be	associated	with	conclusions	that	the	
interaction	is	additive,	only	that	there	is	insufficient	evidence	to	
show	otherwise.	Alternative	statistical	tests	such	as	equivalence	
tests	(Lakens,	2017)	are	required	to	determine	whether	any	de-
viation	 from	 the	null	 expectation	 is	 trivially	 small,	 and	 that	 the	
interaction	can	 therefore	be	deemed	additive.	However,	exper-
iments	with	 small	 samples	 are	 useful	 as	 they	 can	 provide	 data	
for	meta-	analyses	that	collate	individual	experiments	together	to	
greatly	increase	the	power	to	correctly	reject	the	null	model	(e.g.,	
Crain et al., 2008;	Jackson	et	al.,	2016;	Przeslawski	et	al.,	2015).	
The	 key	 point	 is	 that	 to	 aid	 general	 understanding,	 and	 avoid	
publication	bias	(e.g.,	Figure 5b),	it	is	crucial	that	all	experiments	
are	published	with	the	data	made	openly	available	(i.e.,	the	three	
components	of	sample	size,	mean,	and	standard	deviation/error	
or	variance	 for	each	 treatment)	and	not	 just	 those	experiments	
that	 detect	 “interesting”	 non-	null	 stressor-	pair	 interactions	
(Filazzola	&	Cahill,	2021).	Indeed,	it	is	likely	that	publication	bias	
is	 leading	 to	 the	effects	of	anthropogenic	stressors	being	over-
estimated	 (Yang	 et	 al.,	 2022),	 while	 multiple	 stressor	 ecology	
suffers	 from	 the	 erroneous	 over-	reporting	 of	 synergistic	 inter-
actions	(Côté	et	al.,	2016).	Unfortunately,	there	are	still	many	pa-
pers	that	do	not	report	or	make	their	data	(i.e.,	treatment	means	
etc.)	readily	available.	For	example,	Burgess	et	al.	 (2021)	 identi-
fied	122	papers	that	appeared	suitable	for	their	meta-	analysis	of	
freshwater	stressor	interactions,	but	66	had	to	be	discarded	due	
to	missing	data	or	having	figures	that	were	too	unclear	for	data	
extraction.	 Not	 reporting	 these	 data	 represent	 a	 waste	 of	 re-
sources,	as	it	prevents	future	analyses	(which	are	often	unantic-
ipated	during	the	original	study)	from	being	conducted	(Hanson	
&	Walker,	2020).

In	summary,	we	make	two	main	recommendations.	Firstly,	we	
urge	researchers	to	make	all	data	(sample	sizes,	mean	and	standard	

deviation	 of	 each	 treatment)	 easily	 available,	 regardless	 of	 sta-
tistical	 significance.	 Secondly,	 we	 ask	 researchers	 to	 state	 the	
observed	effect	size(s)	and	the	critical	effect	size(s)	if	using	the	ad-
ditive	null	model,	and	give	an	estimate	of	statistical	power	(e.g.,	by	
using	data	simulated	using	our	code)	of	the	experiment(s).	Giving	
all	this	extra	information	will	help	to	give	an	idea	of	the	adequacy	
of	the	sample	size	implemented,	and	will	also	aid	interpretation	of	
the	results.

8  |  CONCLUSIONS

Our	aim	here	was	to	open	the	discussion	regarding	sample	sizes	
in	 multiple	 stressor	 research	 and	 show	 that	 before	 we	 ask	 the	
question	“how	much	data	do	I	need?”	we	first	need	to	answer	the	
question	“what	is	a	biologically	important	interaction?”	Increasing	
sample	 sizes	will	 always	 lead	 to	 an	 improvement	 in	 our	 statisti-
cal	ability	to	detect	unexpected	stressor-	pair	interactions,	but	at	
extreme	sample	sizes,	we	will	 likely	be	detecting	only	very	small	
departures	from	the	null	model	and	these	may	not	necessarily	be	
relevant	for	management	decisions.	Setting	the	 lower	bound	for	
an	interesting	stressor-	pair	interaction	is	critical	to	knowing	what	
sample	sizes	are	required.	This	lower	bound	is	very	much	depend-
ent	on	the	system,	stressors,	and	response	variable	being	meas-
ured,	so	we	believe	it	can	only	be	tackled	using	expert	knowledge.	
Currently,	 it	 is	our	view	that	many	experiments	are	 likely	under-
powered	 and	 missing	 biologically	 important	 interactions,	 but	
studies	that	mostly	focus	on	individual-	level	responses	to	stress-
ors	may	be	more	adequately	sampled.	Strategies	such	as	research	
networks	may	help	increase	sample	sizes	for	higher	levels	of	bio-
logical	organization	such	as	communities,	but	there	is	still	value	in	
conducting	smaller-	scale	studies,	provided	they	are	all	published	
to	avoid	publication	bias,	and	the	data	are	made	freely	available	
since	 they	 can	 contribute	 to	 meta-	analyses	 and	 aid	 the	 design	
of	 subsequent	 experiments.	We	also	urge	 the	 reporting	of	 esti-
mated	power,	which	will	aid	the	interpretation	of	results.	Finally,	
although	we	 have	 focused	 on	 the	 commonly	 used	 additive	 and	
multiplicative	null	models,	there	are	a	number	of	other	null	mod-
els	that	have	been	proposed	(e.g.,	Dey	&	Koops,	2021;	Schäfer	&	
Piggott,	2018),	and	to	date,	there	is	no	guidance	on	sample	sizes	
required	to	detect	non-	null	 interactions	of	any	given	magnitude.	
This	needs	to	be	remedied.	Until	we	can	quantify	the	abilities	of	
the	 statistical	 models	 to	 detect	 different	 strengths	 of	 interac-
tions,	we	will	 be	 kept	 in	 the	 dark	 about	 how	many	 unexpected	
interactions	we	are	missing,	and	the	amount	of	data	required	to	
uncover	them.
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