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Abstract
As most ecosystems are being challenged by multiple, co-occurring stressors, an im-
portant challenge is to understand and predict how stressors interact to affect bio-
logical responses. A popular approach is to design factorial experiments that measure 
biological responses to pairs of stressors and compare the observed response to a 
null model expectation. Unfortunately, we believe experiment sample sizes are in-
adequate to detect most non-null stressor interaction responses, greatly hindering 
progress. Using both real and simulated data, we show sample sizes typical of many 
experiments (<6) can (i) only detect very large deviations from the additive null model, 
implying many important non-null stressor-pair interactions are being missed, and (ii) 
potentially lead to mostly statistical outliers being reported. Computer code that sim-
ulates data under either additive or multiplicative null models is provided to estimate 
statistical power for user-defined responses and sample sizes, and we recommend 
this is used to aid experimental design and interpretation of results. We suspect that 
most experiments may require 20 or more replicates per treatment to have adequate 
power to detect nonadditive. However, estimates of power need to be made while 
considering the smallest interaction of interest, i.e., the lower limit for a biologically 
important interaction, which is likely to be system-specific, meaning a general guide 
is unavailable. We discuss ways in which the smallest interaction of interest can be 
chosen, and how sample sizes can be increased. Our main analyses relate to the addi-
tive null model, but we show similar problems occur for the multiplicative null model, 
and we encourage similar investigations into the statistical power of other null models 
and inference methods. Without knowledge of the detection abilities of the statistical 
tools at hand or the definition of the smallest meaningful interaction, we will undoubt-
edly continue to miss important ecosystem stressor interactions.
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1  |  INTRODUC TION

Most, if not all, ecosystems are being impacted by multiple co-
occurring stressors (e.g., climate change, invasive species, pollu-
tion), which are predominately anthropogenic in origin (Beauchesne 
et al., 2021; Halpern et al., 2015), and are capable of affecting indi-
viduals through to entire ecosystems (Jackson et al., 2021; Simmons 
et al.,  2021; Sokolova, 2021). At the individual level, responses to 
multiple stressors might be assessed by their joint effect on the phys-
iology of an organism, e.g., a decline in feeding, growth, or fecundity, 
or a biochemical change (Nõges et al., 2016), and may also be mea-
sured on survival rates (e.g., bee health responses to agrochemicals, 
Siviter et al., 2021). Population responses to multiple stressors may 
be assessed by monitoring densities, biomass, or other markers such 
as chlorophyll concentrations (e.g., freshwater population responses 
to combinations of invasive species, pesticides, temperature, or UV 
changes, Burgess et al., 2021), whereas ecosystem responses might 
be measured through multiple stressor effects on functional and 
taxonomic diversity (e.g., coral reef species richness responses to 
warming and acidification, Timmers et al., 2021), or through other 
measures of ecosystem integrity (e.g., stability, Polazzo et al., 2021).

Going beyond the effects of single stressors is therefore an im-
portant focus in ecology and key questions are whether and how 
these co-occurring stressors may interact. For example, two stress-
ors operating together may act to amplify their individual effects and 
lead to a synergistic interaction. In this case, their joint effects are 
greater than predicted from their individual effects. This might occur 
for example if one stressor (e.g., dehydration caused by drought) 
reduces the fitness of an individual and makes it more susceptible 
to another stressor such as a disease (Lafferty & Holt, 2003). On 
the other hand, two stressors acting on the same biological pro-
cess could have a negative (interfering) effect on one another and 
therefore lead to an antagonistic effect; their joint effects are less 
than predicted by their individual effects. In extreme cases, this can 
lead to reversal interactions (Jackson et al., 2016) where the com-
bined effect of a pair of stressors has a different sign to those of 
both stressors acting on their own. For example, Boone et al. (2005) 

showed how the combined effect of carbaryl and nitrate decreased 
green frog (Rana clamitans) tadpole growth, even though individually 
both increased tadpole growth.

Cataloging and predicting how often and under what conditions 
synergies and antagonisms might occur can have important implica-
tions for management strategy. In the case of a synergistic interac-
tion between two stressors, removal or reduction in the impact of 
even one stressor could have a large effect. However, more caution 
is required when considering the management of an antagonistic in-
teraction since, if the antagonism is particularly strong, removal of 
one of the stressors could in principle lead to a worse outcome as the 
biological response to the pair of stressors might be less severe than 
the response to either stressor acting alone. Unfortunately, current 
knowledge of how stressors interact to affect ecosystems at vari-
ous scales is limited (Hodgson & Halpern, 2019; Lemm et al., 2021). 
To date, progress has been driven by individual studies that have 
contributed to larger-scale meta-analyses, but relatively few gener-
alizations are possible (Côté et al.,  2016; Orr et al.,  2020). This is 
perhaps not surprising given the broad range of ecosystems, taxo-
nomic groups, and biological responses that have been considered 
(e.g., Ban et al., 2014; Burgess et al., 2021; Lange et al., 2018), but 
another contributory factor that has not been examined is the issue 
of adequate sample sizes in multiple stressor experiments.

We contest that many potentially important stressor-pair inter-
actions are being missed due to low replication number. In order to 
design effective multiple stressor experiments that have adequate 
sample sizes, researchers must consider the trifecta of (i) resource 
costs (whether the design is feasible given time, spatial, and finan-
cial constraints), (ii) the smallest stressor-pair interaction that can be 
detected (statistical power), and (iii) the minimum biological effect 
of interest (Figure 1). However, we believe only resource costs, and 
therefore feasibility, normally factor into experimental design since 
the detection limits of the statistical tools commonly used in stressor 
interactions have not been quantified, and there has been no dis-
cussion on what a biologically important stressor interaction is. We 
define the smallest interaction of interest as the smallest biologically 
relevant deviation from the null expectation and could represent 

F I G U R E  1 The three considerations 
important for determining experimental 
design to investigate how pairs of 
stressors interact, and the trade-offs that 
occur when any of them are more limiting 
than the others.
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the smallest deviation that would warrant a change in management 
strategy compared with the null. Here we will look at sample sizes 
typical of stressor interaction experiments, use empirical examples, 
and analyze statistical models to highlight why it is likely important 
interactions are being missed, and show how the minimum biological 
effect of interest dictates the sample sizes required.

2  |  STRESSORS: MODEL E XPEC TATIONS 
AND INTER AC TIONS

The effects of multiple interacting stressors are commonly deter-
mined through the implementation of null models (e.g., Schäfer & 
Piggott, 2018) where the observed response is compared with an ex-
pectation that the stressors are noninteracting (De Laender, 2018). 
Other methods are available, such as the linear model approach (e.g., 
Spears et al., 2021), but null models continue to enjoy widespread 
use in ecology and evolution (e.g., Flügge et al., 2012; Murrell, 2018; 
Rajala et al., 2019; van Veen & Murrell, 2005). Moreover, linear mod-
els also make assumptions about the form of the interaction (e.g., 
additive), and in any case, the issue of sample size is germane to all ap-
proaches. Of the range of available null models for multiple stressor 
interactions, the additive null model (Gurevitch et al., 2000) is the 
most widely applied (e.g., Burgess et al., 2021; Crain et al.,  2008; 
Siviter et al., 2021) and has the expectation (null hypothesis) that 
the overall effect of the multiple interacting stressors is equal to the 
sum of the effects of the stressors acting individually. In effect, the 
question is: “Do the individual effects of two stressors simply add up 
when they are both present?”

The statistical test is therefore whether the additive null model 
can be rejected in favor of an alternative hypothesis that interac-
tions are: (i) greater than anticipated by the additive null model 
(Synergistic interactions); (ii) less than the sum of the individual 
stressor effects (Antagonistic interactions); or (iii) opposite to that 
suggested by the additive null model (Reversal interactions) (see e.g., 
Jackson et al., 2016; Orr et al., 2020). Although we will focus on the 
additive model and show it has low power to detect nonadditive 
stressor-pair interactions, we also show similar results for the mul-
tiplicative null model (Lajeunesse, 2011), which is argued (Fournier 
et al., 2006), to be preferable for biological responses (e.g., survival) 
that are bounded (see Appendix S1).

The null model approach requires a factorial experiment de-
sign with four treatments that each measure the same biological 
response metric of interest (e.g., individual survival; population 
density or biomass; species richness) under different stressor con-
ditions. Each measure Xx is the mean value of this response metric 
taken over Nx replicates, where x ∈ {C,A,B, I}. The first treatment, C, 
is the control, which is the system (i.e., individual, population, com-
munity) of interest in the absence of either stressor under scrutiny. 
There are two treatments (A, B) that account for the response of the 
system to each of the individual stressors of interest acting in isola-
tion. The final treatment, I , is the estimate of the response to both 
stressors acting simultaneously, i.e., the interaction. Associated with 

each treatment is an estimate of the standard deviation of the re-
sponse to the treatment, and these are denoted by SDX, where again 
x ∈ {C,A,B, I}. All three elements, Xx, SDx, and Nx are required for the 
additive and multiplicative null models, and from this input, each null 
model computes an effect size with associated confidence intervals 
from which the interaction type is inferred.

Effect sizes are used as they can provide a standardized measure 
of the difference between two groups (treatments) and therefore 
enable straightforward comparison of experiments where the bio-
logical response may be on different scales (e.g., density, survival). 
In the case of stressor-pair interactions, the effect size is defined as 
the difference between the response predicted by the null model 
from the individual responses (A and B) and the observed response 
to both stressors acting simultaneously (I). We use the definition of 
effect sizes for factorial experiments under the additive model de-
fined by Gurevitch et al. (2000). The observed interaction effect is 
defined as XO = XI − XC, and the expected response that assumes 
the joint effect is equal to the sum of the individual effects of stress-
ors A and B is defined as XE = XA + XB − 2XC. To compute effect sizes 
(ESAdd), we use Hedge's d, which is unbiased by small sample sizes 
(Hedges & Olkin, 1985). The calculation of the additive effect size, 
(ESAdd), is given as

where s is the pooled standard deviation that takes into account the 
standard deviations (SDX) associated with each treatment mean, and J 
is the small sample bias correction factor (Borenstein et al., 2009). Both 
s and Jare defined in the Appendix S1.

Once computed, we need to know whether ESAdd is statistically 
different from 0 in which case the null hypothesis is rejected in 
favor of an alternative that is dependent on whether ESAdd is pos-
itive or negative (explored in more detail in the Appendix S1). Put 
simply, the test answers whether there is sufficient evidence to de-
fine the stressor interaction as being nonadditive. The test requires 
the construction of confidence intervals (at some specified level of 
statistical significance α), and these in turn require an estimate of 
the standard error for our effect size. The estimate of the variance 
defined by

and from this, the standard error is computed as

with the important observation that the standard error SEAdd is not di-
vided by the square root of the sample size as is the case for normal es-
timates of the sampling distribution of a mean. Standard errors should 

ESAdd =
XE − XO

s
∙ J

(1)=
XI − XA − XB + XC

s
∙ J,

(2)VAdd = J2 ∙

[

1

NI

+
1

NA

+
1

NB

+
1

NC

+

(

ESAdd
)2

2
(

NI + NA + NB + NC

)

]

,

(3)SEAdd =
√

VAdd,
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decrease as more samples are taken, but increasing sample sizes will 
already reduce the variance (Equation 2) and hence SEAdd. Finally, the 
confidence intervals are computed as

with Z
�∕2 being the critical Z-score taken at the statistical level of signif-

icance α. Typically, α = 0.05, and we divide by two as a two-tailed test 
is required because the stressor interaction can be less than, or greater 
than expected under the null model, which means Z

�∕2 = 1.96 . The 
test has df = NI + NA + NB + NC − 4 degrees of freedom. An important 
point to note is how the sample sizes Nx appear at multiple stages in the 
process, with increasing sample sizes leading to smaller confidence in-
tervals for the effect size, and a higher chance that the null hypothesis 
is rejected (because 0 is not contained within the range covered by the 
confidence intervals). As the equations contain many terms, it is rela-
tively easy for a small error to creep into the computation of the effect 
sizes and confidence intervals, although this may be avoided through 
the use of openly available statistical software such as the R library 
multiplestressR (Burgess & Murrell, 2021).

In case the reader is in any doubt about the potential importance 
of interactions relative to the single stressor effects we use data on 
bee responses to a range of agrochemicals, nutrient stressors, and 
parasites published in Siviter et al.  (2021) to highlight how single 
stressor and multiple stressor effect sizes have similar overall dis-
tributions (Figure 2). What is also clear is that, at least in these data, 
interaction effect sizes may be quite large even though single ef-
fects are negligible and vice versa. Therefore, the absence of large 

effect sizes in biological responses to individual stressors does not 
preclude the possibility of large effect sizes for the interaction, i.e., 
the interaction may be very different from the null expectation (and 
therefore nonadditive) even though responses to individual effects 
are negligible.

3  |  T YPIC AL SAMPLE SIZES IN MULTIPLE 
STRESSOR E XPERIMENTS

Perhaps the most basic question an empirical scientist can ask 
is “Does my study have sufficient data to answer my question?” 
(Johnson et al., 2015). In multiple stressor research this amounts to 
asking whether the sample size is sufficient to detect a departure 
from the null model of a given magnitude should this be the true in-
teraction. We emphasize the qualification of a given magnitude as 
this is where the researcher has to determine a priori the smallest 
deviation from the null expectation that is biologically important. 
This concept has not been discussed, but is critical to know how 
likely we are to be missing important non-null stressor interactions, 
and is a point we focus on in more detail below.

In the absence of any guidance based on the understanding of 
the null models, researchers have to make sample size decisions that 
are likely more determined by resource constraints (financial, time, 
or space costs; Boyd et al., 2018; Rineau et al., 2019), or heuristic 
arguments (such as a rule of thumb value that is not based on power 
analyses). Perhaps as a consequence of the lack of statistical guid-
ance, the number of replicates in experiments to investigate stressor 

(4)CIAdd = Z
�∕2 ∙ SEAdd ,

F I G U R E  2 Scatter plot of Hedge's d 
effect sizes for bee health response to 
single stressors (x-axis) and the interaction 
of two stressors (y-axis). Data is taken from 
the meta-analysis of Siviter et al. (2021), and 
we plot the absolute value for the effect 
sizes on a logarithmic scale. Interaction 
effect sizes (ESADD) are computed assuming 
the additive null model, using equation (1). 
Single stressor effect size is computed using 
the escalc function in the R library metafor 
(Viechtbauer, 2010). The straight line is the 
line y = x, therefore denoting the special 
case where the absolute value of the single 
and interaction effect sizes are equal. Points 
below this line denote single stressor effect 
sizes larger in absolute value than stressor-
pair interaction effect sizes and those above 
the line denote the opposite relationship.
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interactions rarely reaches double figures. For example, two recent 
meta-analyses (Gomez Isaza et al.,  2020; Seifert et al.,  2020) in-
cluded no experiments with more than six replicates per treatment, 
while a third (Burgess et al., 2021) found <1% of the experiments 
used more than eight replicates per treatment (Figure 3). Exceptions 
to this trend tend to focus on individual-level responses with recent 
examples taken from honeybee health responses to multiple pesti-
cides (Bird et al., 2021) where the control treatment mean sample 
size was 179.33, and bee responses to pairs of agrochemicals where 
the control treatment mean sample size for studies where these data 
are publicly available was 115.62 (Siviter et al., 2021).

The importance of sample size for detecting interactions be-
tween pairs of co-occurring stressors has only recently been ac-
knowledged. Using simulated data created from a food web model 
Burgess et al.  (2021) showed how even low levels of observation 
error, where 99% of all measured responses were within 10% of the 
true response value, can lead to the inability to detect the true, non-
additive interaction in the majority of cases at typical sample sizes 
of Nx = 4. In other words, even small levels of noise can overwhelm 
the biological signal when sample sizes are low. Burgess et al. (2021) 
concluded that the large proportion of perceived additive interac-
tions in their freshwater-focused dataset could easily be explained 
by the low sample sizes (Figure 3), and that many possibly biologi-
cally important nonadditive stressor interactions were being missed. 
However, while this warning is useful, it does not answer the ques-
tion of how many replicates are required.

4  |  CRITIC AL EFFEC T SIZES:  THE 
SMALLEST DETEC TABLE INTER AC TIONS

The ability to detect a non-null interaction is dependent on the 
strength of the interaction, the variation of the biological responses, 
and the sample sizes (i.e., Xx, SDx, and Nx), as well as the level of sta-
tistical significance α. Both Xx and SDx are unknowns and are to be 
estimated in the experiments, whereas Nx (barring resource costs), 
and α, are both choices of the researchers. The importance of sam-
ple size in detecting non-null interactions can be illustrated with an 
empirical example (Figure 4). Here, we use the additive null model 
to determine the effect of stressor pairs on bee health data (Siviter 
et al., 2021), which comprises a wide range of sample sizes. As ex-
pected, increasing sample size results in an increased ability to de-
tect non-null interactions, and we can see how greater sample sizes 
allow weaker non-null interactions to be identified and classified 
(Figure 4).

For each sample size, there is a minimum effect size that an ex-
periment will be able to distinguish as being statistically different 
from the null model (illustrated by the black lines in Figure 3). Effect 
sizes below this threshold denote interactions that cannot be dis-
tinguished from the null model expectation of additivity at the cho-
sen level of statistical significance. This threshold, referred to as the 
Critical Effect Size (see Lakens, 2022; Mudge et al., 2012), can be ex-
actly calculated for the additive null model (the equation for which is 

detailed in the Appendix S1 but can be computed using the R library 
multiplestressR; Burgess & Murrell, 2021). Analysis of the bee health 
data (Siviter et al., 2021) shows how the critical effect size (ESAdd) 
predicts nonadditive interactions and verifies the expectation that 
only very large effect sizes can reject the null expectation of addi-
tivity when sample sizes are below 20 per treatment (Figure 4). At 
the very low sample sizes that typify multiple stressor research, es-
pecially for population- and community-level responses, effect sizes 
have to be very large (e.g., for Nx = 4, ESAdd ∼ 2) in order for nonaddi-
tive interactions to be detected.

5  |  STATISTIC AL POWER

The critical effect size is the smallest detectable effect size for a 
given sample size, but due to sampling variation, we can expect 
the estimated effect size to differ between repeat experiments. 
Statistical power represents the proportion of these repeat experi-
ments that would correctly result in the rejection of the null model 
expectation, assuming a nonadditive interaction exists, and we ex-
plore this using a data simulation approach. Although any single ef-
fect size can be generated by an infinite number of combinations of 
treatment means and treatment standard deviations, we use a sim-
ple example to illustrate low sample sizes yield low power to detect 
nonadditive interactions.

We set the expected control treatment mean biological response 
(e.g., survival probability) to E

(

Xc

)

= 0.8. The expected responses to 
two separate stressors (e.g., pesticides, A and B) are assumed to be 
the same, and we set E

(

XA

)

 = E
(

XB

)

= 0.65, whereas the expected 
mean of the response to both stressors acting simultaneously is al-
lowed to vary E

(

XI

)

∈ {0.525, 0.55, 0.60, 0.65}. In all treatments the 
expected standard deviation E

(

SDx

)

= 0.05. These values for E
(

XI

)

 
and E

(

SDx

)

 give rise to expected effect sizes E
(

ESADD
)

= {3, 2, 1, 0.5} , 
respectively. In all cases, the interactions are less than the additive 
prediction and should result in an antagonistic interaction being 
inferred. For simplicity, we assume all treatments have the same 
replication number, so NC = NA = NB = NI = n. We simulate 1000 “ex-
periments” for each combination of n and E

(

XI

)

, and assume treat-
ment values are sampled from a Gaussian distribution with standard 
deviation �x = E

(

SDx

)

, and means given by the expected treatment 
means E

(

Xx

)

. We then use multiplestressR (Burgess & Murrell, 2021, 
2022) to test whether we can correctly reject the null model of an 
additive interaction in favor of an antagonistic interaction for each 
“experiment,” and from this, we compute the statistical power.

Simulating effect sizes under these parameters shows clearly 
that low sample sizes lead to low statistical power size (Figure 5a). 
For example, when n = 3, only about 50% of experiments would re-
sult in the correct rejection of the null model when the expected 
effect size is 3. The problems are predictably worse for smaller ef-
fect sizes, and even n  =  20 results in the power of only approxi-
mately 0.5 when the expected effect size is 1. To get power of at 
least 0.8 requires samples sizes of approximately 5, 9, 34 and > 100 
for E

(

ESADD
)

= {3, 2, 1, 0.5}, respectively. As shown in Figure 2, most 
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empirical interaction effect sizes are below 1, and this means n > 18 
is required to correctly reject the additive null model at least half the 
time. Adjusting the parameters to get the same effect sizes but with 
�x = 0.025, for x ∈ {C,A,B, I}, shows treatment variance that makes 
a negligible difference (see Figure S2) and verifies earlier work that 
shows Gaussian distributed observation errors have to be unreal-
istically small (𝜎x < 0.0001) in order to lead to a high detection rate 

(Burgess et al., 2021). However, as shown by Burgess et al. (2021) for 
n = 4, reducing treatment variation (i.e., lowering E

(

SDx

)

 while keep-
ing expected treatment means constant) will result in larger effect 
sizes and will therefore increase the power to detect.

A consequence of low statistical power is that considering only 
the statistically significant interactions may lead to the reporting 
of statistical outliers. Figure  5b shows examples for a synergistic 

F I G U R E  3 The frequency distribution 
of control treatment sample sizes from 
a dataset of 545 stressor interactions 
in freshwater ecosystems (Burgess 
et al., 2021).

F I G U R E  4 The effect of sample size on the ability to detect interactions with different effect sizes for the bee health responses to 
multiple stressors in Siviter et al. (2021). Open squares denote data points that are statistically indistinguishable from the null model of 
an additive interaction (i.e., the null model that co-occurring stressors are simply the sum of their individual effects). Data points that 
lead to the rejection of the null model can be assigned as synergistic (purple triangles), antagonistic (green circles), or reversals (yellow 
diamonds). The black lines denote the critical effect size that separates the region of detectable departure from the null model at the 5% 
level of significance. The median sample size per treatment is plotted on the x-axis. A small number of null interactions appear outside of 
the null region where the experiment had uneven sample sizes between treatments, but for clarity of presentation, the critical effect size 
is computed under the assumption of equal sample sizes within each study. Results were generated using the multiplestressR R package 
(Burgess & Murrell, 2021, 2022), with code to reproduce this figure provided in the Appendix S1.
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interaction (E
(

XI

)

= 0.45; E
(

SDx

)

= 0.05, other parameters as before) 
and an antagonistic interaction (E

(

XI

)

= 0.55; E
(

SDx

)

= 0.05, other 
parameters as before) for a range of sample sizes. The expected (or 
true) effect sizes are E

(

ESADD
)

= 1, and E
(

ESADD
)

= − 1, respectively. 

The critical effect size determines the smallest effect size that can 
result in a nonadditive interaction being detected, so detected ef-
fect sizes are always larger than this value. In our examples, the mean 
detected interaction effect size only approaches the true interac-
tion effect size at around n = 40, and at small sample sizes the mean 
detected effect size is approximately three times the magnitude of 
the true effect size (Figure 5b). This shows how publishing only sta-
tistically significant results from experiments with low sample sizes 
leads to an overestimation of nonadditivity, a problem that has also 
been highlighted for biological responses to single stressors (Yang 
et al., 2022).

6  |  SMALLEST INTER AC TION OF 
INTEREST:  WHAT IS A BIOLOGIC ALLY 
ME ANINGFUL INTER AC TION?

Up to now, our discussion has largely related to statistical but not 
biological significance, i.e., we have asked: (1) what is the small-
est effect size we can detect, and (2) what is our statistical power 
for a given sample size? As we have shown, small sample sizes 
can lead to the detection of only large effect sizes and therefore 
highly nonadditive interactions (Figure 4), but at the other end of 
the scale infinitely large sample sizes can detect infinitely small 
departures from additivity (i.e., the lines in Figure  4 asymptote 
slowly to 0). So, while small sample sizes likely miss key stressor 
interactions, large sample sizes can waste resources (Figure  1) 
and uncover biologically insignificant stressor-pair interactions. 
To avoid either of these outcomes, the researcher needs to de-
termine the smallest interaction that would lead to a biologically 
meaningful deviation from the null model before the experiment 
is run (to avoid any bias from knowing the result). We define this 
interaction as the minimum biological effect size, and we argue 
this depends upon both the study system and response of inter-
est. For example, a researcher may want to determine whether 
two stressors combine to affect a response (e.g., juvenile survival 
rates) in a nonadditive manner for an endemic or threatened spe-
cies. In this scenario it is important to be able to detect a small de-
viation from additivity (i.e., a small effect size) as failing to detect 
even a weak interaction may lead to the wrong mitigation strat-
egy being selected and potentially exacerbate the effects of these 
stressors to the detriment of the study system (Brown et al., 2013; 
Côté et al., 2016). Commonplace sample sizes (e.g., 4 replicates per 
treatment) are not adequate for this question (Figures 4 and 5), 
and the researcher will likely need to implement sample sizes that 
are multiple (two or more) times larger than those commonly used. 
There may be other situations where a smaller effect is not so 
important, implying smaller samples are adequate, such as moni-
toring abundance declines in a system with high functional redun-
dancy, but even here, care needs to be taken since concerns have 
been raised regarding publication bias leading to the overestima-
tion of stressor effects from experiments with small sample sizes 
(Figure 5b, Yang et al., 2022).

F I G U R E  5 The effect of sample size on (a) the power to detect 
nonadditive interactions of different strengths as determined by 
the effect sizes (ES); and (b) the bias toward overestimating the 
strength of the departure from additivity when considering only 
those interactions that result in a statistically significant result. 
Data are simulated with two stressors causing the same response 
when operating in isolation and all treatment standard deviations 
are set to have the same value. In (a) the expected interaction 
treatment mean is varied to generate the different expected effect 
sizes. In (b) the mean detected effect size averages over only those 
simulations where the null model is rejected. In both panels, the 
data points are computed from 1000 simulations (“experiments”) 
for the same set of parameters at each sample size. See the main 
text for more details of the simulations.

5 10 20 50 100

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size

Po
w

er
 to

 d
et

ec
t

ES = 3

ES = 2

ES = 1

ES = 0.5

5 10 20 50 100

−4
−2

0
2

4

Sample size

Ef
fe

ct
 s

iz
e

Mean detected effect size
True effect size
Critical effect size

Synergy

Antagonism

(a)

(b)



8 of 12  |     BURGESS et al.

How should the minimum effect size of interest be determined? 
Although it might seem tempting to use the heuristic guidelines pro-
posed by Cohen (1988) for small, medium, and large effect sizes, we 
do not believe they are appropriate for multiple stressor research 
due to the heterogeneity in systems, responses, and stressors. For 
example, would we decide upon the same minimum effect size for 
survival responses at different stages in a species' life cycle? In any 
case, these guidelines only relate to Cohen's d or Hedge's d and do not 
apply to null models such as the multiplicative null model that oper-
ates on a different scale. Other ways that the minimum effect size of 
biological interest could be determined include guidance from eco-
logical theory, and results of previous meta-analyses (Lakens, 2022). 
However, in order for a theoretical model to be a useful guide, it 
needs to be an adequate approximation to the stressors, biological 
system, and response under scrutiny. This is a tall ask since it is likely 
that empirical evidence is required to calibrate the model in the first 
place, in which case there is already some evidence that could be 
used (carefully) to consider the number of replicates required. The 
results of previous meta-analyses could act as a guide, although 
again care needs to be taken since it is possible that publication bi-
ases toward biologically novel but not necessarily statistically robust 
effect sizes (Filazzola & Cahill, 2021) could affect summary effect 
sizes. Moreover, meta-analyses in ecology and evolution often re-
port high levels of heterogeneity (Senior et al., 2016) compared with 
human clinical trials since ecological and evolutionary studies often 
focus on multiple taxa, in real-world environments, that are subject 
to many different forms of environmental and biological variation 
(Burgess et al., 2021; Côté et al., 2016). It is therefore hard to know 
whether the summary effect sizes reported in these meta-analyses 
are relevant for other, more focused, studies that might be asking 
subtly different questions involving, for example, different stressors 
or responses.

7  |  CONSEQUENCES AND 
RECOMMENDATIONS

Overall, we do not believe there is a simple answer to the small-
est effect size of biological interest. Instead, we propose research-
ers use their expert knowledge to use values for the treatment 
means and standard deviations and estimate power using the sim-
ple R function (interaction_power) we used to generate Figure 5. For 
example, it might be decided that a 10% deviation from additivity 
would constitute a biologically important stressor interaction, and 
along with estimates of treatment means and standard deviations, 
the code could be used to explore likely levels of statistical power 
for a range of sample sizes. This will give at least a ballpark figure 
before the experiment is completed and may give the opportunity to 
increase sample sizes as appropriate. We also add that the code can 
be employed to estimate power for either additive or multiplicative 
null models (see Appendix  S1). More generally, the sweet spot of 
sample size is dependent on the trifecta of resource costs, statistical 
power, and minimum effect of biological interest, and failure to take 

any of these into consideration may limit the effectiveness of any 
experiment (Figure 1). However, it seems likely that in many cases 
Nx = 4 does in fact lead to biologically important on-null stressor-
pair interactions being left undetected (Figures 4 and 5), and given 
the relationship between critical effect size and sample size, 20 rep-
licates (or more) might be desirable.

The recent meta-analyses of how pairs of pesticides interact to 
affect bee health (Bird et al., 2021; Siviter et al., 2021) are examples of 
experiments with very large sample sizes, and the fact that they both 
focus on studies at the individual level highlights how this might be 
a resource-efficient way to increase replicate numbers. This echoes 
earlier calls to focus on individual-level responses to stressors as it 
is the fate and/or behavior of the individual who is directly affected 
(e.g., Maltby, 1999). However, responses at other (higher) levels of 
biological complexity such as population, community, and ecosys-
tem are also likely to be of interest because it is the response of 
these levels that may matter the most from a stressor management 
standpoint (Simmons et al., 2021). Moreover, because each species 
is embedded within a food web, interactions between species can 
lead to compensatory (antagonistic) or synergistic effects that are 
not observed for individual species in isolation (Burgess et al., 2021; 
Christensen et al., 2006; Simmons et al., 2021). Unfortunately, it is 
much harder to increase the sample sizes of many mesocosm ex-
periments for these higher levels of organization simply due to the 
financial cost, space, and time required to manage large sample sizes 
for all four treatments (Boyd et al., 2018). One alternative to boost 
within-study replication is to use coordinated networks of research-
ers who ask the same experimental question(s) across multiple sites, 
using the same protocol (Filazzola & Cahill, 2021; Yang et al., 2022). 
An example of this is the Nutrient Network (NutNet) organization 
(https://nutnet.org/) that among its key questions asks: To what ex-
tent are plant production and diversity co-limited by multiple nu-
trients in herbaceous-dominated communities? Another instance of 
this linked approach is the Managing Aquatic ecosystems and water 
resources under multiple stress (MARS) project (Hering et al., 2015) 
that has investigated the responses of a large number of European 
water bodies to multiple stressors (e.g., Birk et al., 2020). As always, 
there is no silver bullet, and coordinated networks may suffer from 
increases in data heterogeneity due to the multiple-site nature of 
the network and the natural environmental and biological variation 
this includes, but also because small, but important differences in 
protocol may occur simply due to the number of research teams im-
plementing the framework (Filazzola & Cahill, 2021).

Our discussions of null models and sample sizes have been re-
stricted to investigations of pairs of stressors, yet we know many 
ecosystems are being challenged with more than two stressors 
(Halpern et al.,  2015). For example, Nõges et al.  (2016) identified 
European waters with up to seven co-acting stressors, although 
two co-acting stressors were the most common, being identified 
in 42% of cases. Similarly, there have been calls for investigating 
the responses to stressors at multiple levels of intensity (Polazzo 
et al., 2021; Schäfer & Piggott, 2018), since responses at low and high 
stressor intensities may differ greatly (Beaumelle et al., 2020; Dixon 

https://nutnet.org/
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et al., 2020) and result in different interactions being detected (Ma 
et al., 2020). In both cases, sample sizes will need to be even larger 
than for two stressors each at a single intensity, and as we have al-
ready found, many experiments are probably greatly underpowered 
even in this simpler scenario. In order to maximize the outcome for 
the input of resources, we suggest that individual studies should 
first try to boost sample sizes for simpler experiments before add-
ing in further complexity, and encourage investigations of greater 
than two stressors and/or multiple intensities to use coordinated 
networks where the sample sizes can be distributed across multiple 
research teams, or focus on individual-level responses where sample 
sizes may more easily run into the hundreds (e.g., Bird et al., 2021; 
Siviter et al., 2021).

Ultimately, resource constraints may mean it is not possible 
to design an experiment with adequate sample sizes to capture 
biologically interesting/important stressor-pair interactions, es-
pecially for studies on responses at higher levels of biological or-
ganization. Interpretation of experiments based on low sample 
sizes should be cautious and it should be remembered that failure 
to reject the null model is not evidence that the null model is 
true. Hence, failure to detect a nonadditive interaction between 
two stressors should not be associated with conclusions that the 
interaction is additive, only that there is insufficient evidence to 
show otherwise. Alternative statistical tests such as equivalence 
tests (Lakens, 2017) are required to determine whether any de-
viation from the null expectation is trivially small, and that the 
interaction can therefore be deemed additive. However, exper-
iments with small samples are useful as they can provide data 
for meta-analyses that collate individual experiments together to 
greatly increase the power to correctly reject the null model (e.g., 
Crain et al., 2008; Jackson et al., 2016; Przeslawski et al., 2015). 
The key point is that to aid general understanding, and avoid 
publication bias (e.g., Figure 5b), it is crucial that all experiments 
are published with the data made openly available (i.e., the three 
components of sample size, mean, and standard deviation/error 
or variance for each treatment) and not just those experiments 
that detect “interesting” non-null stressor-pair interactions 
(Filazzola & Cahill, 2021). Indeed, it is likely that publication bias 
is leading to the effects of anthropogenic stressors being over-
estimated (Yang et al.,  2022), while multiple stressor ecology 
suffers from the erroneous over-reporting of synergistic inter-
actions (Côté et al., 2016). Unfortunately, there are still many pa-
pers that do not report or make their data (i.e., treatment means 
etc.) readily available. For example, Burgess et al.  (2021) identi-
fied 122 papers that appeared suitable for their meta-analysis of 
freshwater stressor interactions, but 66 had to be discarded due 
to missing data or having figures that were too unclear for data 
extraction. Not reporting these data represent a waste of re-
sources, as it prevents future analyses (which are often unantic-
ipated during the original study) from being conducted (Hanson 
& Walker, 2020).

In summary, we make two main recommendations. Firstly, we 
urge researchers to make all data (sample sizes, mean and standard 

deviation of each treatment) easily available, regardless of sta-
tistical significance. Secondly, we ask researchers to state the 
observed effect size(s) and the critical effect size(s) if using the ad-
ditive null model, and give an estimate of statistical power (e.g., by 
using data simulated using our code) of the experiment(s). Giving 
all this extra information will help to give an idea of the adequacy 
of the sample size implemented, and will also aid interpretation of 
the results.

8  |  CONCLUSIONS

Our aim here was to open the discussion regarding sample sizes 
in multiple stressor research and show that before we ask the 
question “how much data do I need?” we first need to answer the 
question “what is a biologically important interaction?” Increasing 
sample sizes will always lead to an improvement in our statisti-
cal ability to detect unexpected stressor-pair interactions, but at 
extreme sample sizes, we will likely be detecting only very small 
departures from the null model and these may not necessarily be 
relevant for management decisions. Setting the lower bound for 
an interesting stressor-pair interaction is critical to knowing what 
sample sizes are required. This lower bound is very much depend-
ent on the system, stressors, and response variable being meas-
ured, so we believe it can only be tackled using expert knowledge. 
Currently, it is our view that many experiments are likely under-
powered and missing biologically important interactions, but 
studies that mostly focus on individual-level responses to stress-
ors may be more adequately sampled. Strategies such as research 
networks may help increase sample sizes for higher levels of bio-
logical organization such as communities, but there is still value in 
conducting smaller-scale studies, provided they are all published 
to avoid publication bias, and the data are made freely available 
since they can contribute to meta-analyses and aid the design 
of subsequent experiments. We also urge the reporting of esti-
mated power, which will aid the interpretation of results. Finally, 
although we have focused on the commonly used additive and 
multiplicative null models, there are a number of other null mod-
els that have been proposed (e.g., Dey & Koops, 2021; Schäfer & 
Piggott, 2018), and to date, there is no guidance on sample sizes 
required to detect non-null interactions of any given magnitude. 
This needs to be remedied. Until we can quantify the abilities of 
the statistical models to detect different strengths of interac-
tions, we will be kept in the dark about how many unexpected 
interactions we are missing, and the amount of data required to 
uncover them.
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