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Abstract. Misfolded membrane proteins are rapidly 
degraded, often shortly after their synthesis and inser- 
tion in the endoplasmic reticulum (ER), but the exact 
location and mechanisms of breakdown remain un- 
clear. We have exploited the requirement of MHC class 
I molecules for peptide to achieve their correct confor- 
mation: peptide can be withheld by introducing a null 
mutation for the MHC-encoded peptide transporter, 
TAP. By withholding TAP-dependent peptides, the 
vast majority of newly synthesized class I molecules 
fails to leave the endoplasmic reticulum and is de- 
graded. We used mice transgenic for HLA-B27 on a 
TAPl-deficient background to allow visualization by 
immunoelectron microscopy of misfolded HLA-B27 
molecules in thymic epithelial cells. In such HLA trans- 
genic animals, the TAP mutation can be considered a 

genetic switch that allows control over the extent of 
folding of the protein of interest, HLA-B27, while the 
rate of synthesis of the constituent subunits remains un- 
altered.,In TAPl-deficient, HLA-B27 transgenic ani- 
mals, HLA-B27 molecules fail to assemble correctly, 
and do not undergo carbohydrate modifications associ- 
ated with the Golgi apparatus, such as conversion to 
Endoglycosidase H resistance, and acquisition of sialic 
acids. We show that such molecules accumulate in an 
expanded network of tubular and fenestrated mem- 
branes. This compartment has its counterpart in normal 
thymic epithelial cells, and is identified as an ER-Golgi 
intermediate. We detect the presence of ubiquitin and 
ubiquitin-conjugating enzymes in association with this 
compartment, suggesting a nonlysosomal mode of deg- 
radation of its contents. 

I 
NDIVIDUAL subunits of glycoproteins are synthesized 
in the rough endoplasmic reticulum (RER) 1 where they 
fold and may undergo modifications such as disulfide 

bond formation and glycosylation (Hurtley and Helenius, 
1989). Because the subunits may be synthesized at differ- 
ent rates and not necessarily in stoichiometric amount, 
there must be mechanisms to ensure that only properly as- 
sembled and stable complexes reach the cell surface (Rose 
and Doms, 1988; Hurtley and Helenius, 1989; Pelham, 
1989). Studies on the assembly of multimeric proteins such 
as the T cell receptor (Lippincott-Schwartz et al., 1988; 
Chen et al., 1988), asialoglycoprotein receptor (Amara et 
al., 1989; Wikstrom and Lodish, 1993), acetylcholine re- 
ceptors (Blount and Merlie, 1990), or immunoglobulins 
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1. Abbreviat ions used in this paper: 1D-IEF gel, one-dimensional iso-elec- 
tric focussing gel; 1~2m, 132-microglobulin; BFA, Brefeldin A; endo H, En- 
doglycosidase H; HC, class I heavy chain; h132m, human 132-microglobulin; 
MHC, major histocompatibility complex; PAG, protein A-gold; PDI, pro- 
tein disulfide isomerase; RER, rough endoplasmic reticulum; TAP, trans- 
porter associated with antigen presentation. 

(Sitia et al., 1987) show that degradation of subunits that 
have failed to assemble into the appropriate oligomers oc- 
curs at distinct rates and takes place in the ER or in a re- 
lated compartment, possibly the ER-Golgi intermediate 
compartment (Klausner and Sitia, 1990; Bonifacino and 
Lippincott-Schwartz, 1991; Hauri and Schweizer, 1992). 
Misfolded proteins are not completely retained in the ER 
and can cycle between the cis-Golgi, the intermediate com- 
partment, and the ER (Hammond and Helenius, 1994). 
Nevertheless, the exact location of the degradative system 
and the mechanisms involved are only poorly defined. 
Here we have taken advantage of the peculiarities of bio- 
synthesis and assembly of major histocompatibility com- 
plex (MHC) class I molecules to address some of these is- 
sues in thymic epithelial cells. The question of where quality 
control of misfolded proteins occurs has, to our knowl- 
edge, not been addressed previously in situ. 

MHC class I molecules bind peptides derived from de- 
graded self and foreign antigens and display them on the 
surface of cells for recognition by CD8 ÷ T lymphocytes. 
Class I molecules should be considered trimeric structures: 
they consist of a heavy chain (HC), the light chain, 132-micro- 
globulin (132m), and an ~9-amino acid long peptide (Yew- 
dell and Bennink, 1992). Peptide binding is essential for 
the stable expression of the complex at the plasma mem- 
brane (Elliott, 1991; Bijlmakers and Ploegh, 1993). These 
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peptides are generated in the cytosol by an as yet incom- 
pletely defined mechanism (Arnold et al., 1992; Momburg 
et al., 1992; Howard and Seelig, 1993). Ubiquitinylation 
and proteolysis by proteasomes have been proposed as 
major candidates (Michalek et al., 1993; Dick et al., 1994; 
Rock et al., 1994). The resultant peptides are then translo- 
cated into the lumen of the RER by the transporter associ- 
ated with antigen presentation (TAP) (Powis et al., 1991; 
Spies and DeMurs, 1991; Attaya et al., 1992). TAP is a het- 
erodimer composed of two subunits (TAP1 and TAP2) lo- 
cated in the ER and cis-Golgi (Kleijmeer et al., 1992), and 
is responsible for the translocation of peptides of particu- 
lar size and sequence (Androlewicz et al., 1993; Neefjes et 
al., 1993; Shepherd et al., 1993; Heemels and Ploegh, 
1995). 

TAP-deficient cell lines such as the T lymphoma cell 
line RMA-S (Ljunggren and K/arre, 1985; Karre et al., 
1986) and the B lymphoblastoid cell lines 721.174 and its 
derivative T2 (Kavathas et al., 1980; DeMurs et al., 1984) 
are defective in class I surface expression, although the 
HC and [32m a r e  synthesized normally and are clearly ca- 
pable of assembly in the absence of TAP-dependent pep- 
tides (Alexander et al., 1989; Ljunggren et al., 1990; Baas 
et al., 1992). In the T2 cell line these class I molecules ap- 
pear to be retained in the ER and in the Golgi region 
(Baas et al., 1992). In another mutant cell line, likely to be 
(perhaps not completely) TAP-deficient, unassembled class 
I molecules were shown to recycle from the Golgi to the 
ER through an intermediate compartment, underscoring 
the role of the cis-Golgi region in the quality control of un- 
assembled or misfolded molecules (Hsu et al., 1991; Boni- 
facino and Lippincott-Schwartz, 1991). 

With respect to class I biosynthesis, cells from TAP1- 
deficient mice were shown to have characteristics similar 
to those of TAP-deficient cells already analyzed (Van 
Kaer et al., 1992). TAPl-deficient mice are impaired in 
positive selection of CD8 ÷ cells, as a consequence of re- 
duced class I expression in thymic epithelial cells. Assem- 
bly of HLA-B27 in murine cells is critically dependent on 
peptides delivered by the TAP-dependent pathway (Ander- 
son et al., 1993; van Santen et al., 1995). 

The availability of HLA-B27 transgenic mice, together 
with the TAPl-deficient animals, therefore allows the gen- 
eration of a model in which either properly assembled, or 
unassembled class I molecules may be tracked inside the 
cell. To obtain efficient expression at the cell surface of 
human class I molecules in transgenic mice, the simulta- 
neous presence of the class I transgene and a human 
132-microglobulin (h132m) transgene is required (Krimpen- 
fort et al., 1987). We have described animals in which the 
HLA-B27 and h[32m gene were introduced on a single 
DNA fragment and where, consequently, these transgenes 
cosegregate (Baas, 1993). These transgenic animals were 
then used to generate HLA-B27 animals lacking a func- 
tional TAP1 gene (van Santen et al., 1995). They may be 
used to study the behavior of class I molecules in relation 
to TAP in different tissues and in particular cell types, es- 
pecially because several monoclonal and polyclonal anti- 
bodies reactive with human class I molecules in ultrathin 
cryo-sections have been described (Stam et al., 1990; Pe- 
ters et al., 1991; Baas et al., 1992). 

We analyzed the influence of a properly folded state, as 

determined by the presence or absence of TAP-dependent 
peptides, on the distribution of HLA-B27 HCs and human 
132m in thymic epithelial cells in situ. Thymic epithelial 
cells are known to express high levels of class I molecules 
and play a fundamental role in thymic selection. HLA-B27 
is expressed in thymic epithelial cells of normal transgenic 
animals. In the absence of expression of TAP1, HLA-B27 
HCs are largely absent from the plasma membrane, exist 
predominantly as free HCs as assessed biochemically, and 
are degraded most likely by an ER-dependent mechanism. 
In the TAPl-deficient cells, HLA-B27 HCs and h132m are lo- 
calized in an extended post-ER/pre-Golgi network or ER- 
Golgi intermediate compartment, consisting of tubulated 
and fenestrated membranes. Compartments derived from 
the extended network and superficially similar to lysosomes 
are likely involved in a nonlysosomal pathway of degrada- 
tion of class I molecules, involving the ubiquitin pathway. 

Materials and Methods 

Mice 
TAPl-deficient mice (Van Kaer et al., 1992), mice double-transgenic for 
HLA-B27 and human ~2 m (Baas, 1993), and the cross between these two 
strains (van Santen et al., 1995) have been described. The mice resulting 
from this cross are referrred to as TAP1-I3B27 mice. Their TAP-wild- 
type counterparts are referred to as TAP1+I3B27 mice. Nontransgenic 
mice obtained during the breeding of the parental strains were used as 
controls. 

Antibodies 
The following antibodies were used: mAb W6/32 (Barnstable et al., 1978), 
recognizing properly folded human class I complexes; mAb HC10 (Stam 
et al., 1990), specific for human class I free heavy chains (HCs); anti- 
human HC serum (Stam et al., 1986), specific for free human HCs; anti- 
mouse HC serum (Machold et al., 1995), recognizing free HCs only; anti-p8 
serum (raised in our laboratory, according to Smith et al. [1986], against a 
synthetic peptide representing the most COOH-terminal exon of the H-2K b 
molecule); anti-human 132m serum (raised against highly purified [~2 m, 
separated from HLA-A2 and HLA-A28 by gel filtration in acetic acid); 
rabbit anti-ER serum provided by Dr. D. Louvard (Institut Pasteur, Paris, 
France) (Louvard et al., 1982); mouse monoclonal anti-PDI (ID3) pro- 
vided by Dr. S. Fuller (EMBL, Heidelberg, Germany) (Vaux et al., 1990); 
rabbit anti-bovine cathepsin D provided by Dr. G. Jaureguiberry (IN- 
SERM U.13, Hopital Claude Bernard, Paris, France) (Bailly et al., 1991); 
mouse monoclonal anti-ERGIC 53 provided by Dr. H. P. Hauri (Univer- 
sity of Basel, Basel, Switzerland) (Schweizer et al., 1988); rabbit poly- 
clonal affinity purified anti-human ubiquitin and mouse monoclonal anti- 
E1 provided by Dr. A. Schwartz (Washington University, St. Louis, MO) 
(Schwartz et al., 1988, 1992). To visualize the primary antibodies nondi- 
rectly reactive with protein A, rabbit anti-mouse IgG and rabbit anti- 
mouse IgM (Nordic Immunochemicals, Tilburg, The Netherlands) were 
used. 

Metabolic Labeling and Immunoprecipitations 
Spleen cells were cultured for 24 h in DME medium, containing 10% FCS 
and 2.5 ixg/ml ConA. Cells were incubated for 45 min in methionine-free 
RPMI medium, labeled with 1 mCi [35S]methionine/cysteine (protein la- 
beling mix, New England Nuclear DuPont, Boston, MA) for 20 min and 
chased in DME medium, containing 10% FCS and 1 mM cold L-methio- 
nine and L-cysteine. Cells were lysed in NP-40 lysismix (0.5% NP-40; 50 
mM Tris, pH 7.4; 5 mM MgC12; 0.1 mM PMSF) and supplemented with 10 
mg/ml BSA. 

Thymuses were cut in four segments of approximately equal size and 
incubated for 45 min in methionine-free medium, labeled for 45 min with 
800 txCi [35S]methionine/cysteine, and chased for the indicated times in 
DME medium in presence of 1 mM cold L-methionine and L-cysteine. 
Thymocytes were removed by gently squeezing the thymic lobes with for- 
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ceps and rinsing with PBS. The remaining capsules were macerated in NP- 
40 lysismix, containing 10 mg/ml BSA, and homogenized in a dounce ho- 
mogenizer. 

Lysates were precleared twice with normal rabbit serum and formalin 
fixed Staphylococcus aureus, followed by the indicated MHC class I spe- 
cific antibodies and antisera. Precipitates, adjusted for total amount of in- 
corporation, were run on one-dimensional isoelectric focusing gels (1D- 
IEF) (Neefjes and Ploegh, 1988). Gels were fluorographed using DMSO/ 
PPO and exposed to KODAK X-OMAT AR  film (Eastman-Kodak, 
Rochester, NY). 

Endo H Treatment and Immunoblotting 
Whole thymus was depleted of thymocytes as described above. The re- 
maining capsule was macerated with a razor blade and resuspended in 1% 
SDS/0.5% p-mercaptoethanol. This suspension was briefly heated to 95°C 
and vortexed twice, and sheared through a 30-G1/2 needle. The suspen- 
sion was adjusted to 50 mM NaCitrate (pH 5.5), divided into two parts and 
treated or mock treated with 2,000 units Endoglycosidase H (endoHf) 
(New England Biolabs, Beverly, MA) for 2 h at 37°C. Aliquots were sepa- 
rated by SDS-PAGE and blotted to nitrocellulose. The blots were incubated 
with the indicated first antibodies, followed by horseradish peroxidase 
(PO)-coupled goat anti-mouse IgG (Southern Biotechnology Associates, 
Birmingham, AL) or PO-coupled goat anti-rabbit Ig (Promega, Madison, 
WI) antiserum. Bound antibody was detected by a chemoluminescence 
detection kit (Kirkegaard and Perry Laboratories, Gaithersburg, MD) 
and exposure to X-ray films. 

Tissue Fixation, Processing, and Cryosectioning 
Mice were anesthetized intraperitoneaUy with pentobarbital (90 mg/Kg 
body weight) and the thymuses were rapidly removed, immersed in fixa- 
tive and immediately cut in small cubes (1 mm3). As fixatives, we used 4% 
paraformaldehyde (wt/vol) in 0.1 M sodium phosphate buffer pH 7.4 (PB) 
or a mixture of 2% paraformaldehyde (wt/vol), 1% (vol/vol) acroleine in 
PB. Fixation proceeded overnight and the tissue was stored in paraformal- 
dehyde 2% (wt/vol) in PB. Processing for ultracryomicrotomy was per- 
formed as described (Raposo et al., 1995). The small fragments were em- 
bedded in gelatin (10%; wt/vol) for 30 rain at 37°C, and then solidified on 
ice. Blocks were then immersed in 2.3 M sucrose in PB for 2 h at 4°C. Tis- 
sue blocks were mounted on specimen holders and frozen in liquid nitro- 
gen. Semithin (300-500 nm) or ultrathin sections (60-80 nm) were cut at 
-80°C and 120°C, respectively, using an Ultra-CutS cryomicrotome 
(Leica, Biel, Switzerland) and a diamond knife (Diatome, Biel, Switzer- 
land). Semithin sections were collected with 2.3 M sucrose and ultrathin 
sections with a mixture of methyl cellulose and 2.3 M sucrose (Liou and 
Slot, 1994). 

Electron Microscopy 
Ultrathin cryo-sections were collected on formvar- and carbon-coated 
copper grids and single or double immunogold-labeled as described (Slot 
et al., 1991; Raposo et al., 1995). Semiquantitative evaluation of the areas 
of the class I-enriched structures and determination of the density of gold 
labeling were performed as follows: class I-positive thymic epithelial cells 
were randomly selected by screening ultrathin cryo-sections immunolabeled 
with the antibodies directed against the human or the mouse HCs at low 
magnification (x2,000). For each thymus (TAPl+I3B27 and TAPl-I~B27), 
30 thymic epithelial cells were photographed at x4,000 in order to deter- 
mine the area of the cell occupied by the class I-enriched compartments 
and the same cells were photographed at x 12,000 for subsequent counting 
of gold particles representing class I HCs. The areas of the class I-enriched 
structures were determined by superimposing an appropriate lattice grid 
over the electron micrographs and by counting the number of points 
within each cell and within each compartment. The density of gold label- 
ing was evaluated by counting the number of gold particles labeling a par- 
ticular antigen and by relating this number to the area in p.m 2 determined 
as described above. To evaluate the labeling for HLA-B27 HCs over the 
plasma membrane of thymic epithelial cells, a lattice grid was superim- 
posed over 30 micrographs or directly on a video screen. The number of 
gold particles counted over the plasma membrane is related to the number 
of intersections with the membrane and expressed as goldhxm plasma 
membrane length. 

I m m u n o f l u o r e s c e n c e  

Semithin cryosections were placed on poly-L-lysine-coated glass slides, 
quenched with 0.1 M glycine in PBS for 10 min, incubated with the pri- 
mary antibody in 1% (wt/vol) BSA in PBS for 45 rain. After several wash- 
ings in 0.1% BSA, the sections were incubated with TRITC-conjugated 
rabbit anti-mouse IgG or goat anti-rabbit IgG (Nordic Immunochemi- 
cals) for 30 min. All incubations proceeded at room temperature. After 
rinsing with water, sections were mounted in Mowiol and examined by 
epifluorescence with a Reichert-Polyvar photomicroscope. 

Results 

Assembly and Intracellular Transport of HLA-B27 Is 
Dependent on Proper TAP Function 

We analyzed the assembly, intracellular transport, and 
steady-state distribution of HLA-B27 in spleen cells and 
the thymus from TAPl-wild-type mice transgenic for 
HLA-B27 and hp2m (TAPl+pB27), and their TAPl-defi- 
cient counterparts (TAPl-pB27).  Initially, splenocytes 
were chosen for biochemical analysis as they can be ob- 
tained as single cell suspensions of high viability that show 
excellent incorporation of label. Biosynthetic labeling of 
thymus fragments was performed to allow a more direct 
comparison with the immunocytochemistry to be described 
below. Con A-stimulated spleen cells and thymic lobes 
were labeled for 20 min and 45 rain, respectively, and chased 
for up to 4 h. Two monoclonal antibodies were used to im- 
munoprecipitate the HLA-B27 molecules: W6/32, specific 
for properly assembled human class I complexes (Barnsta- 
ble et al., 1978), and HC10, recognizing only free human 
class I heavy chains (Stare et al., 1986). The immunopre- 
cipitates were analyzed on 1D-IEF gels to monitor addi- 
tion of sialic acids upon arrival of class I molecules in the 
TGN, causing a shift towards a more acidic iso-electric 
point. 

Most of the HLA-B27 heavy chains in the TAPl+pB27 
splenic blasts have formed a complex with hp2m at the on- 
set of the chase, and can be immunoprecipitated with the 
W6/32 antibody (Fig. 1 A, first panel). During the chase 
these complexes acquire sialic acids, indicating that they 
have moved through the Golgi and have reached the TGN. 
Only a few of the HLA-B27 molecules in TAP1 ÷ cells are 
present as free heavy chains (Fig. 1 A, third panel). In sple- 
nocytes, some of the free heavy chains acquire sialic acid 
and then decrease over the chase period, showing that break- 
down occurs. The observation that in TAP1 ÷ cells some 
HLA-B27 free heavy chains occur in a sialylated form, is 
most likely caused by dissociation of complexes formed 
early on due to a reduced affinity of HLA-B27 for murine 
self peptides, likely to be of different composition than 
their human counterparts. Sialylated free HCs are not ob- 
served in human cells (Neefjes and Ploegh, 1988; Baas et 
al., 1992). The murine TAP complex is unable to translo- 
cute peptides that terminate in a positively charged resi- 
due, yet such residues are abundant among HLA-B27 
ligands in human cells ( Heemels and Ploegh, 1995). 

In the TAPl-pB27 spleen cells, the ratio of assembled 
complexes vs free heavy chains is reversed: trace amounts 
of HLA-B27 heavy chains are present as a complex that 
can be recognized by W6/32, and these complexes remain 
unsialylated (Fig. 1 A, second panel). The majority of the 
HLA-B27 molecules, however, is present as free heavy 
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Figure 1. Assembly, intracellular transport, and endo H sensitiv- 
ity of class I molecules in spleen and thymus from TAPl+[3B27 
and TAP1-[3B27 mice. Splenocytes (A) and thymic lobes (B) 
were labeled biosynthetically for 20 min and 45 min, respectively, 
and chased for up to 4 h. Cell lysates were made and HLA-B27 
heavy chains were immunoprecipitated with mAbs W6/32 or 
HC10. Immunoprecipitates were analyzed on 1D-1EF gels (cath- 
ode at top, anode at bottom). Note the slight cross-reactivity of 
W6/32 with Db/h]32 m complexes in the thymic capsules. Num- 
bered arrowheads indicate the different sialic acid modifications 
of the HLA-B27 heavy chains, (C) Denatured and reduced ly- 
sates from TAPl+I3B27, TAPl-[3B27 and TAP1- thymic cap- 
sules were treated or mock treated with endo H, separated by 
SDS-PAGE, immunoblotted, and probed with mAb HC10 or 
anti-p8 serum to detect HLA-B27 and K b, respectively. 

chains (Fig. 1 A, fourth panel). These heavy chains do not 
acquire sialic acid and are degraded during the chase (tl/2 
estimated to be 2-4 h). Class I complexes in TAPl-defi-  
cient cells may dissociate upon cell lysis (Townsend et al., 
1990); the number of HLA-B27 complexes recovered by 
immunoprecipitation in the TAPl-deficient  cells and 
thymus therefore represents the lower limit of the amount 
of complexes present. Some isoelectrically heterogenous 
polypeptides coimmunoprecipitating with the HC10 anti- 
body can be seen. They do not comigrate with the sialy- 
lated forms of HLA-B27 (see first panel), and are insensi- 
tive to neuraminidase treatment (data not shown). They 

could represent breakdown products of the HLA-B27 
heavy chains. This possibility has not been explored further. 

In the thymus of the TAPl+I3B27 mice, complex forma- 
tion of HLA-B27 heavy chains with h132m and their trans- 
port to the TGN, is observed (Fig. 1 B, first panel). Not all 
class I complexes are modified by sialic acid during the 
chase. We attribute this to the less than optimal conditions 
under which the labeling of thymic tissue fragments is per- 
formed, as compared to labeling of activated splenic lym- 
phocytes in suspension. Free heavy chains are present at 
the onset of the chase (Fig. 1 B, third panel). These HLA- 
B27 free heavy chains remain unmodified. At least in Con 
A blasts, such free heavy chains are degraded (Fig. 1 A, 
third and fourth panel), and we suspect that degradation 
will also occur in the thymus, but difficulties of a technical 
nature (cell death in culturing thymic lobes) preclude us 
from establishing this point unambiguously using bio- 
chemical methods. 

Some HLA-B27 heavy chains in the TAPl-I3B27 thy- 
mus form a complex with h132m (Fig. 1 B, second panel), 
but remain unsialylated. This complex formation is more 
stable than in activated spleen cells of these mice. How- 
ever, the majority of the HLA-B27 heavy chains is still 
present as free heavy chains (Fig. 1 B, fourth panel). These 
data show that stable complex formation and transport of 
the HLA-B27 heavy chains in spleen and thymus is depen- 
dent on an intact TAP complex. 

We performed endo H digestions on class I molecules in 
the thymus, to determine more accurately where in the 
secretory pathway the block in transport of HLA-B27 in 
TAPl-deficient cells manifests itself. Thymic capsules were 
directly lysed under denaturing conditions, treated with 
endo H and immunoblotted to determine the steady-state 
distribution of the class I molecules between the ER/cis- 
Golgi and more distal compartments. We determined the 
distribution of both the HLA-B27 molecules and the en- 
dogenous K b molecules by using the HC10 antibody and a 
serum specific for the cytoplasmic tail of K b (anti-p8), re- 
spectively. The HC10 antibody does not react with the 
thymic extract of TAP1-  mice, indicating that the anti- 
body recognizes only the HLA-B27 molecules (Fig. 1 C, 
HCIO panel). Most HLA-B27 molecules detected in the 
TAPl+[3B27 thymic capsule are endo H resistant, indicat- 
ing that at steady state most of these molecules are located 
beyond the ER/cis-Golgi area. This observation is also 
consistent with the assertion that the occurrence of unsia- 
lylated HLA-B27 complexes observed in labeling experi- 
ments (Fig. 1 B) is due to suboptimal conditions of label- 
ing tissue fragments and does not correspond to a sizable 
pool of unsialylated HLA-B27 HCs at steady state. In con- 
trast, all HLA-B27 molecules detected in the TAP1-[3B27 
thymus remain endo H sensitive, showing that the major- 
ity of molecules has failed to reach the medical Golgi. Un- 
like the HLA-B27 molecules, a significant number of K b 
molecules in the TAPl-[3B27 thymus is resistant to endo 
H treatment, in agreement with previous data (Alexander 
et al., 1989; Anderson et al., 1993; van Santen et al., 1995), 
which have shown that heterodimers formed between 
h[32m and murine class I heavy chains are transported to the 
cell surface in a TAP-deficient background, owing to the 
greater stability of these heterodimers compared to their 
mouse-mouse counterparts. 
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These data underscore that HLA-B27 relies heavily on 
a functional TAP complex for proper assembly, folding, 
and transport. The availability of the TAPl-13B27 and 
TAPl+[3B27 mice therefore allows us to compare the fate 
of assembled and unassembled MHC class I molecules in 
vivo by cytochemical methods. 

Distribution of HLA-B27 in the Thymus 

To examine the pattern of expression of HLA-B27 in the 
thymus of the transgenic TAP1 +13B27 mice and compare it 
to that of endogenous class I molecules, we performed im- 
munofluorescence on cryosections from thymic tissue. 

To visualize the human class I HC we used the mono- 
clonal antibody HC10. The murine class I molecules were 
visualized with the rabbit polyclonal antibody anti-p8. Mu- 
rine class I molecules in nontransgenic thymus are local- 
ized in a reticular staining in the cortical region (Fig. 2 A), 
characteristic of epithelial reticular cells. The intercellular 
spaces are filled by thymocytes which stain poorly if at all, 
because thymocytes, as a rule, are low in class I expression 
(Van Ewijk, 1984). The medullary area displays a more 
confluent staining of thymic stromal cells (Fig. 2 A). The 
labeling observed with the anti-p8 antibody is similar to 
that described for class I molecules in murine or human 
thymuses (Rouse et al., 1979; Van Ewijk et al., 1980; Janossy 
et al., 1980). Staining for HLA-B27 in the thymus of the 
TAPl+[3B27 mice is strong in cells of the cortex and me- 
dulla with a pattern of expression indistinguishable from 
that of the endogenous murine class I molecules (Fig. 2 B). 
Sections of thymus from a nontransgenic animal did not 
stain with HC10, confirming that this antibody is specific 
for human class I HCs (Fig. 2 C). 

Immunofluorescence patterns with HC10 and anti-p8 
antibodies in the thymus of TAPl-13B27 mice was similar 
to those observed in TAP1 ÷ animals, though the labeling 
intensity was lower (see below). 

Subcellular Localization of HLA-B27 in Thymic 
Epithelial Cells 

When comparing the steady-state levels of HLA-B27 by 
immunoblot, we observed that in TAP1- animals the 
HLA-B27 HCs remain fully Endo H sensitive (Fig. 1 C). 
This observation indicates that the intracellular transport 
of HLA-B27 synthesized in the absence of TAP-depen- 
dent peptides is blocked before medial-Golgi. To analyze 
the subcellular localization of HLA-B27 in the absence or 
in the presence of TAP1, we used immunogold cytochem- 
istry and electron microscopy. 

At the ultrastructural level thymic epithelial cells can be 
easily distinguished by their characteristic nucleus with 
dispersed chromatin, as well as by the presence of connect- 
ing desmosomes and bundles of cytokeratins, the so-called 
tonofilaments (Clark, 1963; Bearman et al., 1978). To im- 
munolocalize HLA-B27, we used a rabbit polyclonal anti- 
body recognizing class 1 heavy chains (R anti-hHC) to 
avoid having to use a bridging antibody (rabbit anti- 
mouse IgG), necessary when using the HC10 antibody be- 
cause of its relatively poor direct reactivity with protein 
A-gold conjugates. To establish the specificity of the R 
anti-hHC antibody, ultrathin cryosectiOns of thymus from 

Figure 2. Immunofluorescence localization of endogenous K b 
(anti-p8 antibody) and transgenic HLA-B27 molecules (HC10 
antibody) in thymic tissue from nontransgenic (A and C) and 
TAPl÷I3B27 (B) mice. (A) K b positive cells are detected in the 
thymic cortex (c) and in the thymic medulla (m). (B) HLA-B27 
shows a distribution similar to that of K b positive cells in cortical 
and medullary cells. (C) No staining is detected in nontransgenic 
thymic tissue after immunolabeling with the monoclonal HC10. 
Bars, 10 ~m. 

a nontransgenic mouse were immunolabeled (Fig. 3 A). 
No labeling above background was detected, confirming 
the lack of cross-reaction with endogenous class I mole- 
cules. When using the R anti-hHC antibody, it is not possi- 
ble to attribute staining to free HC, or to HC that were 
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part of a complex with 132m but that acquired reactivity 
with R anti-hHC antibody upon fixation of the tissue. 
When reference is made to the distribution of HLA-B27 
HCs, this distribution therefore necessarily includes both 
free HCs and assembled complexes. In thymic tissue from 
a TAP1+[3B27 mouse, specific labeling is observed over 
the folded plasma membranes of epithelial cells (Fig. 3 B). 
When the thymus from a TAP1-13B27 animal was labeled 
with R anti-hHC, a decrease in staining was observed on 
the plasma membrane of thymic epithelial cells (Fig. 3 C), 
indicating that in the absence of bound peptide, the major- 
ity of HLA-B27 HCs do not reach the plasma membrane. 
Quantitation of the labeling for HLA-B27 HCs over the 
plasma membrane of thymic epithelial cells from TAP1 ÷- 
13B27 and TAP1-[3B27 animals indicate that this reduction 
is at least 20-fold (Table I) (see also van Santen et al., 1995). 

HLA-B27 in thymic epithelial cells is also detected in- 
tracellularly. In thymic epithelial cells of a TAPl+I3B27 
mouse, HLA-B27 HCs are present in intracellular com- 
partments with a distinctive morphology, consisting of fen- 
estrated areas and electron-dense, tubulated membranes 
(Fig. 4 B). In thymic epithelial cells from TAPl-deficient 
animals these structures are more abundant and appear 
expanded (Fig. 4 A). They, too, consist of electron-dense 
anastomosing tubular membranes and fenestrated regions 
enriched in class I HCs, and occupy a substantial area of 
the cytoplasm. Endoplasmic reticulum, labeled with an an- 
tibody directed against protein disulfide isomerase (PDI), 
is only poorly labeled for HLA-B27 HCs (Fig. 4 A). The 
HLA-B27 enriched compartments observed in thymic epi- 
thelial cells from TAP1 ÷ and TAP1- thymuses are very 
similar morphologically, yet the area of the cytoplasm that 
they occupy is drastically increased in TAPl-deficient 
cells. Morphometric analysis shows that in TAPl-deficient 
cells, the area of the network almost doubled (Table I), 
largely the consequence of expansion of the electron- 
dense tubular membranes. The density of gold particles 
specific for HLA-B27 HCs is also doubled. A total three- 
fold increase in the labeling for HLA-B27 HCs per cell 
was observed (not shown). Interestingly, in control ani- 
mals, compartments with similar morphology, though less 
expanded and in continuity with electron-dense tubules, 
contain endogenous class I molecules visualized with an 
anti-murine HC antibody raised in a manner similar to 
that used for the R anti-hHC (Machold et al., 1995) (Fig. 4 
C). These observations, together with the finding that the 
majority of HLA-B27 in TAPl-deficient cells remains 
Endo H sensitive, lead us to conclude that improperly as- 
sembled class I molecules are massively retained in an ex- 
panded compartment. 

Morphological and Immunocytochemical 
Characterization of the Site of Accumulation of 
HLA-B27 in TAPl-deficient Thymic 
Epithelial Cells 

In epon-embedded thymus sections of TAPl-I3B27 ani- 
mals, epithelial cells show a network of tubular and anas- 
tomosing electron-lucent areas of a morphology and intra- 
cellular position equivalent to that seen in cryosections. In 
the same region, ER cisternae displaying rough and smooth 

regions are present, suggesting that the network of smooth 
tubules is part of a post-ER/pre-Golgi region (Fig. 5). The 
morphology of the class I-enriched reticulum, as observed 
in plastic-embedded and positively contrasted material, is 
reminiscent of the site of assembly and accumulation of vi- 
rus or unassembled viral glycoproteins observed in the 
CV1 and CHO cell lines (Kartenbeck et al., 1989; Hobman 
et al., 1992). An antibody that recognizes four ER mem- 
brane proteins and is known to label post-ER derivatives 
(Louvard et al., 1982; Noda and Farquar, 1992), stains the 
dense tubules and the vesiculated areas enriched in class I 
HCs (Fig. 6 A), confirming that the tubulo-vesicular pro- 
files are likely derived from, or are part of the ER. Double 
labeling allowing the visualization of human HCs and 
ERGIC-53, a known marker of the ER-Golgi intermedi- 
ate compartment (Schweizer et al., 1988, 1990), further 
confirms this interpretation. Although this antibody has 
been used to immunolocalize the human or primate mole- 
cule (Hobman et al., 1992), specific labeling is detected in 
the ER derived electron-dense tubules and fenestrated ar- 
eas in mouse tissue as well (Fig. 6 B). These results show 
that the extended network enriched for HLA-B27 mole- 
cules is indeed a post-ER/pre-Golgi network. 

Compartments Resembling Lysosomes Originate from 
the Extended post-ER/pre-Golgi Network 
A major question concerns the role of the extended net- 
work in which class I molecules accumulate: is it an inter- 
mediate station in the recycling of class I molecules be- 
tween the Golgi and the ER? Is it implicated in the 
disposal of the accumulated class I molecules? Class I HCs 
are rarely observed in the Golgi stacks, whereas h132m is 
observed throughout the Golgi cisternae, even in TAP1- 
deficient cells (Fig. 7 A). The 132m subunit is normally syn- 
thesized in excess in relation to the HC, and is in fact a 
bona fida secretory protein. The observation that in TAP1- 
deficient cells 132m penetrates the secretory pathway into 
the Golgi complex, whereas the HC do not, illustrates the 
selective retention of improperly assembled (peptide-free) 
class I molecules. In intact thymic lobes, biosynthetic la- 
beling reveals the presence of W6/32 reactive, assembled 
heterodimers, like the situation encountered in T2 cells 
(Baas et al., 1992). Therefore, we may conclude that HLA- 
B27 class I heterodimers exist in TAP1- thymic epithelial 
cells, even though intracellular transport to the Golgi is 
negligible compared to their TAP1 ÷ counterparts. This 
fraction likely corresponds to the material detected in the 
post-ER/pre-Golgi compartment after double labeling for 
HLA-B27 HC and h132m. 

The HLA-B27 HC and h132m are also present in elec- 
tron-dense and smaller compartments consisting of con- 
densed tubular membranes and vesiculated regions (Fig. 7 
B). These compartments are observed in the same cells in 
which we observe the extended cis-Golgi reticulum. More 
electron-dense compartments showing low labeling for 
HCs and 132m are also present (Fig. 7 B). These compart- 
ments also display proteins characteristic of intermediate 
compartments, illustrated by labeling performed with the 
antibody directed against ERGIC-53 (not shown). The 
densest compartments observed are morphologically simi- 
lar to electron-dense lysosomes. 
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Figure 3. Plasma membrane localization of HLA-B27 in thymic epi- 
thelial ceils from TAPl+I3B27 and TAP1-13B27 mice. Ultrathin cryo- 
sections from thymic tissue of a nontransgenic (A), TAP1 +13B27 (B) 
and TAPl-13B27 mice (C) were immunogold-labeled with the rabbit 
polyclonal serum raised against human HCs and protein A-10-nm 
gold (PAG 10). (A) No labeling is observed with this antibody on thy- 
mic epithelial cells of nontransgenic mice. (B) HLA-B27 HCs are de- 
tected on the plasma membrane (PM) of two adjacent cells. (C) Lit- 
tle labeling for HLA-B27 HCs is detected on the plasma membrane 
(PM) of TAPl-deficient thymic epithelial cells. (d, desmosomes; t, 
tonofilaments; PM, plasma membrane; N, nucleus.) Bars, 200 nm. 
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Table L tion. In Fig. 10, a model is proposed for the disposal of 
HLA-B27 HCs. TAP1 +13B27 TAP 13B27 

Plasma membrane 14 < 1 
(HLA-B27 HC) goldll~m 

Post-ER/pre-Golgi network 63 110 
(HLA-B27 HC) gold/ixm 2 

Relative volume* 8% 15% 

Quantitation of HLA-B27 labeling at the plasma membrane and in post-ER/pre-Golgi 
compartments in thymic epithelial cells from TAPl+I3B27 and TAPl-13B27 mice. 
The number of gold particles per txm plasma membrane and the number of gold parti- 
cles per surface area were determined as described in Materials and Methods. 
*Relative volume occupied by the HLA-B27 enriched compartment. 

Ubiquitin and Ubiquitin-activating Enzymes Are 
Associated with the post-ER/pre-Golgi Network 

Studies on the disposal of intracisternal granules in thy- 
rotrophs previously showed a nonautophagic pathway for 
conversion of ER cisternae to lysosomal like-organelles 
(Noda and Farquhar, 1992). A similar mechanism could 
operate in thymic epithelial cells for accumulated class I 
molecules. 

To investigate this possibility, we performed double la- 
beling, allowing the visualization of cathepsin D at the 
sites of accumulation of HLA-B27 HCs. The extended 
compartment with tubulated/fenestrated morphology is 
not significantly labeled for cathepsin D (Fig. 9 A), nor are 
the denser organelles (Fig. 8). In the same area of the cyto- 
plasm, cathepsin D-rich lysosomes are clearly present. 
Equivalent results were obtained with antibodies directed 
against LAMP1 or lgp120 (not shown). Nonlysosomal pro- 
teolysis may operate in parallel, and the ubiquitin-depen- 
dent pathway of protein degradation is the major candi- 
date (Hershko and Ciechanover, 1992; Ciechanover, 1994). 
To test this hypothesis we explored whether ubiquitin and 
ubiquitin-activating enzyme E1 were associated with the 
post-ER/pre-Golgi network. Clearly, ubiquitin is associ- 
ated with the electron-dense tubules and fenestrated areas 
stained for the human HC (Fig. 9 A) and with the densest 
compartments (Fig. 9 B). The ubiquitin-activating enzyme 
E1 is also associated with electron-dense tubules (Fig. 9 C) 
and it is detected in association with organelles displaying 
condensed class I-positive tubulated membranes (Fig. 9 
D). As compared with its presence in the cytosol, ubiquitin 
is enriched in the tubular areas. The dimension of the 
dense tubules and the size of the immunolabel preclude a 
determination of whether ubiquitin and E1 are inside the 
lumen of the tubules or at the cytosolic face of the tubule 
membranes (Fig. 9, A and C). However these proteins 
clearly reside in the interior of the dense compartments 
(Fig. 9, B and D). These observations are in agreement 
with the hypothesis that the pre-Golgi compartments can 
converge with the ubiquitin pathway of protein degrada- 

Discussion 

In the present study, we have used HLA-B27 transgenic 
mice and their TAP1 knockout counterparts (van Santen 
et al., 1995) to approach in an in vivo model and in situ the 
fate and subcellular localization of misfolded class I mole- 
cules. Using polyclonal and monoclonal antibodies recog- 
nizing human HC and human [32 m, the localization of 
HLA-B27 can be followed specifically without cross-reac- 
tion with endogenous murine class I molecules. 

The results show that in TAPl-deficient mice, (a) un- 
availability of peptide causes the vast majority of HLA- 
B27 HC and h[32m to remain unassembled. The HLA-B27 
HCs do not acquire sialic acids, are endo H sensitive, and 
in Con A blasts are degraded before arrival in the Golgi. 
In the thymus, we very much suspect a similar sequence of 
events, but cell death in the course of culturing thymus 
fragments does not allow a detailed biochemical analysis 
of such heavy chain breakdown in the thymus. (b) HLA- 
B27 HC and ~2 m accumulate in an expanded ER-Golgi in- 
termediate compartment displaying anastomosing tubu- 
lated and fenestrated membranes. (c) This compartment 
has its counterpart in nonmutant cells and (d) is associated 
with ubiquitin and the ubiquitin-activating enzyme El .  

In HLA-B27 transgenic mice, HLA-B27 is expressed at 
high levels in the thymus and has a cellular distribution 
similar to that of the endogenous class I molecules in cells 
of both cortex and medulla, in agreement with previous 
studies on the localization of MHC molecules in thymic 
tissue (Rouse et al., 1979; Van Ewijk et al., 1980; Janossy 
et al., 1980; Van Ewijk, 1984). In thymic epithelial cells 
from TAPl+[3B27 mice, at steady-state class I molecules 
are localized mainly at the plasma membrane, and to a 
lesser extent in intracellular compartments such as the ER 
and Golgi complex. In TAPl-deficient cells, HLA-B27 
HCs at the plasma membrane are reduced at least 20-fold, 
confirming that their stable expression at the cell surface is 
dependent on peptides translocated by TAP (Anderson et 
al., 1993; van Santen, 1995). TAPl-deficient cells accumu- 
late HLA-B27 HCs and [32m intracellularly in structures 
similar to those observed in the TAP1 + animals. However, 
in TAPl-deficient animals, the dense tubulated mem- 
branes and fenestrated regions are extended (almost dou- 
bled in volume), suggesting a direct link between the inhi- 
bition of intracellular transport of class I molecules and 
the appearance and size of the compartment. In the T2 cell 
line, class I molecules are retained in the rough endoplas- 
mic reticulum (RER) and in the Golgi region (Baas et al., 
1992), In another murine mutant cell line (CMT), class I 
molecules seem to be retained in smooth parts of the ER 
and recycle through the cis-Golgi reticulum (Hsu et al., 

Figure 4. Intracellular localization of HLA-B27 and murine class I HCs in thymic epithelial cells from TAPl-13B27 (A), TAPl+I3B27 
(B), and nontransgenic (C) mice. Ultrathin cryosections from thymic tissue were immunogold-labeled with the rabbit anti-serum raised 
against human HCs (PAG 10) (A and B) and with the rabbit anti-serum raised against murine HCs (PAG 10) (C). In A, the ultrathin 
cryosection was also labeled with an antibody directed against protein disulfide isomerase (PDI) (PAG 15). (A) In TAPl-deficient cells 
the perinuclear region is filled with tubulated and fenestrated membranes heavily labeled for HLA-B27 HCs (PAG 10). Protein disul- 
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fide isomerase (PDI) (PAG15) is detected in the R E R  (arrows). (B) In thymic epithelial cells from a TAPl+I3B27 mouse, HLA-B27 
HCs (PAG 10) are detected in intracellular compartments of similar morphology but smaller than in A. (C) In thymic epithelial cells 
from a nontransgenic mouse, murine HCs (PAG 10) can be detected in compartments with a fenestrated appearance continuous with 
electron dense tubules (arrows). N, nucleus; PM, plasma membrane. Bars, 200 nm. 
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Figure 5. Morphology of the tubulo-vesicular network in plastic-embedded thymic tissue of a TAP1-[3B27 mouse. Note the tubulated 
membranes close to the Golgi complex (G). In the same area rough ER cisternae show smooth surfaced subdomains (arrows). Bar, 200 nm. 

1990). Morphologically the smooth tubules with electron 
dense content are reminiscent of "smooth ER" close to, or 
in continuity with RER (Hobman et al., 1992). The vesicu- 
lated areas that we observe in continuity with the tubules 
are similar to transitional elements described in pancreatic 
cells (Jamieson and Palade, 1967; Oprins et al., 1993). To 
characterize the extended network enriched in class I mol- 
ecules, we used known markers allowing the identification 
of ER-Golgi intermediate compartments. Our results show 
that the dense tubulated areas are ER-derived, display ER 
membrane proteins, and are part of an extended interme- 
diate compartment identified by the presence of ERGIC-  
53 (Schweizer et al., 1990). Tubulo-vesiculated areas local- 
ized between the Golgi and the ER have been identified as 
the site of assembly of vaccinia and hepatitis virus (Sodeik 
et al., 1992; Krijnse-Locker et al., 1993), but they are not 
developed as extensively as is the site of accumulation of 
the E1 glycoprotein of the rubella virus in CHO cells (Hob- 
man et al., 1992). A post-ER, pre-Golgi compartment was 
identified as a differentiated proximal portion of the inter- 
mediate compartment (Hobman et al., 1992) and the com- 
plex tubular network accumulating class I HCs and 132m's 
described in the present study is morphologically similar. 
A region of anastomosing tubular membranes in continu- 
ity with the RER, similar to the compartments referred to 
above, was also described as the site of accumulation of en- 
docytosed Simian virus 40 (Kartenbeck et al., 1989). Our 

observations extend the findings on virus or viral glyco- 
proteins to other multimeric proteins such as class I mole- 
cules, and do so in primary cells in situ. A similar ER-derived 
structure, displaying dense-tubulated regions surrounding 
electron-lucent areas, was observed upon treatment of pan- 
creatic cells with Brefeldin A (BFA) and was shown to ac- 
cumulate coatomers (Orci et al., 1994). Our results show 
that such subcompartmentalization of the ER can also be 
observed in cells not exposed to BFA. On the other hand, 
morphologically different ER-derived structures have been 
shown to accumulate high amounts of HMG-CoA reduc- 
tase in CHO cells (Chin et al., 1982) and to concentrate 
chondroitin sulfate proteoglycan precursors in chondro- 
cytes (Vertel et al., 1989). 

In th3;mic epithelial cells from TAPl+I3B27 mice, class I 
molecules are found in similar ER-Golgi intermediate com- 
partments but of a smaller size. Also, in nontransgenic 
normal animals class I molecules can be detected in similar 
structures. The ability of HLA-B27 to accumulate in smooth 
tubulated membranes is not a feature unique to thymic ep- 
ithelial cells because in L-fibroblasts transfected with 
HLA-B27 in the absence of human 132m, HCs are also lo- 
calized in electron-dense tubules in the cis-Golgi region 
(Peters, P. J., N. J. Stam, and H. L. Ploegh, unpublished 
observations). The presence of class I molecules in the in- 
termediate compartment of thymic epithelial cells from 
TAP1 ÷ animals may be due to high expression of HLA-B27, 
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Figure 6. The class I-enriched tubulo-vesicular network contains 
ER membrane proteins and the intermediate compartment marker 
protein (ERGIC-53). Ultrathin cryosections from thymic tissue of a 
TAP-[3B27 animal were double immunogold-labeled with the rabbit 
anti-serum raised against human HCs and with a rabbit anti-serum 
directed against ER membrane proteins (A) or a monoclonal di- 
rected against ERGIC-53 (B). (A) The electron dense tubulated 
membranes intensely labeled with the anti-hHC antibody (PAG 10) 
are also reactive with the anti-ER antibody (PAG 15 nm). (B) HLA- 
B27 HCs (PAG 10) colocalize with ERGIC-53 (PAG 15) in tubu- 
lated and fenestrated membranes. Bars, 200 nm. 
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Figure 7. In thymic epithelial cells from TAP-[3B27 mice HLA-B27 HCs and h132m are localized in electron-dense compartments dis- 
playing tubulated membranes. (A) HLA-B27 hHCs (PAG I0) and h132m (PAG 15) colocalize in tubulated and fenestrated membranes 
close to the Golgi complex (G). Only the 132m subunit is detected in the Golgi complex. (B) HLA-B27 HCs (PAG 10) and h[32m (PAG 
15) are detected in compartments displaying tubulated and vesiculated regions reminiscent of the extended tubulo-vesiculated network 
as well as in electron-dense organelles. Bars, 200 nm. 
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Figure 8. The HLA-B27--enriched compartments are devoid of lysosomal markers. Ultrathin cryosections from thymic tissue of a 
TAP-13B27 mouse were double immunogold-labeled with the rabbit anti-serum raised against human HCs and a rabbit anti-serum di- 
rected against cathepsin D. The labeling for HLA-B27 HC (PAG 10) and cathepsin D (PAG 15) is clearly segregated, the lysosomal en- 
zyme being detected only in lysosomes (L). Bar, 200 nm. 

in addition to the endogenous murine class I molecules al- 
ready present in this region. For example, we do not know 
whether the amounts of class I molecules present in a 
transgenic animal might saturate a component necessary 
for their ordered progression from the ER to the Golgi. 
The accumulation of HLA-B27 HCs could be compounded 
by the inability of HLA-B27 to bind murine self peptides 
with affinities comparable to those observed for human 
self peptides (Peters, P. J., N. J. Stam, and H. L. Ploegh, 
unpublished observations). Consequently, "empty" mole- 
cules may accumulate in the course of biosynthesis in a sub- 
compartment of the ER. 

The exact role of the intermediate compartment be- 
tween the Golgi and the ER remains to be unraveled. Stud- 
ies on virus assembly show the importance of the cis-Golgi 
region in the sorting of mature virions (Sodeik et al., 1993; 
Krijnse-Locker et al., 1994). Intermediate compartments 
may also play an important role in fatty-acylation of pro- 
teins (palmitoylation), in the recycling of proteins from the 
Golgi to the ER, in the quality control of misfolded or un- 
assembled proteins, and may be directly implicated in ER- 
degradation mechanisms (Hammond and Helenius, 1994; 
Hauri and Schweizer, 1992). In TAPl-deficient cells a clear 
accumulation of class I HCs and [32m occurs in such a com- 
partment; they are predominantly present as free subunits, 
as analyzed biochemically in thymic cells and splenocytes. 

Our studies do not address the possible association of mis- 
folded HLA-B27 molecules with chaperones such as BIP 
or calnexin, as has been reported to occur for MHC class I, 
MHC class II or for viral glycoproteins (Degen and Wil- 
liams, 1991; Bonnerot et al., 1994; Hammond and Hele- 
nius, 1994). As degradation occurs at a pre-Golgi stage, 
the intermediate compartment itself likely plays a role in 
the disposal of class I molecules. 

In agreement with the assumption that the extended 
post-ER/pre-Golgi network may be involved in diversion 
to or convergence with other intracellular routes, we have 
observed class I HCs and h132m's in more electron-dense 
organelles. These lysosome-like structures display inter- 
nal tubular membranes reminiscent of the electron-dense, 
smooth-ER tubules, suggesting that they originate from 
the condensation of the class I-enriched reticulum. A non- 
autophagic pathway for diversion of ER proteins to lyso- 
somes has been described for disposal of intracisternal 
granules in rat thyrotrophs (Noda and Farquhar, 1992). In 
this ER-derived degradative pathway, RER elements lose 
their ribosomes and acquire a lysosome-like membrane as 
well as lysosomal enzymes. Even if the extended network 
we observe differs from the first steps of accumulation of 
intracisternal granules and from autophagy (Noda and 
Farquhar, 1992; Dunn, 1990; Rabouille et al., 1993), we won- 
der whether the more electron-dense compartments rep- 
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Figure 9. The HLA-B27-enriched compartments contain ubiquitin and the ubiquitin-activating enzyme El .  Ultrathin cryosections from 
thymic tissue of TAP-[3B27 mice were double- and triple-immunogold-labeled with the rabbit anti-serum raised against human HCs, 
with a monoclonal antibody directed against ubiquitin and with a rabbit anti-serum directed against cathepsin D (A and B) or with a 
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Figure 10. Diagram depict- 
ing the proposed ubiquitin- 
dependent pre-Golgi degra- 
dation pathway for class I 
molecules in TAPl-deficient 
thymic epithelial cells. In the 
absence of bound peptides 
HC and 132m accumulate in 
an extended network of tu- 
bulated membranes in conti- 
nuity with the ER and close 
to the Golgi complex. Elec- 
tron-dense compartments 
originate from the compres- 
sion of the extended net- 
work. Ubiquitin and ubiq- 
uiiin-activating enzymes are 
progressively enriched in the 
different steps of compres- 
sion of the post-ER-pre- 
Golgi network. 

resent a precursor stage in the diversion to lysosome-like 
organelles. The electron-dense compartments display pro- 
teins characteristic of intermediate compartments, such as 
ERGIC-53. This agrees with the suggestion that they are 
derived from the extended reticulum and with their local- 
ization in the pre-Golgi region. Interestingly, these lyso- 
some-like structures are devoid of lysosomal enzymes or 
other lysosomal proteins. We investigated whether such 
compartments could represent a diversion to a nonlysoso- 
mal pathway of degradation, where ubiquitin-dependent 
proteolysis would be a major candidate. There is at present 
no direct experimental evidence for involvement of ubiq- 
uitin in degradation of class I molecules. Ubiquitin is co- 
valently ligated to protein substrates in an ATP-depen- 
dent reaction and ubiquitin ligation commits proteins to 
degradation (Ciechanover, 1994; Hochstrasser, 1995). Us- 
ing antibodies recognizing ubiquitin and the ubiquitin- 
activating enzyme (El), respectively, ubiquitin and E1 have 
been localized in the cell cytosol, in the nucleus, and in ly- 
sosomes and autophagic vacuoles (Schwartz et al., 1990, 
1992). These observations suggest that the ubiquitin path- 
way is operative at different intracellular locations. We ob- 
served ubiquitin and the ubiquitin-activating enzyme E1 in 
association with the class I-enriched post-ER/pre-Golgi 
network and in electron dense organelles, suggesting the 
possibility of a link between this compartment and the ubiq- 
uitin pathway of degradation. In thymic epithelial cells, 
ubiquitin is present in the nucleus and to a lesser extent in 
the cytoplasm, but appears to be concentrated in the class 
I-enriched profiles. In BHK cells overexpressing the cat- 
ion-independent mannose-6-phosphate receptor, electron- 
dense ER-derived tubules occur which accumulate MPR and 

are E1 positive (Klumperman, J., and H. J. Geuze, unpub- 
lished observations). As proposed by Schwartz (1990), our 
observations are in agreement with the notion of compart- 
mentalization of the ubiquitin pathway of degradation, as op- 
posed to being a homogeneously cytosolic phenomenon. 

ER-degradation has been the subject of numerous stud- 
ies. Several polypeptides including the asialoglycoprotein 
receptor, ribophorin, or T cell receptor subunits are known 
to be degraded by a nonlysosomal endoproteolytic cleav- 
age that takes place in the ER itself or in ER-derived sub- 
compartments (Amara et al., 1989; Wikstrom and Lodish, 
1993; Tsao et al., 1992; Klausner and Sitia, 1990; Bonifa- 
cino and Lippincott-Schwartz, 1991). Our observations on 
thymic epithelial cells show that the ER-Golgi intermedi- 
ate station is complex and can be induced to expand, in re- 
sponse to the quantity and quality of passenger proteins. 
In the ER, misfolded and unassembled proteins are often 
relatively long-lived. Frequently, a lag period with little 
degradation is followed by rapid degradation, further sug- 
gesting that the proteins need to be transferred into spe- 
cific compartments or subregions of the ER (Hurtley and 
Helenius, 1989; Klausner and Sitia, 1990). In agreement 
with these observations, our data reveal the existence of 
ER-derived organelles most likely involved in the disposal 
of accumulated molecules (Fig. 10). The unique morpho- 
logical properties of this compartment suggest the possi- 
bility that it may be purified away from ER and Golgi 
membranes by subcellular fractionation. The ability to ex- 
ert strict control over the folding of HLA-B27 in the 
model described here should be a useful adjunct to such an 
endeavor and may assist in the further characterization of 
this compartment. 

monoclonal antibody directed against the ubiquitin-activating enzyme E1 (C and D). (A) Ubiquitin (PAG 15) is detected in electron- 
dense tubules and fenestrated membranes positive for HLA-B27 HC (PAG 10). No labeling is observed for cathepsin D (PAG 5). (B) 
electron-dense compartment containing ubiquitin (PAG15) and some HLA-B27 HC (PAG 10). The ubiquitin-activating enzyme E1 
(PAG 15) is detected in HLA-B27 HC (PAG 10) -positive tubules (C) and in electron-dense compartments displaying internal tubu- 
lated membranes (D). M, mitochondrion; PM, plasma membrane. Bars, 200 nm. 

Raposo et al. ER-Golgi Intermediate Compartment 1417 



We thank Dr. J. W. Slot and Dr. G. Posthuma (Universi tei t  Utrecht,  Fac- 

ulty of Medicine and Inst i tute of Biomembranes ,  Depar tmen t  of Cell Bi- 

ology, Utrecht,  The Nether lands)  for numerous  discussions and advice 

during the course of this study. We are indebted to all scientists who 

kindly supplied us with antibodies. M. Niekerk,  R. Schriwanek, and T. 

Van Rijn are gratefully acknowledged for their  outstanding photographi-  

cal assistance. We are grateful to Dr. I. Braakman  (Depar tment  of Bio- 
chemistry, Academisch Medisch Centrum, Amsterdam,  The Nether lands)  

for reading the manuscript.  
This work was supported by a Neder landse organisat ie  voor weten- 

schappelijk onderzoek program grant to Dr. H. J. Geuze (n°900-523-094). 

H. M. van Santen and H. L. Ploegh are supported by the Nat ional  Insti- 

tutes of Heal th  (RO1-AI  33456). G. Raposo is supported by the European  

Communit ies  (Human Capital  and Mobility). 

Received for publication 11 July 1995 and in revised form 5 October  1995. 

References 

Alexander, J., J. A. Payne, R. Murray, J. A. Frelinger, and P. Cresswell. 1989. 
Differential transport requirements of HLA and H-2 class I glycoproteins. 
lmmunogenetics. 29:380-388. 

Amara, J. F., G. Lederkremer, and H. Lodish. 1989. Intracellular degradation 
of unassembled asialoglycoprotein receptor subunit: a pre-Golgi, nonlysoso- 
mal endoproteolytic cleavage. J. Cell Biol. 109:3315-3324. 

Anderson, K. S., J. Alexander, M. Wei, and P. Cresswell. 1993. Intracellular 
transport of class I MHC molecules in antigen processing mutant cell lines. J. 
lmmunol. 151:3407-3419. 

Androlewicz, M. J., K. S. Anderson, and P. Cresswell. 1993. Evidence that 
transporters associated with antigen processing translocate a major histo- 
compatibility complex class I-binding peptide into the endoplasmic reticu- 
lum in an ATP-dependent manner. Proc. Natl. Acad. Sci. USA. 90:9130- 
9134. 

Arnold, D. J., J. Driscoll, M. Adrolewicz, E. Hughes, P. Cresswell, and T. Spies. 
1992. Proteasome subunits encoded in the MHC are not generally required 
for the processing of peptides bound by MHC class I molecules. Nature 
(Lond.). 360:171-174. 

Attaya, M., S. Jameson, C. K. Martinez, E. Hermel, C. Aldrich, J. Forman, K. 
Fischer-Lindahl, M. J. Bevan, and J. J. Monaco. 1992. Ham-2 corrects the 
class I antigen-processing defect in RMA-S ceils. Nature (Lond.). 355:647- 
649. 

Baas, E. J. 1993. Subunit interactions within MHC class I molecules. Ph.D. The- 
sis. Free University, Amsterdam. pp. 131. 

Baas, E. J., H. M. van Santen, M. J., Kleijmeer, H. J. Geuze, P. J. Peters, and H. L. 
Ploegh. 1992. Peptide-induced stabilization and intracellular localization of 
empty HLA class I complexes. J. Exp. Med. 176:147-156. 

Bailly, E., J. Favel, G. Mahouy, and G. Jaureguiberry. 1991. Plasmodium falci- 
parum: isolation and characterization of 55 kD protease with cathepsin D-like 
activity from Plasmodium falciparum. Exp. Parasitol. 72:278-284. 

Barnstable, C. J., W. F. Bodmer, G. Brown, G. Galfre, C. Milstein, and A. Zie- 
gler. 1978. Production of monoclonal antibodies to group A erythrocytes, 
HLA and other human cell surface antigens--new tools for genetic analysis. 
Cell. 14:9-20. 

Bearman, R. M., G. D. Levine, and K. G. Bensch. 1978. The ultrastructure of 
the normal human thymus: a study of 36 cases. Anat. Ree. 190:755-782. 

Bijlmakers, M. J., and H. L Ploegh. 1993. Putting together a MHC class I mole- 
cu!e. Curr. Opin. Cell Biol. 5:21-26. 

Blount, P., and J. P. Merlie. 1990. Mutational analysis of muscle nicotinic ace- 
tylcholine receptor subunit assembly. J. Cell Biol. 111:2613-2622. 

Bonifacino, J. S., and J. Lippincott-Schwartz. 1991. Degradation of proteins 
within the endoplasmic reticulum. Curr. Opin. Cell BioL 3:592-600. 

Bonnerot, C., M. S. Marks, P. Cosson, E. J. Robertson, E. K. Bikoff, R. N. Ger- 
main, and J. S. Bonifacino. 1994. Association with BiP and aggregation of 
class II MHC molecules synthesized in the absence of invariant chain. 
EMBO (Eur. MoL Bioo. Organ.) J. 13:934-944. 

Chen, C., J. S. Bonifacino, L. C. Yuan, and R. D. Klausner. 1988. Selective deg- 
radation of T cell antigen receptor chains in a pre-Golgi compartment. J. 
Cell Biol. 107:2149-2161. 

Chin, D. J., K. L. Luskey, R. G. W. Anderson, J. R. Faust, J. L. Goldstein, and 
M. J. Brown. 1982. Appearance of crystalloid endoplasmic reticulum in com- 
pactin resistant chinese hamster cells with a 500-fold increase in 3-hydroxy- 
3-methylglutarayl-coenzyme A reductase. Proc. Natl. Acad. Sci. USA. 70: 
1185-1189. 

Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell. 79: 
13-21. 

Clark, S. L., Jr. 1963. The thymus in mice of strain 129/J studied with the elec- 
tron microscope. Am. J. Anat. 112:1-33. 

Degen, E., and D. B. Williams. 1991. Participation of a novel 88-kD protein in 
the biogenesis of murine class I histocompatibility molecules. J. Cell Biol. 
112:109%1115. 

DeMars, R., C. C. Chang, S. Shaw, P. J. Reitnauer, and P. M. Sondel. 1984. Ho- 

mozygous deletions that simultaneously eliminate expression of class I and 
class II antigens of EBV-transformed B-lymphoblastoid cells. Hum. lmmu- 
nol. 11:77-97. 

Dick, L. R., C. Aldrich, S. C. Jameson, C. R. Moomaw, B. C. Pramanik, C. K. 
Doyle, G. N. DeMartino, M. J. Bevan, J. M. Forman, and C. A. Slaughter. 
1994. Proteolytic processing of ovalbumin and 13-galactosidase by the protea- 
some to yield antigenic peptides. J. lmmunol, 152:3884-3894. 

Dunn, W. A. 1990. Studies on the mechanisms of autophagy: formation of the 
autophagic vacuole. Z Cell Biol. 110:1923-1933. 

Elliot, T. 1991. How do peptides associate with MHC class I molecules? lmmu- 
nol. Today. 12:386-388. 

Hammond, C., and A. Helenius. 1994. Quality control in the secretory pathway: 
retention of a misfolded viral membrane glycoprotein involves cycling be- 
tween the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol, 
126:41-52. 

Hauri, H. P., and A. Schweitzer. 1992. The endoplasmic reticulum-Golgi inter- 
mediate compartment. Curr. Opin. Cell Biol. 4:600-608. 

Heemels, M. T., and H. L. Ploegh. 1995. Peptide generation and translocation 
for presentation by MHC class I. Annu. Rev. Biochem. 64:463~,91. 

Hershko, A., and A. Ciechanover. 1992. The ubiquitin system for protein deg- 
radation. Annu. Rev. Biochem. 61:761-807. 

Hobman, T. C., L. Woodward, and M. G. Farquhar. 1992. The rubella virus E1 
glycoprotein is arrested in a novel Post-ER, Pre-Golgi compartment. J. Cell 
Biol. 118:795-811. 

Hochstrasser, M. 1995. Ubiquitin, proteasomes, and the regulation of intracel- 
lular protein degradation. Curr. Opin. Cell Biol. 7:215-223. 

Howard, J. C., and A. Seelig. 1993. Peptides and the proteasome. Nature 
(Lond.). 365:211-212. 

Hsu, V. W., L. C. Yuan, J. G. Nuchtern, J. Lippincott-Schwartz, G. J. H~mmer- 
ling, and R. D. Klausner. 1991. A recycling pathway between the endoplas- 
mic reticulum and the Golgi apparatus for retention of unassenlbled MHC 
class I molecules. Nature (Lond.). 352:44! 4A,~. 

Hurtley, S. M., and A. Helenius. 1989. Protein oligomerization in the endoplas- 
mic reticulum. Annu. Rev. Cell BioL 5:227-307. 

Jamieson, J. D., and G. E. Palade. 1967. Intracellular transport of secretory pro- 
teins in the pancreatic exocrine cell. I. Role of the peripheral elements of the 
Golgi complex. ,L Cell Biol, 34:577-596. 

Janossy, G., J. A. Thomas, F. J. Bollum, S. Granger, G. Pizzolo, K. F. Brad- 
stock, L. Wong, A. McMichael, K. Ganeshaguru, and A. V. Hoffbrand. 1980. 
The human thymic microenvironment: an immunohistologic study. J. lmmu- 
nol, 125:202-212. 

K~irre, K., H. G. Ljunggren, G. Piontek, and R. Kiessling. 1986. Selective ejec- 
tion of H-2-deficient lymphoma variants suggests alternative immune de- 
fense strategy. Nature (Lond.). 319:675-678. 

Kartenbeck, J., H. Stukenbrok, and A. Helenius. 1989. Endocytosis of Simian 
Virus 40 into the endoplasmic reticulum. J. Cell Biol. 109:2721-2729. 

Kavathas, P., F. H. Bach, and R. De Mars. 1980. Gamma ray-induced loss of ex- 
pression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc. Natl. 
Acad. Sci. USA. 77:42514255. 

Klausner, R. D., and R. Sitia. 1990. Protein degradation in the endoplasmic 
reticulum. Cell, 62:611-614. 

Kleijmeer, M. J., A. Kelly, H. J. Geuze, J. W. Slot, A. Townsend, and J. Trows- 
dale. 1992. Location of MHC-encoded transporters in the endoplasmic retic- 
ulum and cis-Golgi. Nature (Lond.). 357:342-344. 

Krijnse-Locker, J., M. Ericsson, P. J. M. Rottier, and G. Griffiths. 1994. Charac- 
terization of the budding compartment of mouse Hepatitis virus: evidence 
that transport from the RER to the Golgi complex requires only one vesicu- 
lar transport step. J. Cell Biol. 124:55-70. 

Krimpenfort, P., G. Rudenko, F. Hochstenbach, D. Guessow, A. Betas, and H. L 
Ploegh. 1987. Crosses of two independently derived transgenic mice demon- 
strate functional complementation of the genes encoding heavy (HLA-B27) 
and light (b2-microglobulin) chains of HLA class I antigens. EMBO (Eur. 
Mol. Biol, Organ.) J. 6:1673-1676. 

Lippincott-Schwartz, J., J. S. Bonifacino, L C. Yuan, and R. D. Klausner. 1988. 
Degradation from the endoplasmic reticulum: disposing of newly synthe- 
sized proteins. Cell. 54:209-220. 

Liou, W., and J. W. Slot. 1994. Improved fine structure in immunolabeled cryo- 
sections after modifying the sectioning and pick-up conditions. Proc. Int. 
Conf. Elect. Microsc. 13:253-254. 

Ljunggren, H. G., and K. Karre. 1985. Host resistance directed selectively 
against H-2 deficient lymphoma variants: analysis of the mechanism. J. Exp. 
Med. 162:1745-1759. 

Ljunggren, H. G., N. S. Stam, C. Ohl6n, J. J. Neefjes, P. Hoglund, M. T. 
Heemels, J. Bastin, T. N. M. Schumacher, A. Townsend, K. K~irre, et al. 
1990. Empty MHC class I molecules come out in the cold. Nature (Lond.). 
346:476-480. 

Louvard, D., H. Reggio, and G. Warren. 1982. Antibodies to the Golgi complex 
and rough endoplasmic reticulum. J. Cell Biol, 92:92-107. 

Machold, R. P., S. Andr6e, L. Van Kaer, H. G. Ljunggren, and H. L. Ploegh. 
1995. Peptide influences the folding of free major histocompatibility com- 
plex class I heavy chains. J. Exp. Med. 18:1111-1122. 

Michalek, M. T., E. T. Grant, C. Gramm, A. L. Goldberg, and K. L. Rock. 1993. A 
role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted 
antigen presentation. Nature (Lond.). 363:552-554. 

Momburg, F., V. Ortiz-Navarrete, J. Neefjes, E. Goulmy, Y. van der Wal, H. 

The Journal of Cell Biology, Volume 131, 1995 1418 



Spits, S. J. Powis, G. W. Butcher, J. C. Howard, P. Walden, et al. 1992. The 
proteasome subunits encoded by the major histocompatibility complex are 
not essential for antigen presentation. Nature (Lond.). 360:174-177. 

Neefjes, J. J., and H. L. Ploegh. 1988. Allele and locus-specific differences in 
cell surface expression and the association of HLA class I heavy chain with 
132-microglobulin: differential effects of inhibition of glycosylation on class I 
subunit association. Eur. Z lmmunoL 18:801--810. 

Neefjes, J. J., F. Momburg, and G. H~immerling. 1993. Selective and ATP- 
dependent translocation of peptides by the MHC encoded transporter. Sci- 
ence (Wash. DC). 261:769-771. 

Noda, T., and M. G. Farquhar. 1992. A non-autophagic pathway for diversion 
of ER secretory proteins to lysosomes. J. Cell Biol. 119:85-97. 

Oprins, A., R. Duden, T. E. Kreis, H. J. Geuze, and J. W. Slot. 1993.13-COP lo- 
calizes mainly to the cis-Golgi side in exocrine pancreas. J. Cell BioL 121:49- 
59. 

Orci, L., A. Perrelet, M. Ravazolla, F. T. Wieland, R. Schekman, and J. E. 
Rothman. 1993. BFA-bodies: a subcompartment of the endoplasmic reticu- 
lum. Proc. Natl. Acad. Sei. USA. 90:11089-11093. 

Pelham, H. R. B. 1989. Control of protein exit from the endoplasmic reticulum. 
Annu. Rev. Cell BioL 5:1-23. 

Peters, P. J., J. J. Neefjes, V. Oorschot, H. L. Ploegh, and H. J. Geuze. 1991. 
Segregation of MHC class II molecules from MHC class I molecules in the 
Golgi complex for transport to lysosomal compartments. Nature (Lond.). 
349:669-676. 

Powis, S. J., A. R. M. Townsend, E. V. Deverson, J. Bastin, G. W. Butcher, and 
J. C. Howard. 1991. Restoration of antigen presentation to the mutant cell 
line RMA-S by an MHC-linked transporter. Nature (Lond.). 354:528-531. 

Rabouille, C., G. J. Strous, J. D. Crapo, H. J. Geuze, and J. W. Slot. 1993. The 
differential degradation of two cytosolic proteins as a tool to monitor au- 
tophagy in hepatocytes by immunocytochemistry. J. Cell Biol. 120:897-908. 

Raposo, G., M. J. Kleijmeer, G. Posthuma, J. W. Slot, and H. J. Geuze. 1995. 
Immunogold labeling of ultrathin cryosections: application in immunology. 
Handbook Exp. lmmunol. 5th edition. In press. 

Rock, K. L., C. Gramm, L. Rothstein, K. Clark, R. Stein, L. Dick, D. Hwang, 
and A. L. Goldberg. 1994. lnhibitors of the proteasome block the degrada- 
tion of most cell proteins and the generation of peptides presented on MHC 
class I molecules. Cell. 78:761-771. 

Rose, J. K., and R. W. Doms. 1988. Regulation of protein export from the endo- 
plasmic reticulum. Annu. Rev. Cell Biol. 4:257-388. 

Rouse, R. V., W. Van Ewijk, P. P. Jones, and I. L. Weissman. 1979. Expression 
of MHC antigens by mouse thymic dendritic cells. J. Immunol. 122:2508- 
2515. 

Schwartz, A. L., A. Ciechanover, R. A. Brandt, and H. J. Geuze. 1988. Immu- 
noelectron microscopic localization of ubiquitin in hepatoma cells. EMBO 
(Eur Mol. Biol. Organ.) J. 7:2961-2966. 

Schwartz, A., J. S. Trausch, A. Ciechanover, J. W. Slot, and H. J. Geuze. 1992. 
Immunoelectron microscopic localization of the ubiquitin-activating enzyme 
E1 in HepG2 cells. Proc. Natl. Acad. Sci. USA. 89:5542-5546. 

Schweizer, A., J. A. M. Fransen, T. B~ichi, L. Ginsel, and H. P. Hauri. 1988. 
Identification, by a monoclonal antibody, of a 53-kD protein associated with 
a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell 
Biol. 107:1643-1653. 

Schweizer, A., J. A. M. Fransen, K. Matter, T. E. Kreis, L. Ginsel, and H. P. 
Hauri. 1990. Identification of an intermediate compartment involved in pro- 
tein transport from endoplasmic reticulum to Golgi apparatus. Eur. J. Cell 
Biol. 53:185-196. 

Shepherd, J. C., T. N. M. Schumacher, P. G. Ashton-Rickardt, S. Imaeda, H. L. 
Ploegh, C. A. Janeway, and S. Tonegawa. 1993. TAP-1 dependent peptide 

translocation in vitro is ATP dependent and peptide selective. Cell. 74:577- 
584. 

Sitia, R., M. S. Neuberger, and C. Milstein. 1987. Regulation of membrane IgM 
expression in secretory B ceils: translational and post-translational events. 
E M B O  (Eur. Mol. Biol. Organ.) Z 6:3969-3977. 

Slot, J. W., H. J. Geuze, S. Gigengack, G. E. Lienhard, and D. E. James. 1991. 
Immuno-localization of the insulin regulatable glucose transporter in brown 
adipose tissue of the rat. J. Cell Biol. 113:123-135. 

Smith, M. H., J. M. R. Parker, R. S. Hodges, and B. H. Barber. 1986. The prep- 
aration and characterization of anti-peptide heteroantisera recognizing sub- 
regions of the intracytoplasmic domain of class I H-2 antigens. Mol. Immu- 
not. 23:1077-1092. 

Sodeik, B., R. W. Doms, M. Ericsson, G. Hiller, C. E. Machamer, W. Van't 
Hof, G. Van Meer, B. Moss, and G. Griffiths. 1993. Assembly of Vaccinia vi- 
rus: role of the intermediate compartment between the endoplasmic reticu- 
lum and the Golgi stacks. J. Cell Biol. 121:521-541. 

Spies, T., and R. DeMars. 1991. Restored expression of major histocompatibil- 
ity class I molecules by gene transfer of a putative peptide transporter. Na- 
ture (Lond.). 351:323-324. 

Stam, N. J., H. Spits, and H. L. Ploegh. 1986. Monoclonal antibodies raised 
against denaturated HLA-B locus H-chain permit biochemical characteriza- 
tion of certain HLA-C locus products. J. Immunol. 137:2299-2306. 

Stam, N. J., Th. M. Vroom, P. J. Peters, E. B. Pastoors, and H. L. Ploegh. 1990. 
HLA-A and HLA-B-specific monoclonal antibodies reactive with free heavy 
chains in Western blots, in formalin fixed, paraffin embedded tissue sections 
and in cryo-immuno-electron microscopy. Int. lmmunol. 2:113-125. 

Townsend, A., T. Elliot, V. Cerundolo, L. Foster, B. Barber, and A. Tse. 1990. 
Assembly of MHC class I molecules analyzed in vitro. Cell. 62:285-295. 

Tsao, Y. S., N. E. Ivessa, M. Adesnik, D. D. Sabatini, and G. Kreibich. 1992. 
Carboxy terminally truncated forms of ribophorin I are degraded in pre- 
Golgi compartments by a calcium-dependent process. J. Cell Biol. 116:57--67. 

Yewdell, J. W., and J. R. Bennink. 1992. Cell biology of antigen processing and 
presentation to MHC class I molecule-restricted T lymphocytes. Adv. lmrnu- 
noL 52:1-123. 

Van Ewijk, W. 1984. Immunohistology of lymphoid and non-lymphoid cells in 
the thymus in relation to T lymphocyte differentiation. Am. Z Anat. 170: 
311-330. 

Van Ewijk, W., R. V. Rouse, and I. L. Weissman. 1980. Distribution of H-2 mi- 
croenvironments in the mouse thymus, lmmunoelectron microscopic identi- 
fication of I-A and H-2K bearing cells. J. Histochem. Cytochem. 28:1089- 
1099. 

Van Kaer, L., P. G. Ashton-Rickardt, H. L. Ploegh, and S. Tonegawa. 1992. 
TAP1 mutant mice are deficient in antigen presentation, surface class I mol- 
ecules, and CD4-8+ T ceils. Cell. 71:1205-1214. 

van Santen, H. M., A. Woolsey, P. G. Ashton-Rickardt, L. Van Kaer, E. J. 
Baas, A. Berns, S. Tonegawa, and H. L. Ploegh. 1995. Increase in positive 
selection of CD8 + T cells in TAPl-mutant  mice by human 132-microglobu- 
lin transgene. J. Exp. Med. 181:787-792. 

Vaux, D., J. Tooze, and S. Fuller. 1990. Identification by anti-idiotype antibod- 
ies of an intracellular membrane protein that recognizes a mammalian endo- 
plasmic reticulum retention signal. Nature (Lond.). 345:495-502. 

Vertel, B. M., A. Velasco, S. LaFrance, L. Waiters, and K. Kaczman-Daniel. 
1989. Precursors of chondroitin sulfate proteoglycan are segregated within a 
subcompartment of the chondrocyte endoplasmic reticulum. J. Cell BioL 
109:1827-1836. 

Wikstrom, L., and H. F. Lodish. 1993. Unfolded H2b asialoglycoprotein recep- 
tor subunit polypeptides are selectively degraded within the endoplasmic 
reticulum. Z Biol. Chem. 268:14412-14416. 

Raposo et al. ER-Golgi Intermediate Compartment 1419 


