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Abstract: Intestinal barrier function is required for the maintenance of mucosal homeostasis.
Barrier dysfunction is thought to promote progression of both intestinal and systemic diseases.
In many cases, this barrier loss reflects increased permeability of the paracellular tight junction as a
consequence of myosin light chain kinase (MLCK) activation and myosin II regulatory light chain
(MLC) phosphorylation. Although some details about MLCK activation remain to be defined, it is
clear that this triggers perijunctional actomyosin ring (PAMR) contraction that leads to molecular
reorganization of tight junction structure and composition, including occludin endocytosis. In disease
states, this process can be triggered by pro-inflammatory cytokines including tumor necrosis factor-α
(TNF), interleukin-1β (IL-1β), and several related molecules. Of these, TNF has been studied
in the greatest detail and is known to activate long MLCK transcription, expression, enzymatic
activity, and recruitment to the PAMR. Unfortunately, toxicities associated with inhibition of MLCK
expression or enzymatic activity make these unsuitable as therapeutic targets. Recent work has,
however, identified a small molecule that prevents MLCK1 recruitment to the PAMR without
inhibiting enzymatic function. This small molecule, termed Divertin, restores barrier function after
TNF-induced barrier loss and prevents disease progression in experimental chronic inflammatory
bowel disease.

Keywords: tight junction; barrier function; inflammatory bowel disease; drug development; mucosal
immunology; cytokines; ZO-1; occludin; claudin; actomyosin

1. Structure of Epithelial Intercellular Junctions

Intestinal mucosal surfaces are covered by a single layer of columnar epithelial cells required
for absorptive and defensive functions. This requires cellular polarization in order to ensure
appropriately-oriented membrane specializations, protein and lipid trafficking, and vectorial transport
of ions and larger solutes [1–3]. For example, the dense forests of microvilli that increase apical surface
area and facilitate nutrition absorption [4] are not needed on the basolateral surface, which interacts
with adjacent epithelial cells, immune cells, and the basement membrane.
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In order to maintain polarized function and regulate the stimuli to which apical and basolateral
surfaces are exposed, intestinal epithelial cells must establish a physical barrier that prevents free
diffusion across the paracellular shunt pathway [5–14]. This barrier is formed by a series of junctions
that provide different types of intercellular connections. This apical junctional complex cannot be
resolved by light microscopy but can be seen as the terminal bar, a dense spot or bar where apical and
lateral membranes meet [5,15–17]. Transmission electron microscopy allows visualization of distinct
regions such as, from apical to basal, tight junctions (zonulae occludens), adherens junctions (zonulae
adherens), and desmosomes [5] (Figure 1A,B). Tight junctions are sites of close apposition of adjacent
cell membranes, termed kiss sites, where the adjacent plasma membrane outer leaflets appear to
fuse into a single layer. This corresponds to the site at which paracellular flux of macromolecular
probes is blocked. Although some microfilaments are associated with tight junctions, they are most
concentrated at adherens junctions [18–20], which do not form barriers to paracellular flux but are
critical to intercellular adhesion and maintenance of the apical junctional complex. Finally, desmosomes
can be recognized as electron dense membrane structures associated with intermediate, i.e., cytokeratin,
filaments [21–24].
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Figure 1. The structure of epithelial intercellular junctions. (A) Schematic showing interactions between
the perijunctional actomyosin ring (PAMR), zonula occludens-1 (ZO-1), occludin, claudins at the tight
junction; E-cadherin, α-catenin, and β-catenin at the adherens junction; and desmogelin, desmocollin,
and intermediate filaments at the desmosome. (B) Transmission electron micrograph showing the tight
junction (TJ), adherens junction (AJ), desmosome (D), and microvilli (Mv). From Turner. Nat Rev
Immunol 2009. (C) Freeze-fracture electron micrograph of intramembranous tight junction strands.
From Shen et al. Annu. Rev. Physiol. 2011.

Tight junction structure is far more interesting when viewed by freeze-fracture electron
microscopy [25–27]. This reveals an anastomosing, mesh-like network of intramembranous strands
(Figure 1C). Closer examination shows that the strands are composed of individual particles, causing
some observers to compare the appearance to a string of pearls. The particles are thought to represent
tight junction protein complexes that include polymers of claudin family proteins [7,28–30]. Consistent
with this, alterations in the ensemble of claudin proteins expressed can modify the architecture of the
strand network [31]. Although lipids must also be associated with tight junction structures, these are
less well-characterized. It is, however, known that tight junctions are cholesterol- and sphingolipid-rich
microdomains and that cholesterol depletion reduces both strand network complexity and paracellular
barrier function [32–34].
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2. The Paracellular “Shunt” Pathway

The intestinal mucosa confines potentially injurious contents within the lumen. The paracellular
barrier, however, cannot be absolute; it must be selectively permeable to water, ions, small nutrients,
and selected macromolecules in order to facilitate passive transport that is essential for nutrition and
metabolism. Permeability of tight junction flux pathways must, therefore, be precisely regulated.
For example, tight junction permeability is increased during nutrient absorption. This is triggered
by Na+–nutrient cotransport, which increases paracellular permeability by activating myosin light
chain kinase (MLCK) to cause perijunctional actomyosin ring (PAMR) remodeling [35–39] (Figure 2).
In the context of nutrient absorption, these permeability increases are limited to small, nutrient-sized
molecules [35,40]. This couples with the transepithelial gradients established by active, transcellular
transport, i.e., Na+ and nutrient release into the basal extracellular milieu, to drive passive paracellular
fluid absorption [37,41,42]. The absorbed fluid, from the unstirred layer, which contains high
concentrations of nutrient monomers as a consequence of brush border hydrolase, e.g., disaccharidase
and peptidase, activity [43,44]. Fluid absorption therefore carries nutrients, against their concentration
gradient, by the mechanisms of solvent drag [42,44,45]. Increased tight junction permeability amplifies
this process and allows total transepithelial nutrient absorption to exceed the maximum capacity
of transcellular transport pathways [37,38,41,45–48]. A similar process allows claudin-2-mediated
paracellular Na+ transport to complement transcellular Na+ transport and enhance the efficiency of
Na+ reabsorption in the renal proximal tubule [49].

In contrast to Na+–nutrient cotransport [35,40], MLCK activation by inflammatory stimuli,
e.g., tumor necrosis factor α (TNF), increases paracellular permeability to larger macromolecules, up to
~125 Å in diameter, thereby activating the low capacity leak pathway [50–55] (Figure 2). The differences
between these two forms of MLCK-dependent barrier regulation are incompletely understood, but
it is notable that occludin endocytosis occurs in response to TNF but not Na+–nutrient cotransport
(Figure 2).

Some claudin proteins, e.g., claudin-2, form actively-gated paracellular channels that define the
pore pathway [52,53,56] In contrast to the leak pathway, the high capacity pore pathway channels
are exquisitely size- and charge-selective, with a cutoff of ~8 Å diameter [57,58]. This limits the pore
pathway to small ions and water and is too small to accommodate even small nutrients, e.g., glucose
and amino acids. The pore pathway is, however, essential for nutrient transport as it allows Na+ ions
within the lamina propria, i.e., beneath the epithelial cells, to leak back into the gut lumen [59,60].
This provides the lumenal Na+ that is required for Na+–nutrient cotransport, the dominant route of
intestinal nutrient absorption. Thus, mice lacking the two principal claudins that form paracellular
cation channels within the intestinal epithelium die in the first few weeks of life as a result of nutrient
malabsorption [59]. The remainder of this review will focus on the leak pathway. Claudin channels
and the pore pathway are discussed elsewhere [61–64].

Na+–nutrient cotransport at the apical brush border activates MLCK. Nutrients and Na+ exit across
the basolateral membrane via diffusive exchangers and the Na+/K+-ATPase, respectively. Although not
indicated here, activation of other transporters, e.g., apical NHE3-mediated Na+ absorption, further
increases basolateral Na+ [65–69]. Together, these events increase lamina propria osmolarity [70] to
draw fluid across the tight junction. The modest, size-selective, increases in leak pathway permeability
elicited by MLCK allow small nutrient-sized molecules to be carried with this fluid via solvent drag [44].
The end result is amplification of transcellular nutrient absorption by paracellular water and nutrient
absorption. MLCK is also activated by tumor necrosis factor (TNF), but, in this case, myosin light
chain phosphorylation triggers caveolar endocytosis of occludin that causes much greater increases in
macromolecular permeability. Although not shown here, TNF also inhibits apical NHE3-mediated Na+

absorption, in part explaining why fluid secretion accompanies TNF-induced increases in paracellular
permeability [71].
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Figure 2. Roles of myosin light chain kinase (MLCK) in physiological and pathophysiological tight
junction regulation. PAMR: perijunctional actomyosin ring; TNF: tumor necrosis factor.

3. MLCK, ZO-1, and Occludin Regulate the Leak Pathway

3.1. MLCK Regulates Leak Pathway Permeability

Morphological analyses of rodent mucosae identified the appearance of intrajunctional dilatations
and PAMR condensation as the morphological correlates of increased paracellular permeability induced
by Na+–nutrient cotransport [37–39]. In vitro models were then used to show that MLCK-mediated
phosphorylation of myosin II regulatory light chain (MLC) was required for paracellular permeability
increases that follow activation of Na+–nutrient cotransport [35], enteropathogenic E. coli infection [72],
or TNF stimulation [50]. MLCK inhibition also prevented Na+–nutrient cotransport-induced
paracellular permeability increases in rodent mucosae [35] and was associated with Na+–nutrient
cotransport-induced permeability increases in human intestine [36]. Finally, transgenic expression of
constitutive-active MLCK increased paracellular permeability in vitro [73,74] and in vivo [75]. MLCK
is, therefore, a key signaling node in physiological and pathophysiological regulation of epithelial
tight junctions.

3.2. MLCK Regulates Tight Junction Protein Interactions and Structure

The importance of MLCK to tight junction regulation in vivo was initially demonstrated in the
context of acute, systemic T cell activation [51]. Administration of T cell-activating anti-CD3 antibodies
to mice and humans induces a cytokine storm that includes massive systemic release of TNF [76–78].
This results in an acute, self-limited, TNF-dependent diarrhea [79,80]. Ultrastructural examination
revealed PAMR condensation similar to that induced by Na+–nutrient cotransport; intrajunctional
dilatations were not detected and are likely a consequence of the massive paracellular water absorption
driven by Na+–nutrient cotransport [51]. Further study confirmed increased intestinal epithelial MLC
phosphorylation following T cell activation. Notably, the peak of epithelial MLC phosphorylation
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coincided with maximal intestinal fluid accumulation, and both MLC phosphorylation and fluid
accumulation resolved with similar time courses [51]. Analysis of tight junction protein distributions
by immunofluorescence microscopy demonstrated subtle changes in ZO-1 localization that included
reduced ZO-1 staining and increased waviness of bicellular tight junction profiles within intestinal
epithelia of anti-CD3-treated mice [51]. Genetic MLCK activation in vitro also induced undulations
within ZO-1-labeled tight junctions [74]. Enzymatic MLCK inhibition reversed these changes, both
in vivo and in vitro [51,74]. It may be that these morphological alterations reflect changes in ZO-1 and
ZO-2 phase separation [81].

In vitro ZO-1 reorganization induced by MLCK activation was accompanied by similar changes
in occludin and F-actin profiles, and these proteins continued to be closely associated [74]. In contrast,
claudins 1 and 2 appeared to remain at tight junctions at sites of ZO-1, occludin, and F-actin
invaginations [74]. Consistent with this, a previous ultrastructural study of rodent mucosae
demonstrated ZO-1 displacement from junctional fibrils, which we now understand to be comprised
of claudin polymers, in the context of Na+–nutrient cotransport-induced increases in paracellular
permeability [82]. Thus, structural changes induced by MLCK-dependent MLC phosphorylation
include reorganization of tight junction protein complexes.

Recognition that tight junction protein complexes undergo continuous remodeling, even at
steady-state, i.e., in the absence of exogenous stimuli [83], led to the hypothesis that MLCK-mediated
leak pathway regulation might be a consequence of altered remodeling dynamics. In vitro MLCK
inhibition had no effect on anchoring and exchange of claudin-1, occludin, or F-actin and epithelial
tight junctions [84]. In contrast, ZO-1 exchange was markedly reduced following MLCK inhibition [84].
Remarkably, enzymatic MLCK inhibition also reduced ZO-1 exchange in vivo [84]. This increase in
ZO-1 anchoring at the tight junction following MLCK inhibition was mapped to the actin binding
region (ABR) of ZO-1 [84]. Mutation of ZO-1 to delete the ABR caused a modest increase in basal
mobile fraction but rendered ZO-1 insensitive to MLCK inhibition. Moreover, the free ABR was able to
act as a dominant negative inhibitor of MLCK-mediated barrier regulation [84]. These data suggest that
one mechanism by which MLCK regulates tight junction structure and function involves interactions
mediated by the ZO-1 ABR.

3.3. MLCK Activation Triggers Tight-Junction Protein Endocytosis

In addition to subtle ZO-1 reorganization, TNF induced endocytosis of the tight junction protein
occludin in vitro and in vivo [51,54,85] (Figure 2). Although TNF also triggered endocytosis of other
tight junction proteins in vitro, only occludin was internalized in vivo. This was, initially, difficult to
understand, as intestinal barrier function in occludin knockout mice has been reported to be similar
to that of wildtype mice [86,87]. MLCK-dependent occludin endocytosis was, however, the first
change that accompanied actin depolymerization-induced barrier loss in vitro [88]. This internalization
occurred via caveolae, and inhibition of caveolar endocytosis prevented actin depolymerization-induced
barrier loss in vitro [88]. MLCK inhibition blocked the caveolin-1 dependent endocytosis of occludin.

Further investigation showed that occludin endocytosis triggered by TNF and related cytokines was
mediated by caveolae, both in vitro and in vivo [85,89,90]. Moreover, inhibition of caveolar endocytosis
blocked this inflammation-induced barrier loss. Most strikingly, neither occludin endocytosis nor
barrier loss occurred after TNF treatment of caveolin-1 knockout mice [85]. This does not, however,
demonstrate that occludin endocytosis is essential for TNF-induced barrier loss; it only shows that
occludin is a reliable marker of the caveolar endocytosis that drives such barrier loss. To determine the
specific contribution(s) of occludin to TNF-induced barrier loss, responses of transgenic mice expressing
enhanced green fluorescent protein (EGFP)-occludin within intestinal epithelial cells were analyzed.
TNF did not induce diarrhea, i.e., net fluid secretion, in these occludin overexpressing mice [85]. Barrier
loss was also markedly attenuated in EGFP-occludin transgenic mice [85]. Thus, removal of occludin
from the tight junction is required for TNF-induced increases in tight junction permeability.
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3.4. Interactions Mediated by the Occludin OCEL Domain Regulate Leak Pathway Barrier Function

Despite the reported absence of barrier dysfunction in occludin knockout mice, several studies have
shown that occludin knockdown in vitro increases paracellular permeability to macromolecules [89,91].
Similarly, acute occludin downregulation by miR-122a transfection in vivo increased paracellular
permeability to 10 kDa dextran [92]. It may, therefore, be that compensation by other members of
the tight junction associated Marvel protein (TAMP) family [93–98] supports normal macromolecular
barrier function in occludin knockout mice.

Detailed analyses of Caco-2 intestinal epithelial cell monolayers demonstrated that occludin
knockdown specifically increased paracellular permeability by a pathway with a theoretical diameter
of 125 Å, presumably the leak pathway [89]. Similar studies of occludin-knockdown MDCK cell
monolayers demonstrated increased permeability to molecules with diameters greater than ~4 Å,
although no upper limit was defined [91]. These MDCK cells were protected from cytokine-induced
increases in 3 kDa dextran flux [99]. Conversely, occludin overexpression augmented such
cytokine-induced macromolecular flux [99]. However, the studies found that cytokine treatment
paradoxically increased transepithelial electrical resistance (TER) in MDCK monolayers and that these
TER increases were either attenuated or exaggerated by occludin knockdown or overexpression,
respectively [99]. Subsequent studies of Caco-2 monolayers demonstrated the opposite, that
occludin knockdown prevented TNF-induced TER loss [89]. TNF was also unable to increase
paracellular macromolecular permeability of occludin knockdown Caco-2 monolayers. Thus,
macromolecular permeability of TNF-treated, occludin-sufficient Caco-2 monolayers was similar to that
of occludin-deficient monolayers regardless of TNF treatment [89]. The impact of occludin on barrier
function required the C-terminal coiled-coil occludin/ELL domain (OCEL) domain, as barrier function of
occludin-deficient Caco-2 monolayers was enhanced by EGFP-occludin, but not EGFP-occludin∆OCEL,
expression [89]. EGFP-occludin expression also restored TNF-sensitivity to occludin-knockdown
Caco-2 monolayers, but monolayers expressing EGFP-occludin∆OCEL remained insensitive to TNF [89].
These data indicate that the same barrier defects are induced by genetic occludin knockdown or
TNF-induced occludin removal from the tight junction [89]. Thus, while not essential for tight junction
assembly, occludin is a critical regulator of the macromolecular, leak pathway barrier.

3.5. MLCK-Induced Occludin Endocytosis Requires ZO-1 Interactions with the Occludin OCEL Domain

Despite a close functional relationship, molecular sites of interactions between occludin and
microfilaments have not been defined. It is, therefore, not clear how MLCK-mediated actomyosin
contraction induces occludin endocytosis. One possibility is that ZO-1 acts as an intermediate that
links occludin to F-actin. Although this has not been explored in detail, the free OCEL domain,
which mediates occludin binding to ZO-1, does act as a dominant negative to prevent TNF-induced
occludin endocytosis [89]. Moreover, occludin K433, located within the ZO-1 binding site, is critical
to this dominant negative OCEL activity [89]. Thus, although further study is needed, ZO-1 may
link occludin endocytosis to MLCK-dependent actomyosin contraction. This may also be related
to tight junction-dependent mechanosensation, which involves ZO-1, ZO-2, the transcription factor
DbpA/ZONAB, and their interactions with the cytoskeleton [100,101].

4. Regulation of MLCK Expression and Localization

4.1. Regulation of MLCK Transcription

The critical role of MLCK in acute, TNF-induced barrier loss was initially demonstrated in vitro
using pharmacological inhibitors [50,54,55] and in vivo using a combination of pharmacological
inhibitors and mice lacking epithelial long MLCK [51]. Further study demonstrated that, beyond
MLCK enzymatic activity, transcriptional upregulation of long MLCK expression was essential to
TNF-induced barrier loss [54]. TNF activated long MLCK transcription via the high-affinity TNF
receptor TNFR2, thereby explaining how extremely low, nanogram concentrations of TNF were
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sufficient to trigger MLCK upregulation and barrier dysfunction in vitro [102]. Moreover, these data
demonstrated that requirement for interferon-γ (IFN-γ) pretreatment before some cell monolayers
were able to respond to TNF reflected IFN-γ-induced TNFR2 transcription [54,102]. Consistent with
this, in vivo studies demonstrated that TNFR2 signaling was required for epithelial long MLCK
upregulation during disease progression in T cell transfer-induced, experimental, chronic inflammatory
bowel disease [103].

In vitro studies from two groups conflict as to whether TNF-induced MLCK upregulation
depended on NFκB or AP-1 signaling [54,104]. One group found that the NFκB inhibitors curcumin,
triptolide, and pyrrolidine dithiocarbamate prevented TNF-induced MLCK upregulation and barrier
loss [104,105]. A second group found that a series of NFκB inhibitors, including MG132, capsaicin,
curcumin, and triptolide were unable to prevent TNF-induced barrier loss [54]; MG132 and triptolide
actually enhanced TNF-induced barrier loss. This group found that sulfasalazine was able to block
TNF-induced barrier loss but did so in a dose dependent manner; barrier loss was prevented at 0.5 mM
sulfasalazine but exaggerated at 2 mM sulfasalazine. Biochemical studies of NFκB RelA translocation
to the nucleus and luciferase expression from an NFκB-responsive promoter showed that MG132 and
2 mM sulfasalazine, but not 0.5 mM sulfasalazine, inhibited TNF-induced NFκB activation. In contrast,
0.5 mM sulfasalazine, but not 2 mM sulfasalazine or MG132, blocked TNF-induced MLCK upregulation
and MLC phosphorylation [54]. These data clearly separated NFκB from MLCK upregulation and
suggested that another signaling pathway activated by TNF was responsible for barrier loss. Although
both of these groups used Caco-2 cells in their studies, one possible explanation could be that the first
group used a relatively undifferentiated Caco-2 clone while the second group used the differentiated,
enterocyte-like Caco-2BBe subclone [106].

Both groups went on to clone the human long MLCK promoter, which contained functional
binding sites for both NFκB and AP-1 [107,108]. However, results again differed between the groups.
The first group used a human genome database search to identify the 2 kb upstream of the human long
MLCK transcriptional start site and eight NFκB binding sites within that region [104,107]. They found
that two of these were active, with one repressing and the other increasing transcription ~2-fold [104].
In contrast, the second group used 5′ Rapid Amplification of cDNA Ends (5′-RACE) to identify
two different long MLCK transcriptional start sites [108]. The upstream 4 kb sequence contained
three functional AP-1 sites and two functional NFκB sites, all of which could regulate long MLCK
transcription [108]. However, the intact 4 kb long MLCK promoter was not responsive to TNF prior
to 14 days after confluence, suggesting that Caco-2 differentiation, which occurs progressively in the
2 weeks following growth to confluence, was required for full promoter activation [108]. From 3 to
14 days after confluence, activity of the MLCK promoter in response to TNF increased ~7-fold and
transcription from an AP-1-responsive promoter increased ~2-fold, but transcription from an NFκB
-responsive promoter decreased ~2-fold. Taken as a whole, these data suggest a unified model that
explains the data from both groups. In this model, undifferentiated intestinal epithelial cells modestly
upregulate long MLCK via NFκB signaling, while TNF induces more extensive MLCK upregulation
via AP-1 signaling within differentiated cells. Consistent with this, the first group has gone on to
show that AP-1-activating elements, such as mitogen activated protein (MAP) kinases, are involved in
cytokine-induced MLCK upregulation [109,110].

4.2. MLCK Expression in Chronic Intestinal Disease

Quantitative morphometry of biopsies from human patients showed that MLCK expression and
activity were increased in ulcerative colitis and Crohn’s disease [111]. Consistent with a role for TNF
signaling, the magnitude of MLCK activation correlated directly with the degree of inflammatory
activity in these biopsies.

Further analyses of the specific contributions of MLCK activation to disease were performed using
transgenic mice expressing constitutively-active MLCK within the intestinal epithelium or global long
MLCK knockout mice. Mice expressing constitutively-active MLCK displayed increased intestinal
paracellular leak pathway permeability and increased MLC phosphorylation relative to non-transgenic
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littermates [75]. Both of these could be corrected by enzymatic MLCK inhibition [75]. Although
these barrier defects were insufficient to induce spontaneous disease, compensatory mucosal immune
activation including increased lamina propria T cell numbers, mild Th1 polarization, and heightened
acute responses to infectious pathogens were detected [75,112]. However, when studied using the T
cell transfer model of chronic inflammatory bowel disease, the transgenic mice developed disease
more rapidly than non-transgenic littermates [75]. Moreover, overall disease severity was greater in
transgenic mice and survival was markedly reduced. Thus, MLCK upregulation can impact progression
of experimental inflammatory bowel disease.

Conversely, global long MLCK knockout mice were markedly protected from T cell transfer-induced
colitis [103]. Although reduced disease could, potentially, reflect deletion of long MLCK in cells other
than intestinal epithelium, the protection afforded by long MLCK knockout could be overcome by
intestinal epithelial-specific constitutively-active MLCK expression [75]. Thus, MLCK inhibition is
a potential target in chronic inflammatory bowel disease. It should, however, be noted that MLCK
has many functions beyond tight junction regulation. For example, MLCK activation is critical to
epithelial migration and wound repair [113–115]. Consistent with this, long MLCK knockout mice
fared worse than their wild type counterparts when subjected to dextran sulfate sodium (DSS)-induced
epithelial damage [103]. Similarly, in vivo knockout of nonmuscle myosin II markedly disrupts
intestinal homeostasis, as demonstrated by goblet cell and barrier loss; as expected, these severely
compromised mice are hypersensitive to DSS-induced injury [116]. Finally, MLCK loss may also
have other consequences, either directly or as a secondary effect following disruption of cytoskeletal
organization, protein trafficking, and signal transduction [117]. Thus, while intestinal epithelial MLCK
inhibition and tight junction barrier preservation may be helpful in immune-mediated disease, they
may also be associated with toxicities when epithelial damage predominates.

4.3. Enzymatic MLCK Inhibition is Not Feasible as a Therapeutic Intervention

Three distinct MLCK genes are present in mammals. These are MYLK, the smooth
muscle/non-muscle MLCK located on human chromosome 3; skeletal muscle MYLK2 on human
chromosome 20; and cardiac MYLK3 on human chromosome 16. MYLK encodes a long MLCK
expressed in intestinal epithelium as well as short MLCK and telokin [118,119]. Telokin has regulatory
functions but cannot phosphorylate MLC [120–122]. In contrast, both short MLCK, an ~110-130 kDa
protein expressed in smooth muscle, and long MLCK, an ~215 kDa protein expressed in non-muscle cells,
including epithelium, share identical catalytic and calmodulin-binding regulatory domains (Figure 3A).
Thus, neither chemical nor genetic inhibitors can distinguish between short and long MLCK.

Enzymatic MLCK inhibition could not be used therapeutically since, as noted above, long and
short MLCK have identical catalytic domains. In mice, short MLCK knockout leads to death in the
early perinatal period [123]. Development of inducible knockout mice with loxP sites flanking the
MYLK sequence encoding the catalytic domain overcame this limitation [124]. However, tissue-specific
knockout in smooth muscle resulted in hypotension, bladder dysfunction, and severe intestinal
dysmotility, and death [124]. Thus, while targeted inhibition of MLCK-mediated tight junction barrier
regulation might have therapeutic benefit, loss of MLCK enzymatic activity in smooth muscle [124]
and non-muscle [103,113] cells would have unacceptable toxicities.

4.4. TNF Induces IgCAM3-Mediated Long MLCK1 Recruitment to the Perijunctional Actomyosin Ring

The difference between long and short MLCK is the presence of a long stretch of N-terminal
sequence in long MLCK [125–127]. The exons that encode that part of the protein undergo extensive
alternative splicing, resulting in a number of different long MLCK splice variants [127]. Only isoforms
MLCK1 and MLCK2, which differ by a single 207 nucleotide exon, are expressed in intestinal
epithelia [125]. The differential functions of these and other long MLCK splice variants are not
well-defined. However, it has been reported that the 69 amino acids encoded by the 207 nucleotide
exon that distinguishes MLCK1 from MLCK2 include a src kinase target site whose phosphorylation
can regulate MLCK activity [126].
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Tissue analysis using an antibody specific for long MLCK1 demonstrated that, relative to total
epithelial long MLCK, long MLCK1 was concentrated within the perijunctional actomyosin ring [125]
(Figure 3B). Moreover, targeted knockdown of long MLCK1 within Caco-2 monolayers reduced
paracellular permeability [125]. Further study showed that, in addition to increasing long MLCK
expression, TNF specifically induced long MLCK1 recruitment to the perijunctional actomyosin
ring [128]. This selective effect on MLCK1 was only post-translational, as intestinal epithelial MLCK1
and MLCK2 transcripts were comparably increased by TNF (unpublished data, Graham and Turner).
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Figure 3. Specific targeting of long MLCK isoform 1 (MLCK1) prevents TNF-induced barrier loss
in vivo. (A) Protein domain structure of long MLCK isoforms 1 and 2. Immunoglobulin-cell adhesion
molecule (IgCAM) domains are numbered from the amino terminus. (B) Long MLCK1 (green), total
MLCK (red), and nuclei (blue) in normal human jejunum. MLCK1 is preferentially-localized to the
perijunctional actomyosin ring. (C) Virtually screened compounds docked to a binding pocket within
the unique IgCAM3 domain of MLCK1. (D) Mice were injected with vehicle or TNF, and jejunal loops
were perfused with either saline-containing vehicle or Divertin. TNF-induced increases in albumin flux
(from bloodstream into the gut lumen) were blocked by Divertin. Divertin also blocked TNF-induced
myosin II regulatory light chain (MLC) phosphorylation and MLCK1 recruitment to the PAMR. Notably,
Divertin does not inhibit MLCK enzymatic activity. ** p < 0.01 by ANOVA with Dunn’s multiple
comparison test. From Graham et al. Nat. Med. 2019.

Structural analysis indicated that the 69 amino acids unique to long MLCK1 completed the
immunoglobulin-cell adhesion molecule (IgCAM) domain 3, one of nine IgCAM domains within
long MLCK1 [128]. Because this is the only difference between MLCK1 and MLCK2, it stands to
reason that the key features responsible for TNF-induced MLCK 1 recruitment to the perijunctional
actomyosin ring reside within IgCAM3. Consistent with this, expression of the IgCAM3 domain
alone attenuated TNF-induced MLCK1 recruitment to the perijunctional actomyosin ring and barrier
regulation, suggesting that it disrupted interactions between MLCK1 and other intracellular molecules
(unpublished data, He and Turner).

4.5. TNF Induces IgCAM3-Mediated Long MLCK1 Recruitment to the Perijunctional Actomyosin Ring

The observation that an enzymatically inactive region, i.e., IgCAM3, was responsible for
long MLCK1 recruitment to the perijunctional actomyosin ring presented an opportunity for
blocking MLCK-dependent tight junction regulation in disease. After solving the IgCAM3 crystal
structure [128,129], a hydrophobic drug-binding pocket within IgCAM3, but not the other long MLCK1
IgCAM domains, was identified. Importantly, this drug binding pocket was conserved between
human and mouse long MLCK1 [128]. An in silico screen using molecular docking software identified
a small number of candidate molecules with putative binding to the targeted hydrophobic pocket
(Figure 3C). In vitro screening demonstrated that one of these was able to increase intestinal epithelial
barrier function without inhibiting MLCK enzymatic activity in a cell-free assay, disrupting smooth
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muscle contraction, or interfering with epithelial wound repair, i.e., migration. This molecule, termed
Divertin, was, however, able to displace long MLCK1 from the perijunctional actomyosin ring, reverse
TNF-induced barrier loss, and reduce MLC phosphorylation in Caco-2 monolayers [128].

Consistent with its targeted effect on MLCK1-dependent tight junction regulation, mice could
receive daily Divertin administration for 30 days without any apparent toxicity. Divertin was, however,
able to prevent MLCK1 recruitment to the perijunctional actomyosin ring, MLC phosphorylation,
occludin internalization, and leak pathway barrier loss in response to acute TNF challenge in mice
(Figure 3D). Divertin also prevented perijunctional MLCK1 recruitment, MLC phosphorylation,
and occludin internalization in human intestinal biopsies treated with TNF in vitro. Thus, Divertin
was able to reverse and prevent acute, TNF-induced MLC phosphorylation and barrier loss in vitro
and in vivo [128] (Figure 3D).

The efficacy of Divertin and restoring intestinal barrier function in chronic disease was initially
assessed using IL-10 knockout mice, which develop in intestinal barrier defect early in the course of
disease [128,130]. Although Divertin did not affect intestinal permeability in wild type mice, it was able
to restore the intestinal barrier in IL-10 knockout mice [128]. Moreover, Divertin was markedly effective
in limiting disease during T cell transfer colitis regardless of whether it was administered just prior
to or after clinical disease presentation [128] (Figure 4). Remarkably, all measures assessed showed
that Divertin was superior or equivalent to anti-TNF in limiting T cell transfer colitis severity [128]
(Figure 4). Some data did, however, indicate that the beneficial effects of Divertin might be additive to,
or even synergistic with, those of anti-TNF. Thus, preventing MLCK1 recruitment to the perijunctional
actomyosin ring may be a non-toxic approach to limiting or preventing immune-mediated colitis either
alone or in combination with immunomodulatory agents, e.g., anti-TNF [128] (Figure 4).

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 17 

 

mouse long MLCK1 [128]. An in silico screen using molecular docking software identified a small 

number of candidate molecules with putative binding to the targeted hydrophobic pocket (Figure 

3C). In vitro screening demonstrated that one of these was able to increase intestinal epithelial barrier 

function without inhibiting MLCK enzymatic activity in a cell-free assay, disrupting smooth muscle 

contraction, or interfering with epithelial wound repair, i.e., migration. This molecule, termed 

Divertin, was, however, able to displace long MLCK1 from the perijunctional actomyosin ring, 

reverse TNF-induced barrier loss, and reduce MLC phosphorylation in Caco-2 monolayers [128]. 

Consistent with its targeted effect on MLCK1-dependent tight junction regulation, mice could 

receive daily Divertin administration for 30 days without any apparent toxicity. Divertin was, 

however, able to prevent MLCK1 recruitment to the perijunctional actomyosin ring, MLC 

phosphorylation, occludin internalization, and leak pathway barrier loss in response to acute TNF 

challenge in mice (Figure 3D). Divertin also prevented perijunctional MLCK1 recruitment, MLC 

phosphorylation, and occludin internalization in human intestinal biopsies treated with TNF in vitro. 

Thus, Divertin was able to reverse and prevent acute, TNF-induced MLC phosphorylation and 

barrier loss in vitro and in vivo [128] (Figure 3D). 

The efficacy of Divertin and restoring intestinal barrier function in chronic disease was initially 

assessed using IL-10 knockout mice, which develop in intestinal barrier defect early in the course of 

disease [128,130]. Although Divertin did not affect intestinal permeability in wild type mice, it was 

able to restore the intestinal barrier in IL-10 knockout mice [128]. Moreover, Divertin was markedly 

effective in limiting disease during T cell transfer colitis regardless of whether it was administered 

just prior to or after clinical disease presentation [128] (Figure 4). Remarkably, all measures assessed 

showed that Divertin was superior or equivalent to anti-TNF in limiting T cell transfer colitis severity 

[128] (Figure 4). Some data did, however, indicate that the beneficial effects of Divertin might be 

additive to, or even synergistic with, those of anti-TNF. Thus, preventing MLCK1 recruitment to the 

perijunctional actomyosin ring may be a non-toxic approach to limiting or preventing immune-

mediated colitis either alone or in combination with immunomodulatory agents, e.g., anti-TNF [128] 

(Figure 4). 

 

Figure 4. Inhibition of MLCK1 recruitment to the perijunctional actomyosin ring attenuates immune-

mediated colitis. (A) Proposed mechanism of Divertin action. (B) Immunodeficient mice received 

naïve CD4+ effector T cells. Therapy with saline (vehicle), divertin, anti-TNF, or combined Divertin 

and anti-TNF was initiated after definitive features of disease developed (day 19). (C) Divertin limited 

weight loss after T cell transfer and was superior to anti-TNF antibody treatment. ** p < 0.01 by two-

Figure 4. Inhibition of MLCK1 recruitment to the perijunctional actomyosin ring attenuates
immune-mediated colitis. (A) Proposed mechanism of Divertin action. (B) Immunodeficient mice
received naïve CD4+ effector T cells. Therapy with saline (vehicle), divertin, anti-TNF, or combined
Divertin and anti-TNF was initiated after definitive features of disease developed (day 19). (C) Divertin
limited weight loss after T cell transfer and was superior to anti-TNF antibody treatment. ** p < 0.01
by two-tailed t test for no transfer vs. all other mice at day 18. *** p < 0.001 by ANOVA with Tukey’s
multiple comparison test over the interval from 19−35 days. (D) Divertin enhanced survival after T cell
transfer. * p < 0.05, versus saline-treated mice, by Gehan–Breslow–Wilcoxon test. (E) Divertin limited
intestinal barrier loss. * p < 0.05, versus saline-treated mice, by ANOVA with Newman–Keuls multiple
comparison test. (F) Divertin was superior to anti-TNF antibody treatment in limiting mucosal cytokine
production and histopathology after T cell transfer. * p < 0.05; *** p < 0.001 by ANOVA with Bonferroni
correction. From Graham et al. Nat. Med. 2019.
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5. Perspective and Future Directions

The past 25 years have seen tremendous growth in our understanding of tight junction structure,
cell biology, and pathobiology. Most recently, this has resulted in the develop of a proof-of-concept
molecule that may provide a foundation for creation of actual therapeutic agents. Despite the
enthusiasm this has engendered, there remains much to be learned. Specific topics include elucidation
of mechanisms that regulate MLCK1 recruitment to the perijunctional actomyosin ring, further
definition of pore pathway function in health and disease, and characterization of the structural and
functional properties of defined and to-be-discovered tight junction components.
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