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Abstract

Deep neural network (DNN) models have achieved state-of-the-art predictive accuracy in a wide 

range of applications. However, it remains a challenging task to accurately quantify the uncertainty 

in DNN predictions, especially those of continuous outcomes. To this end, we propose the 

Bayesian deep noise neural network (B-DeepNoise), which generalizes standard Bayesian DNNs 

by extending the random noise variable from the output layer to all hidden layers. Our model is 

capable of approximating highly complex predictive density functions and fully learn the possible 

random variation in the outcome variables. For posterior computation, we provide a closed-form 

Gibbs sampling algorithm that circumvents tuning-intensive Metropolis–Hastings methods. We 

establish a recursive representation of the predictive density and perform theoretical analysis 

on the predictive variance. Through extensive experiments, we demonstrate the superiority of 

B-DeepNoise over existing methods in terms of density estimation and uncertainty quantification 

accuracy. A neuroimaging application is included to show our model’s usefulness in scientific 

studies.
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1 | INTRODUCTION

Deep neural networks (DNNs) have achieved outstanding prediction performance in a wide 

range of artificial intelligence (AI) applications (Berner et al., 2021; Pouyanfar et al., 2018). 

Despite overwhelming cases of success, a major drawback of standard DNNs is the lack 
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of reliable uncertainty quantification (UQ) (Begoli et al., 2019). UQ is an essential task in 

safety-critical AI applications (Amodei et al., 2016).

For example, in medical diagnosis, an individualized risk assessment AI model should be 

able to report its confidence in its predictions. When the AI model is not sufficiently certain 

in its assessment of a patient, the patient should be referred to human physicians for further 

evaluation (Jiang et al., 2012; Leibig et al., 2017).

In this work, we seek to solve the problem of UQ in DNN regression tasks, where a 

representation of the outcome’s total random variation cannot be achieved by a finite-length 

probability vector (unlike in classification tasks) but rather requires an infinite-dimensional 

predictive probability density function. In a standard DNN regression model, the outcome 

yi ∈ ℝ and the predictors xi ∈ ℝP  are assumed to follow the relation yi = f xi + ϵi, where the 

mean function f xi = E yi ∣ xi  is constructed by a DNN, and the random noise ϵi follows 

a zero-mean homoscedastic Gaussian distribution ϵi ∼
iid

N 0, σ2  for some unknown σ2 > 0. 

This formulation implies the conditional variance of the outcome variable Var yi ∣ xi , given 

the predictor, to be constant. However, in real applications, the true conditional distribution 

could be heteroscedastic Gaussian (i.e., Var yi ∣ xi = σ2 xi ) or not Gaussian at all (e.g., the 

distribution of ϵi is asymmetric or multimodal).

In these cases, simple UQ statistics (e.g., prediction variance or prediction interval width) 

may fail to capture important patterns in the outcome variable and result in underconfident 

or overconfident UQ. In order to achieve accurate UQ in DNN regression, it is critical to 

learn the predictive density of the outcome given the predictors. We refer to the problem of 

estimating the predictive density function as the density regression (DR) problem (Dunson 

et al., 2007). This works focuses on DR tasks with DNNs. As uncertainty in the outcome 

variable is quantified by summary statistics of the predictive density, a solution to DR 

trivially leads to a solution to UQ, regardless of the chosen UQ metric.

1.1 | Related work

To estimate predictive density function, several DNN-based frequentist DR methods have 

been proposed (Abdar et al., 2021; Caldeira & Nord, 2020; Ståhl et al., 2020; Zhu et al., 

2019), such as mixture density networks (Bishop, 1994; Bishop & Nasrabadi, 2006), deep 

ensembles (Lakshminarayanan et al., 2016), distribution-free methods (Lei & Wasserman, 

2014; Pearce et al., 2018), quantile-based models (Romano et al., 2019; Tagasovska 

& Lopez-Paz, 2019), categorization (Li et al., 2021), and estimation of the predictive 

cumulative distribution function (CDF) (Huberman et al., 2021).

Compared to ad hoc frequentist DR methods, Bayesian frameworks for DNNs, also known 

as Bayesian neural networks (BNNs) (MacKay, 1995; Neal, 2012; Xue et al., 2019), provide 

a more natural and systematic solution to the task of DR. In addition to the asymptotic 

well-calibratedness of the posterior prediction intervals (Hwang & Ding, 1997; Sun et 

al., 2021; Wang & Rocková, 2020), the Bayesian framework also improves the prediction 

accuracy of deterministic DNNs (Izmailov et al., 2018; Kendall & Gal, 2017). Due to 

the intractability of BNNs’ posterior distributions, variational inference (VI) or Markov 
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chain Monte Carlo (MCMC) simulation are required for posterior computation. VI methods 

(Blei et al., 2017; Kingma & Welling, 2013; Mandt et al., 2017) approximate the posterior 

distribution with simpler distributions (Graves, 2011; Louizos & Welling, 2016; Lee et al., 

2020; Louizos & Welling, 2017; Rezende & Mohamed, 2015). Common randomness-based 

regularization techniques for DNNs, such as dropout (Gal & Ghahramani, 2016; Molchanov 

et al., 2017; Srivastava et al., 2014), batch normalization (Ioffe & Szegedy, 2015; Teye et 

al., 2018), and random weights (Blundell et al., 2015; Hernández-Lobato & Adams, 2015), 

can be interpreted as special cases of VI. However, although computationally efficient, VI 

methods induce extra approximation errors in posterior computation, which may lead to 

underestimated variance or oversimplified covariance structures (Blei et al., 2017).

In contrast to VI, MCMC methods simulate the exact posterior distribution. The most 

popular MCMC algorithm for modern Bayesian methods is arguably the Metropolis–

Hastings (MH) algorithm (Andrieu & Thoms, 2008; Chib & Greenberg, 1995; Hitchcock, 

2003). However, even with efficient techniques such as Hamiltonian dynamics (Wenzel 

et al., 2020; Wilson & Izmailov, 2020), Langevin dynamics (Welling & Teh, 2011), 

stochastic gradients (Chen et al., 2014; Chen et al., 2016), and mini-batches (Wu et al., 

2020) that mitigate the high computation burden (Jospin et al., 2022; Liang et al., 2016), 

MH-based MCMC methods require intensive hyperparameter tuning in order to compute 

the posterior distribution efficiently. As an alternative MCMC simulation method, Gibbs 

sampling algorithms (Geman & Geman, 1984; Gelfand & Smith, 1990; Gelfand, 2000; 

Roberts & Smith, 1994) draw posterior samples for each model parameter (or a block 

of model parameters) conditioned on all the other parameters. Although Gibbs sampling 

methods have been developed for deep generative models such as sigmoid belief networks 

(Gan et al., 2015), Gibbs sampling cannot be applied to standard predictive BNNs, due 

to their lack of closed-form posterior full conditional distributions. Finally, most existing 

MCMC- and VI-based BNN methods focus on UQ exclusively, whereas the problem of DR 

in Bayesian frameworks has only been studied for linear models (Dunson et al., 2007).

In addition, for DR tasks with DNN, no existing method incorporates latent noise in hidden 

layers, to our best knowledge. Previous works on latent noise in DNNs primarily use it for 

regularization (Gulcehre et al., 2016; You et al., 2019). The potential of stochastic activation 

layers for UQ was briefly discussed in Lee et al. (2019), but the context of this work was 

classification tasks, where the predictive uncertainty could already be fully characterized by 

well-calibrated categorical distributions without using any latent noise. More recently, Sun 

and Liang (2022) formulated DNNs as latent variable models and included kernel maps in 

the input layer to avoid feature collinearity. Although the proposed model is capable of UQ, 

the more challenging problem of DR has not been studied.

1.2 | Our contributions

To address the challenges for DR with DNNs, we propose the Bayesian deep noise 

neural network (B-DeepNoise). B-DeepNoise generalizes standard BNNs by adding latent 

random noise both before and after every activation layer. Although the latent random 

noise variables independently follow Gaussian distributions, their composition across 

multiple layers with nonlinear activations generates highly complex predictive density 
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functions. Moreover, the unique structure of B-DeepNoise induces closed-form posterior 

full conditional distributions for the model parameters, which eliminates the primary barrier 

for Gibbs sampling in DNN-based models and therefore makes it possible to simulate the 

exact posterior distribution without using tuning-intensive MH algorithms.

To our best knowledge, this is the first work on estimating complex predictive density 

functions by utilizing DNNs with latent random noise. Furthermore, no previous work 

has developed Gibbs sampling algorithms for DNN-based Bayesian predictive models. 

In short, our work contributes to the existing literature on DR and UQ with DNNs in 

the following ways: (1) We propose a Bayesian DNN model for learning complex, non-

Gaussian predictive density functions. (2) We develop a virtually tuning-free Gibbs sampling 

algorithm for posterior computation that uses common samplers only, without the need of 

MH steps. (3) We perform theoretical analysis for analytic expressions of the predictive 

densities and variance propagation. (4) We evaluate our model on multiple benchmark 

datasets and demonstrate its usefulness in a neuroimaging study. The codes for our method 

is available at github.com/daviddaiweizhang/B-DeepNoise.

2 | MODEL DESCRIPTION

2.1 DNNs with latent noise variables

Suppose the data consist of features x n ∈ ℝp and outcomes y n ∈ ℝQ, with n ∈ 1, …, N.

Let N μ, Σ  be a Gaussian distribution with mean μ and covariance Σ. To specify the 

nonlinear association between y n  and x n , a standard L-layer feed-forward DNN model 

with Gaussian noise can be represented as

y n ∣ uL
n ∼

iid
N βLuL

n + γL, TL

(1)

ul + 1
n = ℎ βlul

n + γl , I ∈ 0, …, L − 1

(2)

u0
n = x n

(3)

where βl ∈ ℝKl × Kl − 1 and γl ∈ ℝKl are unknown parameters, Kl is the number of units in the 

lth layer, and ℎ ⋅  is an element-wise nonlinear activation function.

In this formulation, uL
n  is a deterministic function of x n , which implies that y n ∣ x n  and 

y n ∣ uL
n  follow the same homoscedastic Gaussian distribution with constant covariance TL.
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To model more complex conditional distributions, we propose the deep noise neural network 

(DeepNoise), which generalizes Equation (2) of the standard DNN model into Equations (4) 

and (5) by including noise variables before and after every activation layer:

ul + 1
n = ℎ βlul

n + γl + ϵl
n + δl

n

(4)

ϵl
n ∼

iid
N 0, T l , δl

n ∼
iid

N 0, Σl , l ∈ 0, …, L − 1

(5)

where T l = diag τl
2  and Σl = diag σl

2  with τ2 = (τl, 1
2 , …, τl, Kl

2 )⊤ and σl
2 = (σl, 1

2 , …, σl, Kl
2 )⊤. By 

composing the latent Gaussian noise variables with linear maps and nonlinear activations, 

DeepNoise is capable of representing a wide range of heteroscedastic Gaussian and non-

Gaussian conditional density functions (e.g., asymmetric and multimodal), as illustrated 

in Figure 1. Intuitively, as Gaussian mixtures are universal approximators of densities 

(Calcaterra & Boldt, 2008; Goodfellow et al., 2016, [Sec. 3.9.6]; Plataniotis & Hatzinakos, 

2017) and DNNs are universal approximators of functions (Lu & Lu, 2020; Scarselli & Tsoi, 

1998; Yarotsky, 2017), DeepNoise is designed to be a universal approximator of conditional 

densities. The nonparametric nature of DeepNoise enables it to approximate increasingly 

complex conditional density functions by increasing the number of hidden layers and the 

number of nodes per layer. In the special case where the variance of the noise variables is set 

to zero in all but the output layer, DeepNoise is reduced to a standard DNN.

2.2 | Model representation and prior specifications

DeepNoise transforms the predictor vector into the outcome vector by iteratively and 

stochastically applying the linear-noise-nonlinear-noise maps. Thus, the DeepNoise model 

defined by combining Equations (1) and (3) to (5) is equivalent to

vl
n ∣ ul

n ∼
iid

N βlul
n + γl, T l , l ∈ 0, …, L

(6)

ul + 1
n ∣ vl

n ∼
iid

N ℎ vl
n , Σl , l ∈ 0, …, L − 1

(7)

u0
n = x n , vL

n = y n

(8)
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Write βl = (βl, k, k′) and γl = γl, k . To make fully Bayesian inference, we impose normal-inverse-

gamma prior distributions on the weight-bias parameters:

βl, k, k′ ∼
iid

N(0, ρl, k, k′
2 ), γl, k ∼

iid
N 0, ξl, k

2

ρl, k, k′
2 ∼

iid
ℐG(a, b) ξl, k

2 ∼
iid

ℐG(a, b)

and assign inverse-gamma prior distributions to the pre-activation and post-activation noise 

variances:

τl, k
2 ∼

iid
ℐG(a, b), σl, k

2 ∼
iid

ℐG(a, b)

To use weakly informative priors, we set a = b = 0.001. We refer to Equations (6) to (8) along 

with the prior specifications above as the B-DeepNoise model. Although DeepNoise (i.e., 

Equations (6) to (8) without the prior distributions) is an effective frequentist model for DR, 

for the rest of the paper, we focus on B-DeepNoise and conduct theoretical, computational, 

and empirical analyses in the Bayesian framework.

2.3 | Posterior computation

Compared to standard DNNs and BNNs, the addition of latent random noise not only 

makes B-DeepNoise more flexible in approximating complex predictive density functions, 

but it also provides closed-form expressions of the posterior full conditional distributions 

of the model parameters. The latter advantage makes it possible to derive efficient Gibbs 

sampling algorithms for B-DeepNoise. In order for a Gibbs sampler to be computationally 

efficient, a key requirement is that all the posterior full conditional distributions are easy to 

simulate. To this end, we require the activation function to be piecewise linear, as described 

in Assumption 1.

Assumption 1.—The element-wise activation function ℎ can be expressed 

as ℎ(t) = ∑j = 1
J bjt + bj

′ ⋅ I t ∈ cj − 1, cj  for some J ∈ ℕ+, b1, …, bJ, b1
′ , …, bJ

′ ∈ ℝ, and 

−∞ = c0 < c1 < … < cJ − 1 < cJ = ∞.

Remark 1.: The family of functions defined in Assumption 1 includes many common 

activation functions, such as ReLU and leaky ReLU (Maas et al., 2013). Moreover, smooth 

activation functions can be approximated by piecewise linear functions. For example, the 

logistic, tanh, and softplus functions can be approximated by the hard sigmoid, hard tanh, 

and ReLU functions, respectively.

We now derive the posterior full conditional distributions of all the model parameters in 

B-DeepNoise. Let TNa, b λ, ω2  be a truncated normal distribution on interval a, b  with 

location λ and scale ω.
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Theorem 1.—Suppose the activation function ℎ satisfies Assumption 1. The model 

parameters in B-DeepNoise have the following posterior full conditional distributions.

vl, k
(n) rest ∑

j = 1

J
πl, k, j

(n) ⋅ TN
cj − 1, cj

λl, k, j
(n) , ωl, k, j

2

(9)

ul
n ∣ rest ∼ N μl

n , Ul
n

(10)

βl, k, γl, k ∣ rest ∼ N ηl, k, Bl, k

(11)

τl, k
2 ∣ rest ∼ ℐG a + 0.5N, b + 0.5∥ ϵ̂l, k ∥2

2

(12)

σl, k
2 ∣ rest ∼ ℐG a + 0.5N, b + 0.5∥ δ̂l, k ∥2

2

(13)

ρl, k, k′
2 ∣ rest ∼ ℐG a + 0.5, b + 0.5βl, k, k′

2

(14)

ξl, k
2 ∣ rest ∼ ℐG(a + 0.5, b + 0.5γl, k

2 )

(15)

where πl, k, j
n , λl, k, j

n , μl
n , Ul

n , ηl, k, Bl, k, ϵ̂l, k, δ̂l, k are defined in Section S1.1.1.

Remark 2.: Theorem 1 shows that the posterior full conditional distribution of every model 

parameter in B-DeepNoise is either inverse gamma, normal, or mixture of truncated normal. 

Equations (10) to (15) follow properties of Bayesian linear regression with conjugate priors 

(Bishop & Nasrabadi, 2006, Sec. 2.3.3). Equation (9) describes the most complicated block 

of parameters, vl, k
n , because the nonlinear activation function is involved. Intuitively, the 

piecewise linear property of the activation function causes the posterior full conditional 

distribution of vl
n  to be “piecewise normal”, that is, a mixture of truncated normal 

distributions with adjacent truncation endpoints. Thus, sampling vl
n  only requires samplers 

for categorical distributions and truncated normal distributions, which are widely available 
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in scientific computation libraries. In addition, the number of the mixing components is very 

small for common activation functions (e.g., 2 for ReLU and 3 for hard tanh).

The Gibbs sampler for computing the posterior distributions of B-DeepNoise parameters 

consist of applying Equations (9) to (15) iteratively, as described in Algorithm A1, Appendix 

A. Because the predictive distribution only depends on the weight-bias parameters and the 

latent noise variance parameters, the posterior samples of the latent variables do not need 

to be stored, which saves memory in practice. In addition, to reduce burn-in time, model 

parameters can be initialized using gradient-based optimizers or pre-trained weights.

B-DeepNoise and BNN have the same posterior computation time complexity: O LK2N , 

where L is the network depth, K is the maximal network width, and N is the training sample 

size. Although the introduction of latent random variables in B-DeepNoise increases the 

time complexity by a constant term, the extra computation price is paid for more information 

on the outcomes. Unlike BNNs, which only estimate the predictive mean and variance of 

every input, B-DeepNoise estimates the predictive density itself.

For the choice of posterior sampling algorithms, B-DeepNoise has the options of using 

Gibbs samplers or MH samplers, while BNN can use MH samplers only, due to the lack 

of closed-form posterior full conditional distributions. For hyperparameter tuning, our Gibbs 

sampler for B-DeepNoise is tuning-free, while gradient-based MH algorithms for BNN, 

such as Hamiltonian Monte Carlo (HMC), are sensitive to the choice of the integration step 

size and the number of steps (Hoffman et al., 2014). For scalability, the Gibbs sampling 

algorithm for B-DeepNoise naturally allows the usage of mini-batches of the whole training 

dataset, because Gibbs samplers allow arbitrary partitions of the model parameters. That 

is, at every sampling step, when sampling the latent noise variables (Equations 9 and 

10), instead of updating vl, k
n  and ul

n  for the entire training set, we only update them 

for a mini-batch of the training samples. (See Algorithm A1 for details.) By contrast, 

although efforts have been made in developing mini-batch MH methods (Wu et al., 2020), 

computing the log-likelihood function using subsets of the training samples inevitably 

introduce extra noise and causes the algorithm’s stationary distribution to deviate from 

the target distribution. In addition, whereas the forward and backward propagation steps in 

MH algorithms for standard BNNs must be computed sequentially by network layers, our 

Gibbs sampler for B-DeepNoise allows for sampling model parameters parallelly across the 

layers, since given the parameters in the odd layers, the parameters in the even layers are 

conditionally independent (and vice versa), thus allowing for simultaneous, parallel updates. 

(See Algorithm A1 for details.)

2.4 | Predictive density

We further evaluate the properties of the predictive density function. Theorem 2 expresses 

the predictive density in a recursive formulation. ϕℳVN ⋅ ∣ μ, Σ  be a multivariate normal 

density function with mean μ and covariance Σ.
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Theorem 2.—For l ∈ 0, …, L , let θl = βl, γl, T l, Σl  and Θl = θl′ l′ = 0
′ . In a B-DeepNoise 

model, the conditional density of the output y = vL given input value x and model parameters 

Θl can be iteratively constructed by

f vl ∣ x, Θl = ∫
ℝKl − 1

ϕ
ℳVN

vl ∣ μl, Sl f vl − 1 ∣ x, Θl − 1 dvl − 1

where μl = γl + βlℎ vl − 1  and Sl = T l + βlΣlβl
⊤ for l ∈ 1, …, L , and

f v0 ∣ x, θ0 = ϕ
ℳVN

v0 ∣ γ0 + β0x, T0

Remark 3.: Theorem 2 shows that the predictive density given an input value can be 

expressed as a continuous mixture of multivariate normal density (CMMVN), where the 

mixing density is a CMMVN over the output values of the previous layer. Although 

this highly flexible predictive density does not have a closed-form expression, it can be 

simulated easily by adding normal noise to the intermediate values of the hidden layers, as 

stated in Equations (6) and (7).

In standard DNNs and BNNs, the outcome variable follow a normal distribution with the 

variance equal to by the variance of the outcome noise variable. As a more general model, 

B-DeepNoise propagates variations in the latent noise variables to produce a complex 

distribution in the outcome. When the variances of the latent random noise variables are all 

zero, B-DeepNoise is reduced to a standard BNN. A natural question is how the variance in 

the output variable can be decomposed by variances of the latent noises variables. To this 

end, Theorem 3 bounds the outcome variance by the other model parameters.

Theorem 3.—Let y ∣ x, Θ be the output value of the B-DeepNoise model given input value 

x and model parameters Θ = βl, γl, T l, Σl l
L. Let g x, Γ  be the output value of the standard 

DNN model with the same activation function and weight-bias parameters Γ = βl, γl l = 0
L . 

(Note that y equals to g x, Γ  with probability one when all the latent noise variances are 

zero.) Assume the activation function ℎ is Lipschitz continuous with Lipschitz constant Cℎ, 

and define dl
2 = ∥ βl ∥2

2. Then

Var(y ∣ x, Θ) + [E(y ∣ x, Θ) − g(x, Γ )]2 ≤
l = 0

L
dl

2

k = 1

Kl − 1

σl − 1, k
2 +

k = 1

Kl

τl, k
2

I′ = l + 1

L
dl′

2 Cℎ
2 L − l

Remark 4.: According to Theorem 3, given the model parameters, the predictive variance of 

B-DeepNoise is bounded by the latent noise variances, the spectrum norm of the weight 

matrices, and the Lipschitz constant of the activation function. In addition, the same 

upper bound holds for the squared distance of B-DeepNoise’s predictive mean from the 

corresponding deterministic DNN’s output value. The expression of this bound can be 
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simplified for common activation functions using global bounds of model parameters, as 

shown in Theorem 1.

Corollary 1.—Let K = max
−1 ≤ l ≤ L

Kl, d2 = max
0 ≤ 1 ≤ L

βl 2
2, σ2 = max

0 ≤ l ≤ L − 1
σl

2
∞, 

τ2 = max
0 ≤ l ≤ L

τl
2

∞.

Suppose activation function ℎ is ReLU, leaky ReLU, hard sigmoid, or hard tanh. Then

Var(y ∣ x, Θ) + [E y ∣ x, Θ − g x, Γ ]2 ≤ 3KL d2L + 2 + 1 σ2 + τ2

Proofs of all theoretical results are provided in Section S1.2.

3 | METHOD COMPARISON

We applied B-DeepNoise and existing methods to synthetic and real data to evaluate their 

accuracy for predictive density estimation and uncertainty quantification.

3.1 | Experiments on synthetic continuous data

We used synthetic datasets to compare the predictive density estimated by each method with 

the ground truth. The input variable x was one-dimensional and uniformly distributed on 

[−1,1]. The output variable y was also one-dimensional, and its conditional median was a 

linear spline with respect to x. We designed the noise distribution to be heteroscedastic, 

asymmetric, or multimodal, as shown by the training data points (blue dots) in Figure 1. The 

training sample size varied among 1000, 2000, and 4000. Every experimental setting was 

repeated for 20 times.

We used a B-DeepNoise model with four hidden layers and 50 nodes in each layer, 

with the hard tanh function as the activation function. The prior distributions of the 

variance parameters were set to ℐG 0.001,0.001 . We used gradient descent to initialize 

the model parameters and drew 500 posterior samples. B-DeepNoise was compared 

against backpropagation (BP), variational inference (VI) (Ritter & Karaletsos, 2022), 

Bayesian neural networks (BNN) with HMC (Neal, 2011), and deep ensemble (DE) 

(Lakshminarayanan et al., 2016). The baseline methods used identical architecture as 

B-DeepNoise, and the hyperparameters were selected according to the original authors’ 

recommendations. Details of the experiments are described in Section S2.

As visualized in Figure 1, B-DeepNoise successfully captured key characteristics of the 

noise densities. The estimated predictive distributions identified variation in the output 

variance, opposite directions of skewedness, and abrupt changes between unimodal to 

bimodal distributions. In contrast, predictive densities estimated by the baseline methods 

were all unimodal and symmetric.

To quantitatively evaluate the accuracy of the estimated predictive density functions, 

we numerically computed the L1 distance between the inverse CDFs of the true and 
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estimated predictive distributions. This metric is equivalent to the simultaneous quantile loss 

(Tagasovska & Lopez-Paz, 2019), which measures the distance between two distributions 

by considering all quantiles jointly and is applicable to arbitrary distributions, including 

heteroscedastic, skewed, and multimodal ones. It is also generalizable to multivariate density 

functions by using multivariate CDFs. The estimation errors are reported in Table 1. Among 

all the methods, B-DeepNoise had the smallest error in all but two settings. Moreover, 

for all the three types of noise, B-DeepNoise’s accuracy improved much faster than the 

baseline methods as the training sample size increased, especially on the skewed and 

multimodal data. These simulations illustrate the accuracy of B-DeepNoise in learning 

complex predictive density functions. For uncertainty quantification, since uncertainty 

quantification is measured by summary statistics of the predictive density (e.g., variance, 

95% prediction intervals), the superior performance of B-DeepNoise in predictive density 

estimation implies its superior performance in uncertainty quantification accuracy.

The computation efficiency of posterior sampling methods hinges crucially on fast 

convergence rates and well-mixed behaviors. It is worth noting that the optimal choice 

of such a method can be both model-specific and data-dependent (Papaspiliopoulos & 

Roberts, 2008). In this regard, B-DeepNoise has an edge over conventional BNNs thanks 

to its compatibility with both Metropolis Hastings (MH) algorithms and Gibbs samplers, 

thereby offering a broader range of options for choosing the most suitable sampling method. 

In our simulations, we compared the convergence of the proposed Gibbs sampler on 

the B-DeepNoise model with HMC on the B-DeepNoise model. The trace plots of the 

negative log-likelihood (Figure S2) highlight that, compared to B-DeepNoise + HMC, B-

DeepNoise + Gibbs converged within fewer steps and reached lower negative log-likelihood 

values, which indicates a higher per-step efficiency and more accurate posterior predictive 

densities. Despite the superior empirical convergence performance of the Gibbs sampler, it 

remains essential to be mindful of the potential theoretical challenges with Gibbs samplers 

that can lead to inadequate mixing behaviors (Johnson & Jones, 2015; Papaspiliopoulos 

& Roberts, 2008; Román & Hobert, 2012). For example, when the model parameters 

are highly correlated or when the noise variance is small, Gibbs samplers may be less 

efficient than MH algorithms. While a comprehensive discussion on the theoretical issues 

surrounding Gibbs samplers are beyond the scope of this paper, we recommend in practice 

the identification of the most effective sampling methods by examining the effective sample 

sizes and inspecting the trace plots of the negative log-likelihood.

3.2 | Experiments on real continuous data

We applied B-DeepNoise and baselines methods to nine regression datasets on the UCI 

Machine Learning Repository (Dua & Graff, 2017). Experiment setup was similar to (Gal 

& Ghahramani, 2016; Lakshminarayanan et al., 2016), where each dataset was randomly 

split into training and testing sets for five times on Protein Structure and 20 times in the 

other datasets. Prediction accuracy was measured by the testing root mean squared error 

(RMSE) of the predictive mean, and uncertainty quantification accuracy was measured by 

the average negative log likelihood (NLL) of the predictive density on the testing data, as in 

Hernández-Lobato and Adams (2015), Gal and Ghahramani (2016), and Lakshminarayanan 

et al. (2016). The NLL is equivalent to the empirical cross-entropy between the estimated 
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and the true predictive density functions, which penalizes both over- and under-confident 

predictions. See Quinonero-Candela et al. (2005) for NLL as a valid metric and a proper 

scoring rule for evaluating predictive uncertainty. Another common UQ accuracy metric is 

the width of the 95% uncalibrated prediction interval (UPI) (Pearce et al., 2018). However, 

due to model miscalibration, the 95% UPI might overcover or undercover 95% of the 

observed outcomes. To better measure UQ accuracy, we computed the 95% calibrated 

prediction intervals (CPI), defined as the minimal x% UPI that covers at least 95% of the 

observed outcomes. In other words, the 95% CPI is the miscalibration-adjusted version of 

the 95% UPI. (See Section S3.1.3 for details.) Using the three aforementioned metrics, we 

compared B-DeepNoise against BP, VI, BNN, DE, and dropout Monte Carlo (DMC) (Gal 

& Ghahramani, 2016). Network architectures and experiment setups are similar to those in 

Section 3.1. (See Section S3 for details.)

Table 2 shows the experiment results. Compared with the baseline methods, B-DeepNoise 

had the least RMSE on all except two datasets, which indicates a superior prediction 

accuracy. Moreover, B-DeepNoise’s predictive distribution was also overall more accurate 

than the other methods, since the NLL of B-DeepNoise was the smallest on all except two 

datasets. The high UQ accuracy of B-DeepNoise was further demonstrated by its uniformly 

narrowest WCPI-95. In comparison, the baseline methods not only had significantly larger 

WCPI-95s, but some methods could not produce valid 95% CPIs at all on some of the 

datasets (as indicated by ∞ in Table 2), because even their 100% prediction intervals could 

not cover at least 95% of the observed testing outcomes.

In addition, B-DeepNoise’s performance was overall more stable than the baseline methods, 

as reflected by its generally smaller standard errors with respect to all the metrics. In short, 

the experiments on the UCI datasets demonstrated the superior DR and UQ accuracy of 

B-DeepNoise compared to existing methods.

For computation efficiency, the total runtimes of all methods are reported in Table S2. 

Overall, the computation cost of B-DeepNoise is comparable with BNN.

4 | NEUROIMAGING-BASED PREDICTION OF GENERAL INTELLIGENCE 

FOR ADOLESCENTS

We demonstrate the usefulness of B-DeepNoise in scientific studies by applying it to the 

neuroimaging data in the Adolescent Brain Cognitive Development (ABCD) Study (Casey 

et al., 2018). The dataset contains 1191 subjects recruited from multiple study sites in the 

United States. For every subject, we use B-DeepNoise to predict the density of the general 

intelligence score (g-score) (Dubois et al., 2018; O’Shea et al., 2016) using the 2-back task 

score (Cohen et al., 2016), general psychopathology factor (Caspi et al., 2014; Carver et 

al., 2017; Murray et al., 2016), demographic information (age, sex, parental education level, 

household marital status, household income, and ethnic backgrounds), and brain functional 

magnetic resonance imagings (fMRIs). (See Casey et al., 2018; Zhang et al., 2020, for 

details of the ABCD data.) We randomly selected 90% of the samples for training and the 

rest for testing. The model hyperparameters are similar to those in Sections 3.1 and 3.2. See 

Section S4 for details of the experiment setup.
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To illustrate the predictive density functions learned by B-DeepNoise, we selected 19 testing 

subjects that correspond to the 5%, 10%, ..., 90%, 95% quantiles of the observed g-score. 

The results are shown in Figure 1a. The prediction distributions estimated by B-DeepNoise 

have successfully covered the observed outcomes, with only a couple of samples located 

near the tails of the predictive distributions. To further assess B-DeepNoise’s UQ accuracy, 

we removed the imaging predictors and refit the model with the non-imaging predictors 

only. As shown in Figure 2b, when the imaging information was not available, B-DeepNoise 

widened the prediction intervals to account for the higher degree of uncertainty. In contrast, 

the predictive densities in the imaging-included model are not only more concentrated 

but also exhibited greater magnitude of heteroscedasticity and skewedness. These results 

indicate that B-DeepNoise is able to appropriately adjust the predictive density to reflect its 

subject-level prediction confidence.

Furthermore, we investigated the most influential neuroimaging features on the predictive 

mean of the g-score, where influence is measured by the average absolute value of the 

gradient of the predictive mean with respect to the feature in the B-DeepNoise model.

As shown in Table S3, the 2-back task score had the highest influence (1.32) on the 

predicted mean g-score, and the magnitude of influence was much higher than the other 

features (0.63 or less). This result is consistent with the current understanding that memory 

is a one of the major components that encompass cognitive abilities (Thompson et al., 

2019). The rest of the most influential features were primarily imaging features, and 

Figure 3 visualizes the influence of brain regions (Tzourio-Mazoyer et al., 2002) on 

predicted g-scores. Many of the corresponding brain regions have been well studied for their 

associations with general intelligence in existing studies. To name a few, bilateral calcarine 

is associated with the intelligence quotient (IQ) of children and adolescents (Kilroy et al., 

2011); putamen has been identified with verbal IQ in healthy adults (Grazioplene et al., 

2015); the right paracentral lobule has been found to be associated with functioning decline 

in at-risk mental state patients (Sasabayashi et al., 2021). Overall, neuroimaging regions 

that are the most influential for B-DeepNoise’s predicted mean g-score are supported by 

existing findings in the literature. Although causes for individual differences in cognitive 

abilities are multifaceted (Dubois et al., 2018), and our analysis does not make causal 

claims on the relationships between the features and the outcomes, B-DeepNoise’s ability of 

providing predictive densities of the g-score makes the model useful for studies that involve 

quantification of uncertainty in general intellectual capacity.

5 | CONCLUSION

In this work, we have presented B-DeepNoise, a novel Bayesian model based on deep neural 

networks for density regression, which generalizes the task of uncertainty quantification. We 

have demonstrated our model’s theoretical and computational properties and evaluated its 

performance on synthetic and real regression data.

A limitation of B-DeepNoise is the lack of advantage on classification tasks. Although 

B-DeepNoise combined with a softmax activation in the output layer is capable of handling 

categorical outcomes (Section S5.2), it (or any other stochastic models) is not expected 
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theoretically to have superior uncertainty quantification accuracy than a standard DNN 

classifier. See Section S5.1 for a demonstration.

For future works, we are interested in developing frequentist versions of our method and 

exploring the possibility of using them for outcome selection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: GIBBS SAMPLING ALGORITHM FOR B-DEEPNOISE

Based on the posterior full conditional distributions in Theorem 1, we describe the Gibbs 

sampling algorithm for B-DeepNoise in Algorithm A1. Partition the training sample 

indices 1, …, Ntrain  into T  mini-batches Tt: t = 1, …, T  (i.e., ⋃t = 1
T Tt = 1, …, Ntrain  and 

Tt1 ∩ Tt2 = ∅ ∀t1 ≠ t2). Without loss of generality, assume L is an even number.
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FIGURE 1. 
Observed data (blue dots) and estimated predictive density (heatmap) by B-DeepNoise 

(top row), DE (middle row), and BNN (bottom row) for heteroscedastic (left column), 

asymmetric (middle column), and multimodal (right column) noise.
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FIGURE 2. 
Observed g-scores (white crosses) and predictive densities (violin plots) estimated by B-

DeepNoise for 19 testing subjects.

Zhang et al. Page 20

Stat. Author manuscript; available in PMC 2024 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Influence of brain regions on the predictive mean of the g-score.
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